arXiv:1704.01996v2 [quant-ph] 27 Jul 2017

Noname manuscript No.
(will be inserted by the editor)

Optimizing Adiabatic Quantum Program Compilation using a
Graph-Theoretic Framework

Timothy D. Goodrich - Blair D. Sullivan -
Travis S. Humble

the date of receipt and acceptance should be inserted later

Abstract Adiabatic quantum computing has evolved in recent years from a theoretical field into
an immensely practical area, a change partially sparked by D-Wave System’s quantum annealing
hardware. These multimillion-dollar quantum annealers offer the potential to solve optimization
problems millions of times faster than classical heuristics, prompting researchers at Google, NASA
and Lockheed Martin to study how these computers can be applied to complex real-world problems
such as NASA rover missions. Unfortunately, compiling (embedding) an optimization problem into
the annealing hardware is itself a difficult optimization problem and a major bottleneck currently
preventing widespread adoption. Additionally, while finding a single embedding is difficult, no gen-
eralized method is known for tuning embeddings to use minimal hardware resources. To address
these barriers, we introduce a graph-theoretic framework for developing structured embedding algo-
rithms. Using this framework, we introduce a biclique virtual hardware layer to provide a simplified
interface to the physical hardware. Additionally, we exploit bipartite structure in quantum programs
using odd cycle transversal (OCT) decompositions. By coupling an OCT-based embedding algo-
rithm with new, generalized reduction methods, we develop a new baseline for embedding a wide
range of optimization problems into fault-free D-Wave annealing hardware. To encourage the reuse
and extension of these techniques, we provide an implementation of the framework and embedding
algorithms.

1 Introduction
Adiabatic quantum computing (AQC) is a model of computation that utilizes quantum mechanics

to solve difficult optimization problems. As originally proposed by Farhi et al. [16], AQC relies
on the dynamical evolution of a quantum state under a Hamiltonian that changes adiabatically

T.D. Goodrich - B.D. Sullivan
Department of Computer Science, North Carolina State University, Raleigh, North Carolina 27606, USA.
E-mail: Corresponding author: tdgoodri@ncsu.edu

T.S. Humble
Quantum Computing Institute, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831,
USA.

2 Timothy D. Goodrich et al.

from an initial to final form. This computational model uses the final Hamiltonian to express an
optimization problem such that adiabatic evolution will recover the corresponding ground state.

In its most general form, the AQC model is equivalent to other universal quantum computing
models. However, any limitation on the Hamiltonian forms may reduce the power of the compu-
tational model. Recently, an embodiment of the AQC model with a restricted Hamiltonian was
developed using superconducting flux qubits by D-Wave Systems Inc. This quantum processor pro-
vides a large number of addressable qubits (up to 2048 in the latest D-Wave 2000Q processor)
that implement a programmable Ising model over a restricted geometry. While not a universal
quantum computer, the D-Wave processor has been shown to produce quantum effects and yield
time-to-solution orders of magnitude faster than classical algorithms [12], 25]. Use of this quantum
annealer [23] has evolved beyond the design stage to testing and deployment, with recent appli-
cations including computational chemistry, NP-hard graph problems, image recognition, and more
(12} 24, 311, 33, 35, [38].

A key step in using current AQC-based processors is compiling the executable program that
will run on hardware with restricted connectivity |21, [7]. Both the problem and hardware layouts
are conventionally represented using graphs with the problem defined by variables connected with
dependencies and the hardware layouts defined by qubits connected with couplers. Under this
graph-theoretic formulation, the compilation process reduces to the NP-hard problem of minor
embedding the problem graph into the hardware graph. In practice, this step represents a limitation
bottleneck for the end-to-end program performance because existing embedding algorithms take
orders of magnitude longer to execute than the quantum annealer itself [22]. Furthermore, no
efficient universal embedding algorithm exists, with past algorithms addressing specific classes of
problem instance (e.g. complete graphs, very sparse graphs, etc.) and hardware instance (e.g. D-
Wave Chimera graph, etc.), along with a myriad of additional assumptions (e.g. fault-free hardware,
parameter values, etc.). However, given the disjoint development of algorithms for these specialized
instances, the resulting techniques cannot be combined in a common framework.

To address this incompatibility, we introduce a graph-theoretic framework for developing tuned
and modularized embedding algorithms. This framework introduces the concept of a wvirtual hard-
ware graph that provides a judiciously simplified representation of the physical hardware graph,
greatly reducing the complexity of embedding subroutines. Many existing embedding algorithms
are compatible with the virtual hardware layer and we rewrite them as modular subroutines. We
then introduce generalized reduction subroutines for minimizing the hardware footprint of a given
embedding. We are able to apply these reduction subroutines to the embedding algorithms emulated
by our framework, producing notable improvements for reducing hardware footprint.

As a proof of concept, we provide a complete bipartite virtual hardware compatible with the
D-Wave Chimera hardware structure. By exploiting bipartite problem structure with an odd cy-
cle transversal decomposition (OCT), we are able to provide embeddings for edge-dense problem
graphs. We additionally present a linear-time approximation algorithm for computing OCT decom-
positions, leading to fast embedding algorithms. Further use cases are provided by Hamilton and
Humble [19].

Finally, we provide an efficient implementation of the full virtual hardware framework, includ-
ing new and existing embedding and reduction subroutines, available at https://github.com/
TheoryInPractice/aqc-virtual-embedding. Experimentally, we find that this framework is able
to unify and expand on existing embedding algorithms, providing baseline tools for future develop-
ment. Further, we find that OCT-based embedding algorithms perform better — in run time, size

https://github.com/TheoryInPractice/aqc-virtual-embedding
https://github.com/TheoryInPractice/aqc-virtual-embedding

Optimizing Adiabatic Quantum Program Compilation using a Graph-Theoretic Framework 3

&

aelile s
ISl

‘ |WAN “A
' o o
oegiossplee
Ve /omlt i @ W L)
‘ N L

A.A%A" ' "\"‘

o
N =
("'oloks‘. "

N
R

-51(;',3‘3‘0‘}‘0.,‘“ (@7
A '

flsas
|WAN
\

f #;}“Q\
‘ad
[[
o eie

ﬂ}{/.

.‘Q‘A’,{.- (3312
\’\X)V

@

\‘\g,. ke ‘ 5
».v‘v":)‘:gg:% 5
ol ‘\o 5

O

O&s.
A A
NN NN

Fig. 1: A Chimera C3 34 graph. The Chimera location labels of four qubits are highlighted.

of problem graph embedded, and number of qubits used — than the existing TRIAD and CMR
algorithms [, [10].

The manuscript is organized as follows: Section 2 introduces adiabatic quantum computing and
the D-Wave hardware, including an overview of related work. Section 3 defines virtual hardware
and a stack of baseline subroutines — the graph-theoretic framework — and details the emulation and
enhancement of existing embedding algorithms using our framework. Section 4 introduces a new
embedding subroutine that exploits bipartite structure in problem and hardware graphs by using
an odd cycle transversal decomposition and biclique virtual hardware, respectively; we additionally
present a new, fast approximation algorithm for computing an odd cycle transversal. Section 5
contains experimental results of embedding algorithms detailed in previous sections. Finally, we
summarize, present our conclusions, and outline future work in Section 6.

2 Background

We assume graphs are simple and undirected. For a graph G, we denote its vertices with V(G) and
edges with F(G), and let n = |[V(G)| and m = |E(G)| if the graph in question is clear from the
context. Given a set of vertices S, we use G[S] to denote the subgraph induced by S, and G\ S to
denote G|V (G) — S]. We denote the complete graph on n vertices as K,, and the complete bipartite
graph on n = n; +ny vertices with partite sets of order ny,ny as K, ,. As shorthand, we also refer
to complete bipartite graphs as bicliqgues. We denote the neighbors of a vertex u as N(u). An edge
(u,v) can be contracted by adding a vertex uv with incident edges to the vertices N(u)UN (v), and
then deleting u and v. We also define the contraction of a connected subgraph H as the iterative

4 Timothy D. Goodrich et al.

Hardware

QUBO Problem

Inverse Embedding:

arg min Z Qijziz; for —— Qubit

&

Map optimal spins

i<y = o
to T assignment

Qi; €R and z; € {0,1} «— Qubit Coupler

Convert to Embed QUBO Parameterize Run Quantum
QUBO Graph into Hardware Embedding Annealing

Solve Ising Model:
Assign qubit
spins to minimize
energy in system

Fig. 2: A typical workflow for running QUBO-formulated optimization problems on an AQC pro-
cessing unit. Finding efficient and effective embedding algorithms is an area of active research.

contraction of its edges (order does not matter due to connectivity). For a set S we denote its power
set as P(S).

Current and prior D-Wave hardware layouts are based on the more general Chimera graphs.
Visualized in Fig. [} a Chimera graph Cr, a7, v is an M x N grid of biclique Ky, 1, cells. For example,
the latest D-Wave 2000Q hardware is based on a C4,16,16 graph. In the context of Chimera hardware,
we assume that the qubits are labeled by their location in the Chimera layout: (¢,, ¢.,¢p, ¢1,) where
1 < ¢, < M identifies a row, 1 < ¢, < N identifies a column, ¢, € {1,2} identifies a partite set, and
1 < ¢, < L denotes the in-cell height index.

2.1 Minor Embedding for Adiabatic Quantum Programming

Programming a quantum annealer, such as the D-Wave hardware, requires setting the parameters
that define the underlying Ising Model. This process includes defining the positive and negative
spins as variable assignments such that logical dependencies are maintained within the restricted
connectivity of the hardware graph. Recently, several efficient compilation methods have been pro-
posed for managing this process [9] 211 [35], [38].

A generalized compilation pipeline is shown in Fig. 2] A common entry point into these com-
pilation frameworks is the quadratic unconstrained binary optimization (QUBO) problem. Given
variables x1,..., 2, where z; € {0,1} and constants ¢;; € R, the QUBO problem is to compute

arg min Z CijXij.
1<j
QUBO has become a standard input format for quantum annealers, similar to the linear program

format used in efficient classical solvers such as CPLEX. Many constrained optimization problems
can be converted directly to QUBO form [6].

Optimizing Adiabatic Quantum Program Compilation using a Graph-Theoretic Framework 5

A QUBO can be converted directly into a graph P with vertices V(P) = {x1,...,2,}, edges
E(P) = {(xi,x;) | i # j,cij # 0}, vertex weights ¢;;, and edge weights ¢;; for i # j. Viewing
a QUBO as a graph is particularly useful when selecting sets of physical qubits to represent the
QUBO variables, since this assignment is known as graph minor embedding:

Definition 1 (Minor Embedding) Given two graphs P and H, a minor embedding of P into H
is a function ¢ : V(P) — P(V(H)) that assigns each vertex in P to a vertex set from V(H) such
that the following properties hold:

1. Vertex sets cannot overlap: ¢(u) N ¢(v) = O for all distinct u,v € V(P).
2. Vertex sets induce connected subgraphs: H[¢(u)] is connected for every u € V(P).
3. Edges are represented: (u,v) € E(P) — (v/,v") € E(H) for some v’ € ¢(u) and v' € ¢(v).

From a graph-theoretic perspective, this embedding defines the vertex deletions and edge contrac-
tions necessary to find P as a minor of H. From the physics perspective, this embedding assigns an
appropriate set of physical qubits to collectively represent a logical qubit, and QUBO weights are
adjusted for this embedding by distributing each logical qubit’s weight over its vertex sets’ physical
qubits [9]. Hence, compiling a QUBO into AQC hardware reduces to the problem of finding a minor
embedding.

The problem of finding a minor embedding is NP-hard for general graphs, witnessed with a
trivial reduction from SUBGRAPHISOMORPHISM.The most famous minor-embedding result comes
from the Robertson-Seymour graph minor theory [36], which implies that there is a polynomial-
time algorithm for finding an embedding of a fixed problem graph into any potential hardware
graph. However, this algorithm assumes the size of the problem graph is a constant and uses
it exponentially, therefore the result is not expected to yield practical embedding algorithms Choi
notes that a similar problem has been previously studied in parallel computing [27] where a job needs
to be distributed over a cluster’s nodes, but existing results are incompatible with the requirement
of a graph minor embedding [10].

In addition to constructing a minor embedding, in practice we also want to tune the embedding
to have beneficial graph properties. Finding an embedding with a minimum hardware footprint,
measured in qubits, would be preferable to more wasteful embeddings. Experimental evidence also
suggests that large vertex sets lead to poor solutions in practice, so minimizing the diameter of each
vertex set’s induced subgraph is desirable. Thus, in addition to the NP-hard problem of generating
a single embedding, we are also interested in searching over the space of embeddings.

Examples of prior application-to-Ising-Model compilations include Lucas’s formulation of Karp’s
21 NP-hard problems [31], NASA’s rover missions [35, [38], applications in computational chemistry
[24], and computer vision [33].

2.2 Related Work

The notion of minor embedding QUBO problems into Chimera Cy, ps, v hardware was first introduced
by Choi in 2008 [9]. Choi later provided the first general purpose embedding algorithm [I0], TRIAD,
which embedded K (assuming N < M) into a triangular portion of the D-Wave hardware. This
embedding trivially provides embeddings for all graphs of at least LN vertices; however, no tuning
mechanism is provided to reduce the hardware footprint for problems with less edges.

Klymko et al. [26] extended this work by providing an alternative embedding algorithm for
K1 ny1. While TRIAD could be extended for this extra vertex set, it unnaturally used all remaining

6 Timothy D. Goodrich et al.

qubits. The embedding provided by Klymko et al. shifted these qubits around such that all the
vertex sets are (roughly) balanced. Klymko et al. showed that this balanced embedded also proved
resilient to hardware instances with hard faults (missing qubits). Finally, the authors also introduced
the notion of QUBO rejection using structural graph properties. Specifically, Klymko et al. showed
that QUBOs with treewidth larger than L(N + 1) cannot be embedded in Cy, pr,n. While treewidth
is NP-complete to compute, Wang et al. provided a linear-time approximation for problems based
on Ollivier-Ricci curvature [39].

While the algorithms from [10] and [26] ran in constant time and guaranteed an embedding,
Cai et al. [§] took a different approach by providing greedy heuristics for embedding arbitrary
QUBOs into arbitrary hardware graphs. Experimental results provided by the authors show that,
for very sparse graphs such as 3-regular and grid graphs, the algorithm succeeded in embedding
larger QUBOs than previous embedding algorithms, while also using less qubits. This so-called
CMR algorithm is the basis for the embedding algorithm provided in the D-Wave APT [I1].

Most recently, Boothby et al. [5] generalized the TRIAD embedding into a class of native clique
embeddings for K. They show that, unlike the TRIAD embedding, exponentially-many native
clique embeddings exist in a given Chimera graph, making it possible to construct one that avoids
hard faults. Additionally, they provide a polynomial-time dynamic programming algorithm for
computing the maximum native clique possible in a Chimera graph with hard faults.

3 Virtual Hardware Framework

At the core of our framework is a virtual hardware layer created to provide a cleaner interface for
finding minor embeddings. The introduction of this intermediary representation splits the minor
embedding process into two phases:

1. Find the initial embedding. Starting with a virtual hardware template that allocates physical
resources, find a virtual embedding function into the virtual hardware.

2. Tteratively tune the embedding. After obtaining an initial embedding, apply reduction routines
to tune both the virtual embedding function and virtual hardware to adjust physical hardware
resource usage.

Fig. [3] illustrates this iteration. Provided with an initial virtual hardware template 7 and its

embedding 1 into the physical hardware, a virtual embedding ¢ is sufficient for finding a valid
minor embedding of the QUBO into the physical hardware. By iterating reduction subroutines,
a sequence of improved embeddings (¢, 7T,v) — (¢',T",¢") — (¢, T",4") each produce a full
embedding with reduced hardware usage.
Formally, we assume the problem is formulated as a graph P and the hardware layout as a graph
H. The virtual hardware template T is a graph embeddable into H. This embedding denotes an
allocation of qubits in H into virtual qubits in 7, encoded with a physical embedding function
¥ : V(T) = P(V(P)). For bookkeeping, we require that each edge in 7 represents exactly one
edge in H — therefore removing edges in the virtual hardware has a corresponding meaning on the
physical hardware footprint. Since we want to define a virtual hardware template that scales with
the physical hardware, we define virtual hardware templates in terms of families:

Definition 2 (Chimera-Compatible Virtual Hardware Template Family) A virtual hard-
ware template family F is a set of virtual hardware graphs defined with a corresponding family of

Optimizing Adiabatic Quantum Program Compilation using a Graph-Theoretic Framework 7

Hardware

Fig. 3: A high-level overview of the virtual hardware framework, including the iterative tuning of
the virtual embedding ¢, virtual hardware template 7, and the physical embedding .

physical hardware embedding functions ¥, such that for all L, M, N € Z*, there exists ¢ € ¥ and
T € F such that ¢ minor embeds T into Cr, as n-

Finding a wvirtual embedding function ¢ : V(P) — P(V(T)) is sufficient for finding the initial
embedding x : V/(P) — P(V(H)), which can be constructed by letting x(u) = U,y ¥(2). We

compute this virtual embedding function with an embedding subroutine:

Definition 3 (Embedding Subroutine) An embedding subroutine takes as input a problem
graph P and virtual hardware 7, and outputs a virtual embedding ¢ : V(P) — P(V(T)) or the
keyword FAIL.

After finding a full minor embedding function, we then apply reduction subroutines to produce
tuned embeddings:

Definition 4 (Reduction Subroutine) A reduction subroutine takes as input a problem P,
virtual hardware 7, and virtual embedding ¢, then outputs an updated virtual hardware 7’ and
virtual embedding ¢’ (potentially identical to T and ¢).

After reduction subroutines are applied, an updated physical embedding function 1)’ can be
recovered from the original 1 and the final virtual hardware 7’ by using only the physical qubits
needed to represent the edges in 7'. Again, we have a full embedding x’ of the problem into the
physical hardware by combining ¢’ and .

3.1 Biclique Virtual Hardware

We now present an implementation of this framework using a biclique virtual hardware, an em-
bedding subroutine based on both Choi’s TRIAD and Klymko et al.’s embedding algorithm, and
provide two reduction subroutines for minimizing the total number of qubits used. We start with
the virtual hardware:

8 Timothy D. Goodrich et al.

Physical Hardware Virtual Hardware
> hihy vy { > hyhy
> s hs vsvs < > s hs
> ho b v v P phohi

VU4 V5V V9V

Fig. 4: The K2 12 biclique virtual hardware for Chimera(4, 3, 3). Thick blue edges show allocations
to vertical vertex sets, and dashed gray edges show the horizontal vertex set allocations.

Definition 5 (Biclique Virtual Hardware Template Family) A Cp p; n hardware contains
a biclique Ky virtual hardware 7 with partite sets L(T) = {v1,...,vrm} and R(T) =
{h1,...,hpn}; we refer to these as the vertical and horizontal partite sets, respectively. The em-
bedding function defining the minor embedding is given by

Y(v;) ={(,[i/L],1,imod L) | 1 < j < M}, and
¢(hi) ={([i/L],j,2,imod L) [1 < j < N}.

The intuition behind this allocation is a partitioning of the edges in Chimera graphs (c.f. Fig.
@. There are three such edge types — intra-cell, vertical inter-cell, and horizontal inter-cell — and the
inter-cell edges provide the highest connectivity increase per minor contraction. Therefore allocating
maximal vertical and horizontal paths provides a virtual hardware with relatively large degree per
vertex.

The biclique virtual hardware is fairly robust to physical hardware specifications by not requiring
a square Chimera grid like previous algorithms, nor depending on the fact that L = 4 in existing
hardware implementations. A biclique virtual hardware can also be allocated from a hardware
implementation with hard faults; however, in the naive allocation we find that each missing qubit
removes a full vertical or horizontal path. Managing hardware implementations with hard faults
is less a concern than in prior work, with more mature hardware yields and the introduction of
software post-processing methods for emulating missing qubits (e.g. the Full-Yield Chimera Solver
provided in D-Wave SAPT 2.4 [11]).

Optimizing Adiabatic Quantum Program Compilation using a Graph-Theoretic Framework 9

3.2 Biclique Embedding and Reduction Subroutines

In this subsection we develop a baseline set of embedding and reduction subroutines utilizing the
biclique virtual hardware template. We start by providing an embedding for a complete graph on
min(LM, LN) vertices. At a high level the embedding assignment is straightforward: a single virtual
qubit in the vertical partite has edges to every virtual qubit in the horizontal partite, and vice-versa.
Therefore, to ensure that every two problem vertices are joined by an edge, we map each problem
vertex to a pair of virtual qubits:

Subroutine 1 (Native-Embed) Given a problem graph P with V(P) = {u1,...,un} where n <
min(LM,LN) and a biclique virtual hardware T with partites L(T) = {v1,...,vpm} and R(T) =
{h1,...,hpn}, Native-Embed produces an embedding ¢ by mapping ¢(u;) = {v;, h;} for 1 <i<mn.

As defined, Native-Embed redundantly has two edges between every pair of vertex sets ¢(u;) and
&(uj), for i # j; namely, the edges (v;, h;) and (v;, h;). Recall that we defined ¢ such that each edge
in T represents a unique edge in H, so this redundancy in the virtual hardware represents an actual
redundancy in the physical embedding. To gauge the wastefulness, we score a virtual hardware and
its virtual embedding;:

Subroutine 2 (Qubit-Scoring) Suppose we are given standard input P, T, and ¢. For each virtual
qubit v; € L(T), let I,, = {j | (vi,h;) € E(T)} be its index set — the range of neighbors it has on
the virtual hardware. Define the score for each left partite vertex as

score(v;) =1+ {max([vi)J _ {mm(]vi)J '

L L

Each h; is assigned an index set and score analogously. Then the qubit score for ¢ and T is

Z score(v;) + Z score(h;).

v; €L(T) hi;€R(T)

At a high level, Qubit-Scoring computes the number of physical qubits that must be used with
the current virtual hardware and virtual embedding. If removing a redundant edge reduces the
score, then we have also reduced physical hardware usage. If removing a redundant edge does not
affect the score, then we know that this particular edge is not requiring extra hardware usage by
itself; however, a sequence of non-score-reducing redundant edge removals could potentially reduce
the score. Therefore, it is non-trivial to identify which of the redundant edges should be removed
for optimal hardware resource minimization.

Based on this observation, we provide two evaluation methods for computing virtual hardware
minimization. First, Qubit-Evaluation computes all possible redundant edge removals and chooses
the one with minimum score; this calculation is exponential in the number of redundant edges.
A faster evaluation method Fast-Qubit-Evaluation greedily keeps the lexicographically-first edge,
providing a minimal (but not necessarily minimum) score in linear time.

Subroutine 3 (Qubit-Evaluation) Suppose we are given standard input P, T, and ¢. Let S be the
set of problem vertices mapped to at least one virtual qubit on each partite, let £ be the set of all
edge sets E on the virtual hardware such that for each u,v € S, there is exactly one edge (u',v') € E
with v’ € ¢(u) and v € ¢p(v). Then Qubit-Evaluation returns arg ming ¢ Qubit-Scoring(E).

10 Timothy D. Goodrich et al.

Subroutine 4 (Fast-Qubit-Evaluation) Suppose we are given standard input P, T, and ¢. Let S
be the set of problem vertices mapped to at least one virtual qubit on each partite. Then Fast-Qubit-
Evaluation returns E = {(v;, h;) | i < j, v; € ¢(x), h; € ¢(y) for z,y € V(P) and y € N(x)}.

The last step is to use this reduced edge set to construct a reduced virtual hardware, computed

using Qubit-Reduce:
ey,
¥k r\\vy‘;,.
'

}’:5:&:(‘ .‘.0\:’&
A LR
i

a y(.'é
))

X7
NoYar
e

>

Score: 2
Score: 2
Score: 1

Score: 2

|

A\

il
Uity
RO
AR
@ <P
AN
==

i,

e N

Fig. 5: (Left) The Native-Embed embedding with “+”7-shaped vertex sets; (Right) The embedding
reduced by Qubit-Reduce, with “I”-shaped vertex sets.

Score: 2
Score: 2
Score: 1
Score: 2

Subroutine 5 (Qubit-Reduce) Given standard input P, T, ¢ and an evaluation subroutine, Qubit-
Reduce computes a set of redundant edges to be removed E, and outputs the current virtual embedding
¢ and a new virtual hardware T' with vertices V(T) and edges E(T) — E.

While fairly simple, Qubit-Reduce has the potential to reduce qubit usage by 50%. This ratio
occurs when Native-Embed’s “+7-shaped vertex sets on the physical hardware are reduced to “L”-
shaped vertex sets (as described by Boothby et al. [5]). Fig. |5 visualizes this reduction.

Up to this point, we have implicitly assumed that the problem graph was complete (i.e. we
needed to enforce every edge). However, we can achieve further hardware resource reduction by
assuming that the problem is missing edges. Specifically, by shuffling the assignment of vertex
sets on the biclique virtual hardware, we can group together those vertices with edges between
them, resulting in shorter vertex sets. This computation can be done with a scheme of subroutines,
kExchange-Reduce. In local search terminology, we compute a deterministic gradient descent on the
k-exchange neighborhood without restarts.

Subroutine 6 (kExchange-Reduce) Given standard input P,T,¢, and neighborhood exchange
parameter k > 2, the subroutine kExchange-Reduce computes a new virtual embedding ¢’ with the
following steps:
1. Let ¢' = ¢.
2. Starting from ¢', compute all (Z)k! ways to reassign exactly k problem vertices in each partite,

and score each qubit reassignment. (For example, if $(u1) = {v1, h1} and ¢(uz) = {ve, ha}, then
their 2-exchange on the left partite is ¢(u1) = {ve, b1} and ¢(uz) = {v1, ha}).

Optimizing Adiabatic Quantum Program Compilation using a Graph-Theoretic Framework 11

3. Let ¢ be the reassignment with the lowest score.
4. Repeat until no k-exchange leads to a score reduction, and return ¢’ and T .

For a fixed k, run time for kExchange-Reduce is (})k! = O(n*) per iteration with a maximum of
L?(M + N) iterations. With the standard assumptions that L is a constant and v/n = max(M, N),
kExchange-Reduce has a run time of O(nF+1/2).

3.3 Emulation and Enhancement

Applying the tools introduced in the last subsection, we can emulate Choi’s K1y TRIAD algorithm
[10] with Native-Embed and Qubit-Reduce. Klymko et al.’s K1, x4+1 embedding [26] can be found by
tweaking Native-Embed to embed wuq,...,urny_1 as usual, but also setting ¢(ury) = {vrn} and
¢(urn+1) = {hrn}. We note that doing so forces the first LN — 1 vertex sets to cover both the
vertical and horizontal partites in order to be adjacent to the last two vertices, therefore applying
Qubit-Reduce has a limited effect and is not recommended for general use.

One advantage of emulating existing algorithms in this framework is for the application of virtual
hardware-specific reduction subroutines; namely, Qubit-Reduce and kEx-Reduce. In Section we
see that the subroutines do in fact produce smaller embeddings without unreasonably increasing
run times.

3.4 Summary

In this section we defined a biclique virtual hardware formed naturally from the Chimera graph by
exploiting its grid-like structure and high intra-cell connectivity.

We also defined a full baseline stack of embedding and reduction subroutines. As noted in the last
subsection, this framework is sufficient for emulating the best existing algorithms for dense problem
graphs in hardware layouts without faults. Furthermore, we can apply additional reduction routines
to achieve reduced embedding footprints. In total, these results serve as a full proof-of-concept
motivating the use of virtual hardware and the development of specialized and modular subroutines.
In the next section we take the next step and move beyond existing embedding algorithms by
exploiting the bipartite structure in problem graphs to tackle larger, more sparse problems.

4 Utilizing Bipartite Problem Structure

In the last section we emphasized the structural properties of the Chimera hardware graph, deriving
the biclique virtual hardware and its subroutines. In this section we utilize bipartite structure from
the problem graph. Specifically, we use the notion of odd cycle transversals to decompose problem
graphs and extract a maximal bipartite induced subgraph. We start by defining the odd cycle
transversal and its limitations in the Chimera graph, then describe an initial embedding subroutine
OCT-Embed, and finally propose a faster heuristic, Fast-OCT-Embed.

4.1 Odd Cycle Transversal

One metric for gauging the “bipartite-ness” of a graph G is the smallest set of vertices preventing
G from being bipartite, a minimum odd cycle transversal:

12 Timothy D. Goodrich et al.

Definition 6 (Odd Cycle Transversal (OCT)) The odd cycle transversal of a graph G is a set
of vertices S such that G\ S is a bipartite graph. We denote the size of a minimum OCT set as the
OCT number, OCT(G), and the problem of computing OCT(G) as MINOCT.

Unfortunately, MINOCT is NP-hard [28] and does not have a constant factor approximation
algorithm unless P = NP [32]. However, the problem is fixed-parameter tractable (FPT) when
parameterized by the natural parameter (solution size). In other words, graphs with small OCT
numbers will also have quickly-computable OCT numbers, regardless of total graph size. Given that
the biclique virtual hardware is most efficiently utilized when embedding problem graphs with small
OCT numbers, we expect embeddable problem graphs will have an efficiently computable OCT
decomposition. As a baseline we use Reed et al.’s O(3*kmn) algorithm for computing solutions of
size k, which is known to have several simplifications and optimizations [29] 20]. Other algorithms
for specialized instances also exist [II, [30].

We note that MINOCT and the problem of computing the size of the maximum bipartite induced
subgraph (denoted by MAXBIPARTITE) are complements, in the sense that an exact solution to one
problem also provides a solution to the other. However, an approximation for one problem is not
an approximation for the other, so some care must be taken when choosing which problem to
approximate.

4.2 OCT and the Chimera Graph

In prior work, Klymko et al. showed that the Chimera graph has treewidth bounded by O(LN),
assuming N < M [26]. In this section we show that the maximum OCT(G) over all Chimera-
embeddable graphs G is bounded by all three Chimera parameters. First, we note that treewidth
and OCT describe different graph structure:

Proposition 1 The treewidth of a graph is independent of its OCT number.

Proof Consider two families of graphs:

1. The class of grid graphs. These graphs are known to have treewidth proportional to the smallest
grid dimension [13], but have an OCT number of 0 since they are bipartite.

2. The class of trees with their leaves replaced with triangles. These graphs have treewidth at most
three (a tree decomposition exists where each bag contains at most a triangle and its neighbor
in the tree), but unbounded OCT number since each (disjoint) triangle contains at least one
OCT vertex.

We have shown that one property cannot bound the other, therefore they are independent. a

With this independence established, we proceed to show upper and lower bounds on the maxi-
mum OCT number of a Chimera-embeddable graph.

Lemma 1 OCT(G) < min(|L(B)|,|R(B)|) for all minors G of a bipartite graph B with vertex
partite sets L(B) and R(B).

Proof Let ¢ be a minor embedding of G into B, and without loss of generality, let L(B) be the
smaller of the two partite sets. Let S = {z | z € V(G) and u € ¢(z) for u € L(B)}, then we know
that |S| < |L(B)|. V(G) — S is necessarily bipartite since ¢(x) is composed of vertices from R(B)
for x € V(G) — S, therefore OCT(G) < |S| < |L(B)]. |

Optimizing Adiabatic Quantum Program Compilation using a Graph-Theoretic Framework 13

Corollary 1 OCT(G) < LMN for all Chimera-embeddable graphs G.
Lemma 2 There exists a Chimera-embeddable graph G such that OCT(G) > (L —1)MN.

Proof We construct G by contracting L — 1 vertex-disjoint edges in each cell of a Chimera graph.
Each cell is now a K41 clique and L—1 of these vertices must be included in an OCT set, therefore
OCT(G) > (L —1)MN. O

While the treewidth of Chimera graphs only grows in two dimensions (L and min(M, N)),
Lemma [2] shows that the minimum odd cycle transversal will increase if L, M, or N is increased.
Therefore we recommend using a minimal odd cycle transversal as a proxy for estimating how much
hardware a problem graph’s embedding will require. A minimal OCT set is fast to compute and
reflects more of the actual hardware usage than treewidth.

In addition to gauging how much hardware a problem’s embedding will require, we can also
use the minimum odd cycle transversal to recognize when certain problems are not embeddable.
The Klymko et al. [26] result shows that problems with treewidth larger than (L + 1) N cannot be
embedded, but this bound does not apply to classes of small treewidth, such as series-parallel graphs
[14]. However, the OCT rejection criterion provides a characterization of unembeddable graphs in
terms of odd cycles, therefore it encompasses a different class of graphs (including series-parallel
graphs, which can have an unbounded number of odd cycles).

4.3 Computing OCT and OCT-Embed

As mentioned previously, the fastest-known algorithm for computing the OCT number is exponen-
tial in the solution size, so we want to prune graphs if possible. One method of doing that is by
removing tree-like structure:

Proposition 2 To compute MINOCT on a graph G, it is sufficient to compute MINOCT on the
maximal 2-edge-connected subgraphs of G.

Proof We induct on the number of 2-edge-connected maximal subgraphs. If there is no such sub-
graph, then every edge is a bridge and the graph is a tree, therefore the claim is true.

Suppose instead that there are k such subgraphs in G and the claim is true for all graphs with
k — 1 such subgraphs. We can decompose the graph into maximal 2-edge-connected subgraphs by
computing a chain decomposition [37] on G to identify its bridges. Removing these bridges produces
each maximal 2-edge-connected subgraph as a connected component. Further, contracting these
subgraphs creates a tree with the contracted subgraphs as vertices and the bridges as the edges.
Pick a subgraph S that is a leaf on this tree, and let (vi,v2) be the bridge separating S from
G\ S. By the induction hypothesis, we can compute OCT(G \ S) and OCT(S) on their maximal
2-edge-connected subgraphs, therefore all that remains is to show that these two partial solutions
are compatible.

Suppose that the partial solutions are expressed as a coloring: vertices in the left partite set are
colored L, the right partite set R, and neither partite set (e.g. in the OCT set) as N. If at least
one of v, vy is colored N, or if one is colored L and the other R, then these partial solutions are
compatible as-is. Suppose to the contrary that both are colored with the same partite set color.
Then in S we recolor L — R and R — L. This recoloring does not change OCT(S), and the partial
solutions are now compatible. a

14 Timothy D. Goodrich et al.

This preprocessing step is fast, costing only an additive O(m) run time when using Schmidt’s
chain decomposition algorithm [37]. This approach also provides an opportunity for parallelization
if the graph has many 2-edge-connected maximal subgraphs. While this technique applies to any
graph, we can take advantage of the 2-edge-connectivity in the class of series-parallel graphs by
exploiting nested ear decompositions:

Proposition 3 OCT(G) can be computed in linear time for a series-parallel graph G.
Proof The proof of Proposition [can be found in Appendix [A] O

We conclude this subsection by defining an embedding subroutine that uses an OCT-decomposition
to embed into the biclique virtual hardware. At a high level, OCT-Embed first computes a minimum
OCT set, embeds the OCT vertices as if they were a complete graph, and then embeds the bipartite
induced subgraph directly into the biclique virtual hardware (Fig. @

Subroutine 7 (OCT-Embed) Let P be a problem graph with V(P) = S UL U R, where S =
{ui,...,u;} is a minimum OCT set, and L = {u;q1,...,u;} and R = {ujj41,...,u,} are a
mazimum bipartite induced subgraph. Let T be a biclique virtual hardware with partites L(T) =
{vi,...,vppm} and R(T) ={h1,...,hen}. If j < LM and n —i < LN, then OCT-Embed produces
an embedding ¢ by mapping:

{vg, he} if uy €S
d(ug) =< {vs} tfugy €L
{hwfi} quw €ER

otherwise it outputs FAIL.

4.4 Approximating OCT and Fast-OCT-Embed

A downside to OCT-Embed is its exponential run time, restricting the subroutine’s real-world ap-
plicability. However, an exact solution to MINOCT is not always required for a full embedding —
any odd cycle transversal decomposition will work as long as it fits into the biclique virtual hard-
ware. We utilize this fact to develop an approximation algorithm for MAXBIPARTITE, and use this
approximation algorithm for two purposes: (1) as an initial solution for the iterative compression
in our algorithm for OCT-Embed, and (2) as a standalone embedding subroutine Fast-OCT-Embed.

We approximate MAXBIPARTITE instead of MINOCT for two reasons. First, the Reed et al.
algorithm [34] we use to compute the exact OCT number uses a technique called iterative compres-
sion, where a solution of size k + 1 is compressed to size k over several subgraph iterations. We
can reduce the number of these iterations by providing the algorithm with a large initial subgraph
with at most & OCT vertices, therefore we have motivation for estimating a maximal bipartite
subgraph. Second, if we approximate MAXBIPARTITE, then our worst approximations (in terms of
magnitude) are when the graph has a large bipartite graph. However, this implies a small OCT set,
therefore the exact algorithm will have an exponentially faster run time. Therefore approximating
MAXBIPARTITE makes more sense in this context.

Our approximation algorithm is outlined in Algorithm [I} Partially motivated by the success
of using a greedy algorithm to compute exact solutions on series-parallel graphs, we found that a
minimum-degree—greedy algorithm also performed well in practice on general graphs (c.f. Section

Optimizing Adiabatic Quantum Program Compilation using a Graph-Theoretic Framework 15

OCT Set

Right Partite

...............................

Left Partite

Fig. 6: Embedding an 8-vertex problem into C4 29 using the OCT-Embed subroutine. For figure
readability, vertex u; is labeled with 3.

Algorithm 1 Greedy Maximal Bipartite Induced Subgraph

1: function GreedyBipartite(G)

2: L <+ GreedylndSet(G)

3: R + GreedyIndSet(G \ L)
4: return LUR

5: end function

6:

7: function GreedylndSet(G)
8: S« 0

9: while G not empty do
10: v 4 argming, cy () d(u) > Pick any min degree vertex
11: S+ Su{v}
12: G+ G\ ({v} UN(v))

13: end while
14: return S
15: end function

. In total, the algorithm has a run time of O(m) using a modification of Bataglj and Zaversnik’s
algorithm for computing k-core decompositions [3].

We begin the approximation factor analysis by noting that an approximation algorithm for
minimum independent set translates to MAXBIPARTITE:

Lemma 3 GreedyBipartite implemented with an a-approximation GreedylndSet algorithm is an -
approrimation algorithm.

Proof Let S be a fixed set of vertices such that G[S] is the larger partite of a maximum bipartite
induced subgraph. We want to show that for every vertex GreedyBipartite adds to its solution

16 Timothy D. Goodrich et al.

S’, at most « vertices from S are not chosen. Let L and R be the first and second independent
sets constructed by GreedylndSet, respectively. First, the set L is chosen without (immediately)
disqualifying any vertex in G \ L from being in R, so no vertices are disqualified from S’ in this
step. When constructing R, at most « vertices from S are disqualified for every vertex added
to R, by definition of the approximation factor. Therefore R itself is an a-approximation for the
partite and a 2a-approximation for MAXBIPARTITE. If |L| > |R| then we have shown at least an
a-approximation. To show the approximation factor still holds when |L| < |R|, we want to show
that L is a a-approximation for MAXINDSET in G \ R. But the previous argument still holds, since
at most « vertices from S are disqualified from S’ for every vertex chosen from G\ R. Therefore in
both cases we have a alpha-approximation for the larger partite of a maximum induced bipartite

subgraph, therefore we have an a-approximation for MAXBIPARTITE. a
Corollary 2 GreedyBipartite is a %—gppmximation and a 2"ZTH—appro:m‘mation for graphs with

maximum degree A and average degree d.

Proof Halldorsson and Radhakrishnan [I8] show that GreedylndSet is a %-approximation and a

Qd;' 3_approximation for maximum independent set. By Lemma [3| the same approximation factors

hold for GreedyBipartite. O

Corollary 3 GreedyBipartite is a d-approzimation for d-degenerate graphs.

Proof We first want to show that GreedylndSet is a d-approximation, this proof mirrors that of
Lemma [3] Fix a maximum independent set S. In each step of GreedylndSet, a vertex added to the
solution disqualifies at most d vertices from S. Therefore GreedylndSet is a d-approximation for a
maximum independent set, and applying Lemmashows that GreedyBipartite is a d-approximation
for MAXBIPARTITE. O

Up to this point we have not assumed anything about the OCT set when computing an approx-
imation factor. However, as graphs get more dense the OCT set must also grow. We can show this
by using degeneracy as a metric for density:

Definition 7 (Graph Degeneracy) The degeneracy of a graph G is the smallest k such that
every subgraph of G has a vertex of degree at most k.

Lemma 4 GreedyBipartite is a (n — d)-approxzimation for a d-degenerate graph when d > .

Proof When d < %, the desired graph can always be found as a subset of K, 5 /2. However, for

larger values of d, vertices must be moved from the bipartite graph into the OCT set, specifically two

vertices per additional unit of degeneracy. This fact means that a d-degenerate graph can have at

most a bipartite subgraph on 2(n—d) vertices. Solving for the approximation factor: a-2(n—d) = 22
1

d
_ 2 _ 1 1 _
SO Q= 5 = ned d 2 ned n T n=d’ 0
Proposition 4 Fast-OCT-Embed is a min(d,n — d)-approximation for d-degenerate graphs.
Proof This result follows directly from Lemmas [3] and [0

In other words, the degeneracy-based approximation factor is best on very sparse and very dense
graphs. Swapping the approximation algorithm into our embedding subroutine, we now define Fast-
OCT-Embed:

Optimizing Adiabatic Quantum Program Compilation using a Graph-Theoretic Framework 17

Subroutine 8 (Fast-OCT-Embed) Let P be a problem graph with V(P) = S U L U R, where
S ={u1,...,u;} is an OCT set, and L = {ujt1,...,u;} and R = {ujt1,...,un} are a mazimum
bipartite induced subgraph. Let T be a biclique virtual hardware with partites L(T) = {v1,...,vLm}
and R(T) = {h1,...,hen}. If < LM and n — i < LN, then OCT-Embed produces an embedding

¢ by mapping:

{Vg, he} if uy €S
¢(u1) = {Uoc} if up € L
{hs—i} ifuz € R

otherwise it outputs FAIL.

4.5 Summary

In summary, the odd cycle transversal provides a structured method for decomposing problems
and embedding them smartly into the Chimera hardware. We showed that OCT is a more flexible
property than treewidth in Chimera, increasing flexibility to new generations of hardware, and also
showed how to use OCT to embed into a biclique virtual hardware. In the next section we evaluate
these new embedding subroutines against previously studied embedding algorithms.

5 Experimental Results

In this section we experimentally evaluate virtual hardware against the existing benchmark al-
gorithms. First, we compare the approximation Fast-OCT-Embed against the exact OCT-Embed,
using no reduction routines. We then compare the Reduced Fast-OCT-Embed against Cai et al.’s
Dijkstra-based heuristic (denoted here as CMR (Dijkstra)). Finally we conclude with a comparison
again Choi’s TRIAD algorithm for embedding complete graphs. Against both benchmarks we find
that Reduced Fast-OCT-Embed finds embeddings for larger graphs, using less qubits, with fast run
times (less than a second).

To minimize bias in the cross-algorithm comparisons, all algorithms and subroutines (e.g.
breadth-first search, Dijkstra’s algorithm, etc.) were implemented manually in C++ and are avail-
able at https://github.com/TheoryInPractice/aqc-virtual-embedding,

OCT-Embed is implemented using Lokshtanov et al.’s simplification of Reed et al.’s iterative
compression algorithm [29] [34]. Fast-OCT-Embed is computed using the smallest OCT number
found with 10,000 runs of GreedyBipartite; run times reported include the total run time to collect
this distribution. Reduced Fast-OCT-Embed additionally applies Qubit-Reduce and 2Ex-Reduce using
Fast-Qubit-Scoring.

We implemented the CMR (Dijkstra) algorithm from the Dijkstra-based pseudocode provided
on page 7 of []. Since this heuristic does not necessarily produce an embedding if it exists, we run
the heuristic repeatedly until an embedding is found or the time cutoff is reached; this provides the
expected time to find an embedding. TRIAD is implemented with Choi’s deterministic algorithm,
and Reduced TRIAD uses the biclique virtual hardware with Qubit-Reduce and 2Ex-Reduce using
Fast-Qubit-Scoring.

To provide a broad spectrum of comparisons, we generated problem graphs using four random
graph generators at three density levels (Table . While previous algorithms such as CMR have

https://github.com/TheoryInPractice/aqc-virtual-embedding

18 Timothy D. Goodrich et al.

been tested on problem graphs with constant vertex degree (e.g. grid and 3-regular graphs), this
assumption is unrealistic for real-world QUBOs. Intuitively, the complexity of the problem should
scale with the number of variables included. As an example, we note that Beasley’s QUBOs [4] have
average vertex degree of approximately g5 for n vertex problems.

We define the random graph models as follows. Noisy bipartite graphs were generated by splitting
the vertices evenly (up to parity) into two partite sets, including a bipartite edge at probability p,
and including a non-bipartite edge at probability £. The GNP graphs (also known as Erdds-Rényi
[15]) are generated by flipping a coin for each possible edge and including it with probability p. The
regular graph generator samples from the space of graphs where each vertex has degree exactly k.
Barabasi-Albert graphs [2] are generated by iteratively attaching n — k vertices to a subgraph of k
vertices using preferential attachment; we generate the initial subgraph using GNP with p = 0.25.
All graphs are generated using the NetworkX implementations [I7], excepting Barabéasi-Albert,
which required a modification to generate the initial subgraph as specified above.

Graph Family Low Density Medium Density High Density

Noisy Bipartite p =0.25 p = 0.50 p=0.75
GNP p=0.25 p=0.50 p=0.75
Regular k£ =0.25n k =0.50n k=0.75n
Barabasi-Albert &k = 0.25n k =0.50n k=0.75n

Table 1: Definition of density levels for the random input graph generators.

All experiments were run on a workstation running Fedora 24, and were each allocated a core
on an Intel X5675 processor and 1GB of RAM. Run times were limited to 60 minutes using the
timeout -k 10s 60m command, and no algorithm used more than its allocated memory. The C++
code was compiled with g++ 5.3.1 at the -02 optimization level, and controlled with wrapper
scripts run with Python 2.7.11. All experiments were seeded using the number of seeds specified in
each experiment below. The data points plotted are the median over all problem graph instances
and seeded algorithm runs.

5.1 Experimental Results

Comparing OCT-Embed and Fast-OCT-Embed on 25 graph instances per n value and 10 seeded
algorithm runs, we find that Fast-OCT-Embed practically matches the solution quality of the exact
algorithm, while running in under a second. We report a representative sample in Fig. [7]

To maintain a reasonable run time while maintaining 10 graph instances per n, we reduced the
comparison with CMR to 10 seeded algorithm runs; this reduction did not impact the results since
both CMR (Dijkstra) and Reduced Fast-OCT-Embed restart automatically as needed. We found that
CMR (Dijkstra) could not find smaller embeddings than Fast-OCT-Embed, in addition to having
significantly longer run times. While CMR may be competitive on very sparse graphs (e.g. grid
graphs), we found that it was not competitive when the problem graph had a linear density. Fig.
contains a representative sample using GNP.

Our final comparison is against Choi’s TRIAD embedding algorithm, the state-of-the-art for
embedding highly dense problem graphs in hardware without hard faults. We do not report run
times, given that Choi’s algorithm is a deterministic assignment and the OCT-based algorithm’s

Optimizing Adiabatic Quantum Program Compilation using a Graph-Theoretic Framework 19

Low Density Medium Density High Density
@ 500 —— OCT-Embed
‘g —— Fast-OCT-Embed
o 400
S
[}
S 300
2
B 200
7]
S
£ 100
o
>
© O
10 15 20 25 30 35 40 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Vertices Vertices Vertices
Low Density Medium Density High Density

—— OCT-Embed
—— Fast-OCT-Embed

103
102
10t
100
101
102

5 10 15 20 25 30 35 40 0O 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Vertices Vertices Vertices

Run time (sec)

Fig. 7: Embedding GNP graphs into Chimera(4, 8, 8); data points are the median over 25 ran-
dom graphs and 10 random algorithm seeds. Experimentally, we observe that the approximation
algorithm performs notably better than its approximation factor guarantees, while additionally
achieving highly practical run times.

run times are reported in previous plots. For this experiment we again used 25 problem seeds
and 10 algorithm seeds. Fig. [9] contains a representative sample. Again we find that Reduced Fast-
OCT-Embed embeds larger graphs while using less qubits. We also note that Reduced TRIAD was
effective compared to stock TRIAD for all low density graphs and some medium density graphs,
while only adding less than a second to the run time. Moreover, in several scenarios Reduced TRIAD
performed better than vanilla OCT-Embed, given the “L’- vs. “4”-shaped embeddings. However,
the flexibility provided with “4”-shaped embeddings made the reduction subroutines much more
effective, ultimately producing a better full algorithm. As a best practice, then, we recommend that
embedding algorithm designers apply these standard reduction subroutines before evaluating an
embedding algorithm’s effectiveness.

20 Timothy D. Goodrich et al.

Low Density Medium Density High Density
@ 400 —— CMR (Dijkstra)
ES 350 e Reduced Fast-OCT-Embed o .
.". '..' 3
2 300 Fd § 4
- ‘.' 2 s
£ 250 5 * i
k=) s §
o
2 150 o 4 *
7] » s K4
S o e
o 100 -
= i
2 50 e
o - y 4
0O 5 10 15 20 25 30 35 40 0O 5 10 15 20 25 30 35 40 0O 5 10 15 20 25 30 35 40
Vertices Vertices Vertices
Low Density Medium Density High Density
100 CMR (Dijkstra)
===e-== Reduced Fast-OCT-Embed
—~ 103
M
o
L 102
o
£ 1
=]
g 100
74 e — T
10 P aas “ P o
,v“’- X s
102 o P
0O 5 10 15 20 25 30 35 40 0O 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Vertices Vertices Vertices

Fig. 8: Embedding GNP graphs into Chimera(4, 8, 8); data points are the median over 10 random
graphs and 10 random algorithm seeds. Reduced Fast-OCT-Embed consistently outperforms CMR
in both qubits used and run time.

6 Conclusion

We have developed a virtual-hardware—based framework for constructing and deploying optimized
techniques for distinct parts of the minor embedding process. By introducing a biclique virtual hard-
ware, we provide a cleaner interface for embedding into the Chimera hardware layout and enable
modular subroutines for qubit reduction. Exploiting the bipartite structure in problem graphs with
odd cycle transversals, we are able to embed problems from from a diverse set of generators and
densities. Combining these two methods leads to an embedding algorithm Reduced Fast-OCT-Embed
that embeds larger problems, while using less qubits, for reasonably dense problem graphs. More-
over, without any parallelization or system-specific tuning, Reduced Fast-OCT-Embed terminates
in the order of seconds. This algorithm sets a baseline for embedding dense problem graphs that
should be extended and tuned for the user’s application.

Future extensions of this work could include tuned implementation of the reduction methods,
which are particularly promising for GPU parallelization. Additionally, as the problem graph be-
comes highly dense, we see that OCT-Embed (by definition) converges to TRIAD. A more intricate
embedding algorithm might not assume the OCT vertices were a clique, allowing even more flexible

Optimizing Adiabatic Quantum Program Compilation using a Graph-Theoretic Framework 21

Low Density Medium Density High Density

5 500 —— TRIAD
= - Reduced TRIAD
2 400 == Fast-OCT-Embed
) z
= ---e-=- Reduced Fast-OCT-Embed)
] X
S 300 <
=} w
= 5
3 200 2
) =g
5 ®
2 100
2
S
(o4

0
=
7]
b=
@
2
2
S
:
8 :
= T
©
@
)
5
)
b=
2
S
(o
=
7]
b=
@
2
2 o
= 2
2 &
) 7
= @,
T =
@ g
=] S
)
k=
2
S
(o4

20 30
Vertices Vertices Vertices

Fig. 9: Qubits used when embedding into Chimera(4, 8, 8); data points are the median over 25
random graphs and 10 random algorithm seeds. OCT-based algorithms consistently embed larger
problem than possible with TRIAD.

embeddings. Finally, adapting more intricate embedding algorithms (such as CMR) could provide
even better improvements, but would require significant development in the choice of relevant virtual
hardware(s).

22 Timothy D. Goodrich et al.

7 Acknowledgements

The authors would like to thank Steve Reinhardt and the anonymous two reviewers for feedback.
This work is supported in part by the Gordon & Betty Moore Foundation’s Data-Driven Discovery
Initiative through Grant GBMF4560 to Blair D. Sullivan, a National Defense Science & Engineering
Graduate Fellowship and a fellowship by the National Space Grant College and Fellowship Program
and the NC Space Grant Consortium to Timothy D. Goodrich.

Optimizing Adiabatic Quantum Program Compilation using a Graph-Theoretic Framework 23

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Agarwal, A., Charikar, M., Makarychev, K., Makarychev, Y.: O(y/logn) approximation algo-
rithms for min UnCut, min 2CNF deletion, and directed cut problems. In: Proceedings of the
thirty-seventh annual ACM symposium on Theory of computing, pp. 573-581. ACM (2005)

. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of modern

physics 74(1), 47 (2002)

Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. arXiv
preprint ¢s/0310049 (2003)

Beasley, J.E.: OR-Library: distributing test problems by electronic mail. Journal of the opera-
tional research society pp. 10691072 (1990)

Boothby, T., King, A.D., Roy, A.: Fast clique minor generation in Chimera qubit connectivity
graphs. Quantum Information Processing 15(1), 495-508 (2016)

Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete applied mathematics 123(1),
155-225 (2002)

Britt, K.A., Humble, T.S.: High-performance computing with quantum processing units. arXiv
preprint arXiv:1511.04386 (2015)

Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors. arXiv preprint
arXiv:1406.2741 (2014)

Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting prob-
lem. Quantum Information Processing 7(5), 193-209 (2008)

Choi, V.: Minor-embedding in adiabatic quantum computation: II. Minor-universal graph de-
sign. Quantum Information Processing 10(3), 343-353 (2011)

D-Wave Systems Inc.: SAPI 2.4 (2016)

Denchev, V.S., Boixo, S., Isakov, S.V., Ding, N., Babbush, R., Smelyanskiy, V., Martinis, J.,
Neven, H.: What is the computational value of finite-range tunneling? Physical Review X 6(3),
031,015 (2016)

Diestel, R.: Graph theory. Graduate Texts in Mathematics 173 (2005)

Eppstein, D.: Parallel recognition of series-parallel graphs. Information and Computation 98(1),
41-55 (1992)

Erdos, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci
5(1), 17-60 (1960)

Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution.
arXiv preprint quant-ph/0001106 (2000)

Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function
using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy2008), pp.
11-15. Pasadena, CA USA (2008)

Halldérsson, M., Radhakrishnan, J.: Greed is good: Approximating independent sets in sparse
and bounded-degree graphs. In: Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing, pp. 439-448. ACM (1994)

Hamilton, K.E., Humble, T.S.: Identifying the minor set cover of dense connected bipartite
graphs via random matching edge sets. arXiv preprint arXiv:1612.07366 (2016)

Hiiffner, F.: Algorithm engineering for optimal graph bipartization. In: International Workshop
on Experimental and Efficient Algorithms, pp. 240-252. Springer (2005)

Humble, T.S., McCaskey, A.J., Bennink, R.S., Billings, J.J., D’Azevedo, E., Sullivan, B.D.,
Klymko, C.F., Seddiqi, H.: An integrated programming and development environment for adi-

24

Timothy D. Goodrich et al.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

abatic quantum optimization. Computational Science & Discovery 7(1), 015,006 (2014)
Humble, T.S., McCaskey, A.J., Schrock, J., Seddiqi, H., Britt, K.A., Imam, N.: Performance
models for split-execution computing systems. In: Parallel and Distributed Processing Sympo-
sium Workshops, 2016 IEEE International, pp. 545-554. IEEE (2016)

Kadowaki, T, Nishimori, H.: Quantum annealing in the transverse ising model. Physical Review
E 58(5), 5355 (1998)

Kassal, 1., Whitfield, J.D., Perdomo-Ortiz, A., Yung, M.H., Aspuru-Guzik, A.: Simulating chem-
istry using quantum computers. Annual review of physical chemistry 62, 185-207 (2011)
King, J., Yarkoni, S., Raymond, J., Ozfidan, 1., King, A.D., Nevisi, M.M., Hilton, J.P., Mc-
Geoch, C.C.: Quantum annealing amid local ruggedness and global frustration. arXiv preprint
arXiv:1701.04579 (2017)

Klymko, C., Sullivan, B.D., Humble, T.S.: Adiabatic quantum programming: minor embedding
with hard faults. Quantum information processing 13(3), 709-729 (2014)

Leighton, F.T.: Introduction to parallel algorithms and architectures: Arrays- trees- hypercubes.
Elsevier (2014)

Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-
complete. Journal of Computer and System Sciences 20(2), 219-230 (1980)

Lokshtanov, D., Saurabh, S., Sikdar, S.: Simpler parameterized algorithm for OCT. In: Inter-
national Workshop on Combinatorial Algorithms, pp. 380-384. Springer (2009)

Lokshtanov, D., Saurabh, S., Wahlstréom, M.: Subexponential parameterized odd cycle transver-
sal on planar graphs. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 18.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2012)

Lucas, A.: Ising formulations of many NP problems. Name: Frontiers in Physics 2(5) (2014)
Lund, C., Yannakakis, M.: The approximation of maximum subgraph problems. In: Interna-
tional Colloquium on Automata, Languages, and Programming, pp. 40-51. Springer (1993)
Neven, H., Rose, G., Macready, W.G.: Image recognition with an adiabatic quantum computer
I. mapping to quadratic unconstrained binary optimization. arXiv preprint arXiv:0804.4457
(2008)

Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research Letters
32(4), 299-301 (2004)

Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E.M., Smelyanskiy, V.N.: A case
study in programming a quantum annealer for hard operational planning problems. Quantum
Information Processing 14(1), 1-36 (2015)

Robertson, N.; Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. Journal of
combinatorial theory, Series B 63(1), 65-110 (1995)

Schmidt, J.M.: A simple test on 2-vertex-and 2-edge-connectivity. Information Processing Let-
ters 113(7), 241-244 (2013)

Venturelli, D., Mandra, S., Knysh, S., O’Gorman, B., Biswas, R., Smelyanskiy, V.: Quantum
optimization of fully connected spin glasses. Physical Review X 5(3), 031,040 (2015)

Wang, C., Jonckheere, E., Brun, T.: Ollivier-Ricci curvature and fast approximation to tree-
width in embeddability of QUBO problems. In: Communications, Control and Signal Processing
(ISCCSP), 2014 6th International Symposium on, pp. 598-601. IEEE (2014)

Optimizing Adiabatic Quantum Program Compilation using a Graph-Theoretic Framework 25

A Computing OCT in Series-Parallel Graphs
In this appendix we prove the following result:
Proposition 5 OCT(G) can be computed in linear time for a series-parallel graph G.

The proof is based on the equivalence between series-parallel graphs and graphs with nested ear decompositions.
Using this decomposition, we show that a greedy algorithm constructs a minimum OCT set. We start by defining
series-parallel graphs and nested ear decompositions:

Definition 8 (Eppstein [14]) A graph G is two-terminal series-parallel with terminals s and ¢ if it can be produced
by a sequence of the following operations:

1. Base case: Create new graph, consisting of a single edge directed from s to t.

2. Parallel composition: Given two-terminal series-parallel graphs X and Y with terminals sx, tx, sy, and ty,
form a new graph G = P(X,Y’) by identifying s = sx = sy and t = tx = ty.

3. Series composition: Given two-terminal series-parallel graphs X and Y, with terminals sx, tx, sy, form a new
graph G = S(X,Y) by identifying s = sx, tx = sy, and t = ty.

Definition 9 (Ear Decomposition (Eppstein [14])) An ear decomposition of an undirected graph G is defined
to be a partition of the edges of G into a sequence of ears (E1, Ea, ..., E). Each ear is a path in the graph with the
following properties:

1. If two vertices in the path are the same, they must be two endpoints of the path.
2. The two endpoints of each ear E;, ¢ > 1, appear in previous ears I; and E;, with j < i and j’ < i.
3. No interior point of E; is in E; for any j < i.

Definition 10 (Nest Intervals (Eppstein [14])) Given an ear decomposition (E1, E3,..., Ey), we say that E;
is nested in Ej if both endpoints of F; are contained in E;. The nest interval of E; in E; is the path in E; between
the two endpoints of E;.

Definition 11 (Nested Ear Decomposition (Eppstein [14])) An ear decomposition is nested if the following
hold:

1. For each i > 1 there is some j < 4 such that E; is nested in Ej;.
2. If two ears E; and E;/ are both nested in the same ear E;, then either the nest interval of E; contains that of
E;: or vice versa.

Eppstein’s result shows that these two graph classes are equivalent:

Theorem 1 (Eppstein [14]) Any undirected two-terminal series-parallel graph has a nested ear decomposition
starting with a path between the terminals, and any undirected graph with a nested ear decomposition is two-terminal
series-parallel with its terminals being the endpoints of the first ear.

Furthermore, Eppstein shows that these decompositions can be computed in O(log?(n)) time on a parallel
computer, therefore computing the decomposition itself will not bottleneck an OCT-computing algorithm. We now
show that given a nested ear decomposition, we can greedily compute a minimum OCT set. First, we define the
parity of ears.

Definition 12 (Ear Parity) We say that an ear E; is odd if the number of vertices in E; and its nest interval sum
to an odd number. We define an even ear analogously.

Next, we want to show that we can compute the minimum OCT set on a single nest interval correctly.

Lemma 5 Given an ear decomposition (E1,...,Ey), let E = (E;,...,E;) be an ordered, mazimal list of ears
contained in a single nest interval. Then the minimum number of OCT wvertices contained in these ears is number
of maximal in-order sublists of E composed only of odd ears.

26 Timothy D. Goodrich et al.

Proof We proceed by induction on the number of sublists. Suppose that there are zero maximal sublists of odd ears,
therefore every ear is even. Then every path from the left-most vertex on the nest interval to the right-most vertex
on the nest interval will have the same parity, and we are able to two-color these cycles and the minimum OCT
number is zero. Suppose instead that there is one maximal sublist of odd ears, therefore all ears are odd. Removing
an endpoint from the inner-most odd cycle renders the remaining edges of this smallest nest interval into bridges
that cannot be part of a cycle. This removal also breaks all odd cycles in the maximal nest interval, because any
cycle on the remaining ears must use the vertices from two odd cycles of length 2z + 1 and 2y + 1, minus the length
of the smallest nest interval twice, leaving an odd number of vertices in the cycle. Again we can two-color these and
we are done.

Suppose we have an interval with k& maximal sublists. If there are any even ears on the outside then we can
remove them using the first base case. We now find the inner-most odd ear that is outside of every remaining even
ear. Removing an endpoint from this ear renders the outer odd ears bipartite by the second base case. Applying
the inductive hypothesis to the earlier ears finds k — 1 OCT vertices, therefore we have found a total of & OCT
vertices. O

Corollary 4 We can compute the minimum OCT number of the ears contained in a single mazimal nest interval
in linear time.

Proof In the above proof we visited each ear once. [}
Proposition 6 OCT(G) can be computed in linear time for a series-parallel graph G.

Proof We proceed by induction on the number of maximal nest intervals. If there are no nest intervals then we have
a single ear and are done, the graph is (by definition) bipartite. Otherwise there is some nest interval. Applying
Lemma we can compute a minimum OCT set. Since every nest interval is disjoint, by definition, we can apply the
inductive hypothesis to compute the minimum OCT set of the other intervals, visiting each interval exactly once.
The number of intervals is bounded by the number of vertices, therefore we compute a minimum OCT set in linear
time. O

	1 Introduction
	2 Background
	3 Virtual Hardware Framework
	4 Utilizing Bipartite Problem Structure
	5 Experimental Results
	6 Conclusion
	7 Acknowledgements
	A Computing OCT in Series-Parallel Graphs

