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High-dimensional cryptographic quantum parameter estimation
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We investigate cryptographic quantum parameter estimation with a high-dimensional system that
allows only Bob (Receiver) to access the result and achieve optimal parameter precision from Alice
(Sender). Eavesdropper (Eve) only can disturb the parameter estimation of Bob, but she can not
obtain the information of parameter. And Bob can still securely obtain a high-precision estimation
of parameter by utilizing the parallel-entangled strategy and sequential strategy with a large repeat
count of communication. We analyze the security and show that the high-dimensional system can
help to utilize the resource to obtain better precision than the two-dimensional system. Finally, we
generalize it to the case of multi-parameter.

PACS numbers: 03.67.Dd, 06.20.-f, 06.60.Ei

I. INTRODUCTION

Quantum cryptography[1] has been the first application of quantum mechanics at the single-quantum level[2]. Based
on the laws of quantum mechanic physics, unconditional security is provided by quantum cryptograph, which performs
better than classical cryptograph[3]. And the estimation of physical parameters and the improvement of measurement
precision by employing quantum mechanics (quantum metrology), have attracted considerable attention[4–10].
In ref.[11], V. Giovannetti et al. detail a scheme that employs entanglement and squeezing to achieve a higher

accuracy and cryptographic capabilities in position measurement, which do not allow an eavesdropper to obtain
information on the position of Alice. And in ref.[12] they overcome the primary drawbacks of this scheme, which are
the difficulty of creating the requisite entanglement and the sensitivity to loss. In ref.[13] they present a protocol that,
using the frequency entangled state at the output of a parametric down conversion crystal, allows one to perform
quantum crypto-positioning. In ref.[14] G. Chiribella et al. give a simple protocol that needs no entanglement and
an entangled protocol that achieves the ultimate bounds in the precision of reference frame transmission.
Recently, Zixin Huang et al.[15] introduce a work for quantum cryptographic protocols specifically suited to the task

of securing measurement out-comes (parameter estimation) with a two-dimensional system. In this article, we consider
a new cryptographic quantum metrology with a high-dimensional probe system. Our quantum cryptographic protocol
can perform better with the same number of probes than the one in[15]. It is because that utilizing high-dimensional
probes need not decoy states to detect Eve. For a single parameter, the information of parameter is randomly encoded
into any two dimensions of a multi-dimensional probe. Due to the indistinguishable encoded states of probes from
Alice, Eve can not obtain the detail input states. We analyze the security and prove that Eve can not obtain the
information of parameter without having been detected. Even though Eve does not worry to be detected, she still can
not obtain the information of parameter due to that Alice does not tell Bob the information of prepared states with
the classical communication after detecting Eve. Finally, we generalize it to cryptographic quantum multi-parameter
estimation.
The rest of this article is arranged as follows. In Section II, we briefly introduce the quantum metrology of single

parameter and multi-parameter, and the formula of Fisher information. In Section III, we detail the cryptographic
quantum metrology protocol of a single parameter and show its security. Then, we generalize it to multi-parameter
cryptographic quantum metrology protocol in section IV. A conclusion and outlook are presented in Section V.

II. REVIEW OF QUANTUM METROLOGY

Quantum metrology is a fundamental subject concerning the estimation of parameters under the constraints of
quantum dynamics[7]. The famous Cramér-Rao bound[16, 17] offers a very good parameter estimation under the
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constraints of quantum physics:

(δx)2 ≥ 1

NFQ[ρ̂(x)]
, (1)

where N represents the total number of experiments. FQ[ρ̂(x)] denotes quantum Fisher information (QFI), which
can be generalized from classical Fisher information. The classical Fisher information is defined by

f(x) =
∑

k

pk(x)[d ln[pk(x)]/dx]
2, (2)

where pk(x) is the probability of obtaining the set of experimental results k for the parameter value x. Furthermore,
the QFI is given by the maximum of the Fisher information over all measurement strategies allowed by quantum
physics:

FQ[ρ̂(x)] = max
{Êk}

f [ρ̂(x); {Êk}], (3)

where positive operator-valued measure {Êk} represents a specific measurement device. If the probe state is pure,
ρ̂S(x) = |ψ(x)〉〈ψ(x)|, the corresponding expression of QFI is

FQ[ρ̂(x)] = 4[
d〈ψ(x)|
dx

d|ψ(x)〉
dx

− |d〈ψ(x)|
dx

|ψ(x)〉|2]. (4)

For the classical multi-parameter Cramér-Rao bound[6]:

Cov(x̃) ≥ F−1, (5)

where x = {x1, x2, ..., xm}, Cov(x̃) refers to the covariance matrix for a locally unbiased estimator x̃(k), Cov(x̃)jk =
〈(x̃j − xj)(x̃k − xk)〉 and 〈.〉 represents the average with respect to the probability distribution pk(x). The classic
Fisher matrix for m parameters as the m×m matrix with entries given by

Fjk =
∑

i

pk(x)

(
∂ ln[pi(x)]

∂xj

)(
∂ ln[pi(x)]

∂xk

)
. (6)

III. CRYPTOGRAPHIC QUANTUM METROLOGY PROTOCOL OF SINGLE PARAMETER

The task of cryptographic quantum metrology is that Alice sends a d (d ≥ 3) dimension probe encoded with an
unknown single parameter ϕ to Bob, then Bob obtains the parameter by measurement. The Hilbert space of a probe
can be expressed by (|1〉, |2〉, ..., |d〉). The parameter ϕ is encoded into any two levels by a unitary map U(ϕ). When

Alice prepares state
√
2
2 (|j〉 + |k〉) (j < k and j, k = 1, 2, ..., n), after the unitary map the encoded state is described

by
√
2
2 (e−iϕ/2|j〉 + eiϕ/2|k〉). For different prepared state, different unitary map is required. After repeating ν times

estimation procedure, the precision can be obtained by Eq.(4)

δϕ ≥ 1/
√
ν. (7)

In order to improve the precision of parameter, parallel-entangled strategy and sequential strategy[15] can im-
prove the precision to the Heisenberg limit. For the parallel-entangled strategy, the encoded state of n probes

is
√
2
2 (e−inϕ/2|j〉

⊗
n + einϕ/2|k〉

⊗
n). For sequential strategy, after n times unitary maps the encoded state is√

2
2 (e−inϕ/2|j〉+ einϕ/2|k〉). The corresponding precisions for two strategies are same, which is given by

δϕ ≥ 1/(n
√
ν). (8)

Next, we consider transforming the metrology protocols into quantum cryptographically secure ones with two
strategies.
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Sequential strategy- Firstly, for sequential strategy, cryptographical quantum metrology protocol of a single param-
eter can be described by the following six steps:

1. First step, Alice randomly prepares state

√
2

2
(|j〉 ± |k〉), in which, j 6= k ,j, k = 1, 2, ..., d and the operations

“+” and “-” is also chosen uniformly at random;

2. Second step, Alice sequentially uses n times unitary map channel to encode the information of parameter ϕ,

hence obtains state

√
2

2
(e−inϕ/2|j〉 ± einϕ/2|k〉);

3. Third step, after Bob receives the encoded state from Alice (Alice determines that Bob has received the encoded

state by classical communication), Alice tells Bob the measurement operators by classical communication,

where the measurement operator can be described by POVM formalism (Positive Operator-Valued Measure)[18],

{E1 =
1

2
(|j〉+ |k〉)(〈j| + 〈k|), E2 =

1

2
(|j〉 − |k〉)(〈j| − 〈k|), E3 = 1− |j〉〈j| − |k〉〈k|}. (9)

4. Fourth step, Bob tells Alice the measurement results. If Bob obtains the result E3,

the protocol is aborted due to that the parameter has been eavesdropped by Eve.

5. Fifth step, repeat the above four steps ν times.

6. Sixth step, Alice tells Bob the prepared states in order.

Then Bob can obtain the information parameter and estimate the precision.

Then we show that it is unconditionally secure from two cases as following: first case, Eve can not let Bob obtain
the wrong information of parameter ϕ without being detected; second case, Eve can not eavesdrop the information
of parameter ϕ.
First case-If Eve just want to let Bob obtain the wrong information of ϕ without being detected, she can introduce

additional ∆ϕ on the probe to bias Bobs estimation results. Due to that Eve do not know which subspace (|j〉, |k〉)
is chosen each time by Alice to prepare the probe, so it is impossible to induce the same additional ∆ϕ on different
encoded states. When Eve let the encoded probes go through a fixed channel, different additional ∆ϕ is encoded into

different input probes. As a result, Bob receives the state
√
2
2 (e−i(nϕ/2+∆ϕjk)/2|j〉 ± ei(nϕ/2+∆ϕjk)/2|k〉). Then, Bob

obtains different parameter value of ϕ by the measurement probability. So Eve will be detected. Eve need to randomly
introduce different additional ∆ϕjk, and the expectation value of ∆ϕjk should be same 〈∆ϕjk〉 = ∆ for different value
of (j,k). And we note that ∆ϕjk = −∆ϕkj . It can be proved easily. For example, Eve uses a Hamiltionian H to
induce the additional phase. And (|j〉, |k〉) should be the eigenvectors of H . Otherwise, it is impossible to obtain the

state
√
2
2 (e−i(nϕ/2+∆ϕjk)/2|j〉± ei(nϕ/2+∆ϕjk)/2|k〉). Then ∆ϕjk = (Hj −Hk)t, where Hj denotes the jth eigenvalue of

H . So ∆ϕjk = −∆ϕkj . Namely the expectation value of 〈∆ϕjk〉 = −〈∆ϕjk〉. So ∆ has to be 0. Therefore, Bob still
obtains the value of parameter ϕ without a bias. Eve only reduces the precision. We consider that the probability

distribution of ∆ϕjk is the Gaussian distribution 1√
2πδ

exp[− (∆ϕjk)
2

2δ2 ]. The probability of result E1 (E2) is given by

P (1-P),

P =
1 + cos(nϕ)e−δ2/2

2
. (10)

Substituting it into Eq.(6), the precision can be given by

δϕ ≥
√
1− cos2(nϕ)e−δ2

n
√
ν sin2(nϕ)e−δ2

. (11)

Obviously, the precision of δϕ is reduced. For ϕ 6= Nπ ( N = 0,±1,±2, ...), the influence of Eve can be neglected
by enhancing the repeat count ν and n. However, for ϕ = Nπ, the influence of Eve can not be reduced. Then Bob
gives up the result. Then they perform the cryptographical quantum metrology protocol again, but Bob measures
the encoded state with a new measurement operator in the third step

{E1 =
1

2
(e−iπ/4|j〉+ eiπ/4|k〉)(e−iπ/4〈j|+ eiπ/4〈k|), E2 =

1

2
(e−iπ/4|j〉 − eiπ/4|k〉)(e−iπ/4〈j| − eiπ/4〈k|),

E3 = 1− |j〉〈j| − |k〉〈k|}. (12)
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In this way, Bob can obtain the parameter ϕ with a high precision for ϕ = Nπ,

δϕ ≥
√
1− e−δ2

n
√
νe−δ2

. (13)

Second case-Even though Eve does not worry to be detected, she can not obtain the information of parameter ϕ
from the decoded states. Because, after Eve is detected, she does not know the prepared states belonging to which

one of
√
2
2 (|j〉 + |k〉) and

√
2
2 (|j〉 − |k〉). As a result, the probability of obtaining the results E1 and E2 is same, so

that it is impossible to obtain the information of parameter. In order to obtain the information, Eve need to conceal
herself. After Eve intercepts the encoded states, she has to send destroyed or forged states to Bob. Eve can try to
eavesdrop the information by the following two ways.
First way, Eve does not perform a measurement on the encoded state before sending a state to Bob. Eve randomly

sends a state from the set {
√
2
2 (|j′〉 ± |k′〉), in which, j′ 6= k′ and j′, k′ = 1, 2, ..., d}. She can successfully conceal

herself with the probability ( 2d)
ν . For large dimension d and repeat count ν, Eve will be detected with the probability

close to 1. If Eve sends the state 1√
d
(|1〉+ |2〉+, ...,+|d〉), she can conceal herself with probability ( 2d)

ν . The successful

probability is still close to 0. So, it is impossible to conceal herself without measurement on the encoded states in
advance.
Second way, Eve performs a measurement on the encoded states and then sends a state to Bob. At this point, Eve

does not know the measurement operator as shown in Eq.(9).
If Eve chooses a projective measurement, which is given by

Pk = |k〉〈k|, in which, k = 1, 2, ..., d. (14)

Then, Eve sends the projective state |k′〉 to Bob. By this measurement operator, Eve obtains nothing about the
parameter ϕ. Bob can not detect Eve directly in the above process. However, Bob can find that the probability
of results E1 and E2 is same, so Bob need to give up the result. If Eve just wants to let Bob achieve the wrong
information of parameter ϕ, she can measure a part of encoded state. This will reduce the precision of estimating
parameter ϕ. When Eve randomly measures m encoded states. The final precision of parameter is achieved by Bob,
which is given by

δϕ ≥
√
1− (1−m/ν)2 cos2(nϕ)

n(ν −m)| sin(nϕ)| . (15)

For ϕ 6= Nπ ( N = 0,±1,±2, ...), the influence of Eve can be neglected by enhancing the repeat count ν to be much
larger than m. However, for ϕ = Nπ, the influence of Eve can be very large. So, when Bob achieves the value of
parameter ϕ = Nπ, Bob should not trust the result. Then they perform the cryptographical quantum metrology
protocol again like the above way, and Bob measures the encoded state with the measurement operator in Eq.(12).
If Eve sends a superposition state |k′〉+eiθ|k′′〉, where k′ is the measurement result and k′′ 6= k′ is randomly chosen

from 1 to d, and θ is a random phase factor. Eve can conceal herself with probability (d+1
2d )ν . For a large repeat

count ν, Eve can be detected with the probability of 1.
In order to obtain the information of parameter, Eve maybe use POVM

Pjk =
1

2d− 2
(|j〉+ |k〉)(〈j| + 〈k|), in which, j < k = 1, 2, ..., d, P0 = 1−

∑

j<k

Pjk. (16)

Eve can conceal herself with the probability

{
1

2
+

3

4(d− 1)
+

[
1

2
− 3

4(d− 1)

]
2d− 1

d(d− 1)

}ν

. (17)

For ν ≫ 1, Eve must be detected. So it is very secure. If Bob does not reveal Eve, Eve can obtain the information
with the precision

δϕ ≥
√

8[d− 1− cos2(nϕ/2)] cos2(nϕ2 )

νn2 sin2(nϕ)
. (18)

For high dimension d, Eve only achieve a very low precision of parameter.
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Besides the above two measurement ways, Eve can also use other measurements. However, due to the indistin-
guishable states (non-orthogonal states) prepared by Alice, Eve must be detected no matter which measurement is
chosen.
In one word, our cryptographical quantum metrology protocol is secure. Bob will not obtain the wrong information

of parameter and the information of parameter can not be eavesdropped by Eve.
Parallel-entangled strategy-Entangled states can also help to enhance the parameter estimation in quantum

metrology[19, 20]. The corresponding cryptographical quantum metrology protocol of a single parameter can be
modified as follows:

1. First step, Alice randomly prepares state of n probes

√
2

2
(|j〉⊗n ± |k〉⊗n), in which, j < k, j, k = 1, 2, ..., d;

and the operations“+” and “-” is also chosen uniformly at random;

2. Second step, simultaneously use n unitary map channels to encode the information of parameter ϕ,

hence obtain state

√
2

2
(e−inϕ/2|j〉⊗n ± einϕ/2|k〉⊗n);

3. Third step, after Bob receives the encoded state from Alice, Alice tells Bob the measurement operators by

classical communication, where the measurement operator can be described by POVM formalism,

{E1 =
1

2
(|j〉⊗n + |k〉⊗n)(〈j|⊗n + 〈k|⊗n), E2 =

1

2
(|j〉⊗n − |k〉⊗n)(〈j|⊗n − 〈k|⊗n), E3 = 1− E1 − E2}. (19)

4. Fourth step, Bob tells Alice the measurement results. If Bob obtains the result E3,

the protocol is aborted due to that the parameter is eavesdropped by Eve.

5. Fifth step, repeat the above four steps ν times.

6. Sixth step, Alice tells Bob the prepared states in order.

Then Bob can obtain the information parameter and estimate the precision.

It is also secure like the case of sequential strategy due to the indistinguishable prepared states. Namely, entangled
states can also realize the cryptographical quantum metrology with high precision.

IV. CRYPTOGRAPHIC QUANTUM METROLOGY PROTOCOL OF MULTI-PARAMETER

Recently, multi-parameter metrology has attracted a lot of attention[21–25]. Simultaneous estimation of multi-
parameter can perform better than estimating each parameter independently. We generalize the above cryptographic
quantum metrology protocol of a single parameter to the case of multi-parameter. We consider that Alice want to
send m parameters to Bob securely.
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The cryptographic quantum metrology protocol of m parameters can be summed as follows:

1. First step, Alice randomly prepares state
1√
m+ 1

(|k0〉 ± |k1〉 ± |k2〉 ± ...± |km〉), in which, (20)

{ka, kb = 1, 2, ..., d}, {a, b = 0, 1, 2, ...m}, d > m+ 1, and ka 6= kb for a 6= b;

2. Second step, sequentially use n times unitary operators U(ϕ1) to encode the information of parameter ϕ1,

according to this way, encode all parameters {ϕ1, ϕ2, ..., ϕn} on the prepared state, hence obtain the state

1√
m+ 1

(|k0〉 ± einϕ1 |k1〉 ± einϕ2 |k2〉 ± ...± einϕm |km〉;

3. Third step, after Bob receives the encoded state from Alice, Alice tells Bob the measurement operators

by classical communication, where the measurement operator can be described by POVM formalism

{E1± =
1

2
(
1√
n
|k0〉 ± |k1〉)(

1√
n
〈k0| ± 〈k1|), E2± =

1

2
(
1√
n
|k0〉 ± |k2〉)(

1√
n
〈k0| ± 〈k2|),

..., Em± =
1

2
(
1√
n
|k0〉 ± |km〉)( 1√

n
〈k0| ± 〈km|), Em+1 = 1− E1+ − E1− − ...− Em+ − Em−}. (21)

4. Fourth step, Bob tells Alice the measurement result. If Bob obtains the result Em+1,

the protocol is aborted due to that the parameter is eavesdropped by Eve.

5. Fifth step, repeat the above four steps ν times.

6. Sixth step, Alice tells Bob the prepared states in order.

Then Bob can obtain the information of m parameter by calculating the probability and estimate the precision.

When the protocol can perform without being aborted due to Eve, the probability of measurement result for Ej± is
given by Pj± = 1

2m+2 [
1
m + 1± 2√

m
cos[2nϕj ]], with j = 1, 2, ...,m. The precision of m parameters can be obtained by

Eq.(5) and Eq.(6)

δϕj ≥
√

(m+ 1)2 − 4m cos2(2nϕj)

νn2 sin2 ϕj

. (22)

Like the case of a single parameter, Eve can not eavesdrop the information of m parameters based on the undistin-
guished prepared states.

V. CONCLUSION AND OUTLOOK

The cryptographic quantum metrology of a single parameter with a high-dimensional system is studied. The high-
dimensional system can satisfy the security by preparing the indistinguishable states. Decoy-state is not necessary to
detect Eve for our protocol. We analyze the security and show that it is absolutely secure for a large repeat count.
And parallel-entangled strategy and sequential strategy can be utilized to improve the parameter precision. We also
utilize the techniques of multi-parameter quantum metrology and quantum cryptography to obtain the cryptographic
quantum metrology protocol of multi-parameter.
In this article, we only consider the unitary parameters. Cryptographic quantum metrology protocol of the non-

unitary parameters[26, 27] will worth to be the further exploration. And a lossy channel and imperfect measurement
in cryptographic quantum metrology also will be researched.
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