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of the spin-flipping matrices

Dafa Li1,2
1Department of Mathematical Sciences,

Tsinghua University, Beijing, 100084, China
2Center for Quantum Information Science and Technology,

Tsinghua National Laboratory for Information Science and Technology (TNList),
Beijing, 100084, China

We construct ℓ-spin-flipping matrices from the coefficient matrices of pure states of n qubits and
show that the ℓ-spin-flipping matrices are congruent and unitary congruent whenever two pure states
of n qubits are SLOCC and LU equivalent, respectively. The congruence implies the invariance of
ranks of the ℓ-spin-flipping matrices under SLOCC and then permits a reduction of SLOCC classi-
fication of n qubits to calculation of ranks of the ℓ-spin-flipping matrices. The unitary congruence
implies the invariance of singular values of the ℓ-spin-flipping matrices under LU and then permits
a reduction of LU classification of n qubits to calculation of singular values of the ℓ-spin-flipping
matrices. Furthermore, we show that the invariance of singular values of the ℓ-spin-flipping matrices

Ω
(n)
1 implies the invariance of the concurrence for even n qubits and the invariance of the n-tangle

for odd n qubits. Thus, the concurrence and the n-tangle can be used for LU classification and com-
puting the concurrence and the n-tangle only performs additions and multiplications of coefficients
of states.

INTRODUCTION

Entanglement is considered as a uniquely re-
source in quantum teleportation, quantum cryptog-
raphy and quantum information and computation
[1]. There are different types of entanglement for
multipartite systems. The classification of entangle-
ment plays an important rule in quantum infor-
mation theory [2]-[29]. The following three types
of classifications of entanglement have widely been
studied: LU [24]-[29], LOCC (local operations and
classical communication) [30], and SLOCC [2], [3]-
[22].

Considerable efforts have contributed to the
SLOCC entanglement classification. For exam-
ple, the complete SLOCC classifications of two and
three qubits have been obtained. There are two
(resp. six) SLOCC equivalence classes for two
(resp. three) qubits. For four qubits, there are infi-
nite SLOCC equivalence classes [3] and the infinite
SLOCC classes are partitioned into nine inequiva-
lent families [4–7]. It is known that a SLOCC clas-
sification for n qubits remains unsolved because the
difficulty increases rapidly as n does [8–13, 22].

Recently, SLOCC invariant polynomials have
been proposed for classification of entanglement [14].
Very recently, it has been shown that ranks of
the coefficient matrices of states are invariant un-

der SLOCC and the invariance of the ranks can
be applied to SLOCC classification of entanglement
[10, 11, 22, 23].

It is known that two LU equivalent states have the
same amount of entanglement and are equally used
for any kind of application [28, 29]. The polynomial
invariants under LU were studied [24, 25]. The nec-
essary and sufficient conditions for LU equivalence
of states of n qubits were presented [29] and used for
LU classifications of two to five qubits [28].

In this paper, we construct the ℓ-spin-flipping ma-
trices from the coefficient matrices of pure states of
n qubits and prove that the ℓ-spin-flipping matrices
are congruent and unitary congruent under SLOCC
and LU, respectively. The congruence confirms the
invariance of ranks and the unitary congruence as-
serts the invariance of singular values. The invari-
ance of ranks and singular values can be used for
SLOCC and LU classifications of n qubits.

This paper is organized as follows. In the sec-
tion 2, from the coefficient matrices of states of n
qubits we construct the ℓ-spin-flipping matrices and
we show that ranks of the ℓ-spin-flipping matrices
are preserved under SLOCC. In the section 3, we
demonstrate how the invariant ranks are used for
SLOCC classification of entanglement. In the sec-
tion 4, we argue the invariance of singular values of
the ℓ-spin-flipping matrices under LU. In the section
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5, we investigate the LU classification.

THE INVARIANCE OF RANKS OF THE

ℓ-SPIN-FLIPPING MATRICES

Let |ψ〉 =
∑2n−1

i=0 ai|i〉 be any pure state of n
qubits, where ai are coefficients. It is well known
that two n-qubit pure states |ψ〉 and |ψ′〉 are SLOCC
(resp. LU) equivalent if and only if the two states
satisfy the following equation

|ψ′〉 = A1 ⊗A2 ⊗ · · · ⊗ An|ψ〉, (1)

where Ai are invertible (resp. unitary) [3, 29].
Let Cq1···qℓ(|ψ〉) be the 2ℓ×2n−ℓ coefficient matrix

of the state |ψ〉 of n qubits, where q1, · · · , qℓ are the
row bits and qℓ+1, · · · , qn are the column bits. For
example, for three qubits,

C1(|ψ〉) =
(

a0 a1 a2 a3
a4 a5 a6 a7

)

. (2)

Let

Ω(n)
q1,q2,...,qi(|ψ〉)

= C(n)
q1,q2,...,qi(|ψ〉)υ

⊗(n−i)(C(n)
q1,q2,...,qi(|ψ〉))

T , (3)

where υ =
√
−1σy and σy is the Pauli operator.

It is clear that Ω
(n)
q1,q2,...,qi(|ψ〉) is a square matrix

of order 2i for n qubits. Here, we call Ω
(n)
q1,...,qi(|ψ〉) a

spin-flipping matrix. Clearly, when n−i is even, then
Ω

(n)
q1,...,qi(|ψ〉) is symmetric. Otherwise, it is skew-

symmetric.

Next, we define the 1-spin-flipping Ω
(n)
q1,...,qi(|ψ〉)⊙1

matrix as the spin-flipping Ω
(n)
q1,...,qi(|ψ〉) and the ℓ-

spin-flipping matrix Ω
(n)
q1,...,qi(|ψ〉)⊙ℓ for ℓ > 1 as

Ω(n)
q1,...,qi(|ψ〉)⊙ℓ = Ω(n)

q1,...,qi(|ψ〉)⊙(ℓ−1)υ⊗iΩ(n)
q1,...,qi(|ψ〉).

(4)
Let α = Πi

k=1 detAqk and β = Πn
k=i+1 detAqk .

Then, invoking the fact that AT
k υAk = (detAk)υ

and from [22], for two SLOCC equivalent states |ψ′〉
and |ψ〉 of n qubits a complicated calculation yields

Ω(n)
q1,...,qi(|ψ

′〉)⊙ℓ

= αℓ−1βℓ(Aq1 ⊗ · · · ⊗ Aqi )Ω
(n)
q1,...,qi(|ψ〉)

⊙ℓ ×
(Aq1 ⊗ · · · ⊗ Aqi )

T . (5)

Eq. (5) leads to the following theorem.

Theorem 1. If two pure states |ψ′〉 and |ψ〉
of n qubits are SLOCC equivalent, then for any

ℓ the ℓ-spin-flipping matrices Ω
(n)
q1,...,qi(|ψ′〉)⊙ℓ and

Ω
(n)
q1,...,qi(|ψ〉)⊙ℓ are congruent and then have the

same rank.

The contraposition of Theorem 1 says that if

the ℓ-spin-flipping matrices Ω
(n)
q1,...,qi(|ψ′〉)⊙ℓ and

Ω
(n)
q1,...,qi(|ψ〉)⊙ℓ have different ranks for some ℓ, then

the two states |ψ′〉 and |ψ〉 belong to different
SLOCC classes.

SLOCC CLASSIFICATION VIA RANKS OF

THE ℓ-SPIN-FLIPPING MATRICES

Let r(A) be the rank of the matrix A. Then, it is
well known that r(AB) ≤ min{r(A), r(B)}. Here,

r(Ω
(n)
q1,··· ,qi(|ψ〉)⊙k) is denoted as r

(k)
q1,··· ,qi . Then

r
(1)
q1,··· ,qi ≥ · · · ≥ r

(k)
q1,··· ,qi ≥ · · · . If Ω

(n)
q1,...,qi(|ψ〉)

is not full, then the rank r
(k)
q1,··· ,qi may decrease as k

increases. Therefore, it is possible that the ℓ-spin-
flipping matrices have different ranks for some ℓ for
two SLOCC inequivalent n-qubit states. It means
that the theorem 1 may be used for SLOCC classi-
fication.

For example, for the states GHZ and W of three

qubits a simple calculation shows that Ω
(3)
1,2(|GHZ〉)

and Ω
(3)
1,2(|W〉) have the same rank 2. But for GHZ,

r
(2)
1,2 = 2 while for W, r

(2)
1,2 = 1. So, in light of Theo-

rem 1 GHZ and W are SLOCC inequivalent.

Next we show how Theorem 1 is used for SLOCC
classification.

(1). For any state |ψ〉 of two qubits, Ω
(2)
1 (|ψ〉) =

(a0a3 − a1a2)υ. It is trivial to see that the rank

of Ω
(2)
1 (|ψ〉) is 2 or 0. Thus, we obtain a complete

classification under SLOCC for two qubits.

(2). By using r
(1)
1,2, r

(2)
1,2, and r

(3)
1,2, a tedious calcu-

lation yields a SLOCC classification of three qubits
in Table I.

TABLE I. The SLOCC classification of three qubits

states r
(1)
1,2r

(2)
1,2r

(3)
1,2 states r

(1)
1,2r

(2)
1,2r

(3)
1,2

GHZ 222 W 210
A-BC,B-AC 200 C-AB,|000〉 000

By Table I, we can determine that to which
SLOCC class a state of three qubits belongs. For
example, let |ξ〉 = 1

2
√
2
(
∑6

i=0 |i〉 − |7〉). Then



3

r((Ω
(3)
1,2(|ξ〉)⊙ℓ) = 2, ℓ ≥ 1. So, |ξ〉 belongs to GHZ

class.
(3). By using r

(1)
1,2, r

(2)
1,2, and r

(3)
1,2, we obtain a

complete SLOCC classification of the states of Acin
et al.’s canonical form in Table II.
It is well known that any state of three qubits can

be written in the following Acin et al.’s canonical
form:

|A〉 = λ0|000〉+ λ1e
iϕ|100〉

+λ2|101〉+ λ3|110〉+ λ4|111〉, (6)

where λi ≥ 0, i = 0, 1, 2, 4, 0 ≤ ϕ ≤ π, and
∑4

i=0 λ
2
i = 1 [26, 27]. Via r

(1)
1,2, r

(2)
1,2, r

(3)
1,2, and Table

I, a tedious and straightforward calculation yields
the complete SLOCC classification of the states of
the Acin’s canonical form in Table II. Thus, we re-
cover Dür et al.’s six SLOCC classes obtained via
local ranks [3]. Here, each one of the six classes is
parametrized by parameters λ1, λ2, λ3, and λ4. For
example, the GHZ class is described by λ0λ4 6= 0.
For another example, we name as the SLOCC W
class the SLOCC class in Table II characterized by
the parameters λ0 6= 0, λ4 = 0, and λ2λ3 6= 0. We
can show that the W state belongs to the SLOCC W
class below. Let |ϑ〉 = 1√

3
(|000〉+|101〉+|110〉). One

can test that σx ⊗ I ⊗ I|ϑ〉 = |W〉 and |ϑ〉 belongs
to the SLOCC W class.

TABLE II. Complete SLOCC classification of states of
Acin et al.’s canonical form

r
(1)
1,2r

(2)
1,2r

(3)
1,2 classes

λ0 = 0, λ4 6= 0 λ2λ3 = λ1λ4e
iϕ 000 A-B-C

λ2λ3 6= λ1λ4e
iϕ 200 A-BC

λ0 6= 0, λ4 = 0 λ2 = λ3 = 0 000 A-B-C
λ2 = 0, λ3 6= 0 000 C-AB
λ2 6= 0, λ3 = 0 200 B-AC
λ2λ3 6= 0 210 W

λ0 = λ4 = 0 λ2λ3 = 0 000 A-B-C
λ2λ3 6= 0 200 A-BC

λ0λ4 6= 0 222 GHZ

THE INVARIANCE OF SINGULAR VALUES

OF THE ℓ-SPIN-FLIPPING MATRICES

UNDER LU

Here, two matrices A and B are called unitary
congruent if there is a unitary matrix P such that
B = PAPT . When two states are LU equivalent,
Ai in Eq. (1) are unitary. Thus, Eq. (5) leads to
the following theorem.

Theorem 2. If two pure states |ψ′〉 and |ψ〉 of n
qubits are LU equivalent, then the ℓ-spin-flipping

matrices Ω
(n)
q1,...,qi(|ψ′〉)⊙ℓ and Ω

(n)
q1,...,qi(|ψ〉)⊙ℓ are

unitary congruent, and then
(1) have the same ranks,
(2) have the same singular values, and

(3) Ω
(n)
q1,...,qi(|ψ′〉) and Ω

(n)
q1,...,qi(|ψ〉) have the

same absolute values of determinants.
First we demonstrate how to partition Verstraete

et al.’s nine families under LU invoking absolute val-
ues of determinants. For example, for the family La4

[4], | det Ω(4)
1,2(|La4

〉)| = |a4|2. Thus, two states of
the family La4

with different values of |a| are differ-
ent under LU. Similarly, under LU we can partition
the families Gabcd, Labc2 , La2b2 , and Lab3 in [4].
Next we use the following example to explain that

the invariance of singular values is more powerful
than the invariance of the ranks for LU classifica-
tion. Let us consider two states |W1〉 and |W2〉 of the
SLOCC W class of three qubits in Table II, where
|W1〉 = 1

2 (|000〉+ |100〉+ |101〉+ |110)) and |W2〉 =
λ0|000〉+ λ2|101〉+ λ3|110〉, where λ20 = 1

4 (
1
2 −

√
2
4 ),

λ22 = 1
2+

√
2
4 , and λ23 = 3

4 (
1
2 −

√
2
4 ). A calculation

makes Table III. From Table III, clearly we cannot
distinguish |W1〉 and |W2〉 under LU via the ranks

r
(1)
1,2, r

(2)
1,2, and r

(3)
1,2 or the singular values σ1, σ2, σ3,

and σ4 of Ω
(3)
1,2(|Wi〉). Whereas, we can distinguish

them under LU via the singular values η1, η2, η3,

and η4 of Ω
(3)
1,2(|Wi〉)⊙2.

TABLE III. Two LU inequivalent states of three qubits

state r
(1)
1,2r

(2)
1,2r

(3)
1,2 σ2

1σ
2
2σ

2
3σ

2
4 η21η

2
2η

2
3η

2
4

|W1〉 210 1
8

1
8
00 1

4096
1

4096
00

|W2〉 210 1
8

1
8
00 3

16384
3

16384
00

LU CLASSIFICATION OF n QUBITS VIA

SINGULAR VALUES OF THE

ℓ-SPIN-FLIPPING MATRICES

LU classification of even n qubits invoking

singular values of Ω
(n)
1

Singular values of Ω
(n)
1 are just the concurrence for

even n qubits

For any state |ψ〉 of even n qubits, let t1 and
t2 be the singular values of the skew-symmetric
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matrix Ω
(n)
1 (|ψ〉). Then, a calculation yields that

t1 = t2 =

∣

∣

∣

∣

∣

∣

2n−1−1
∑

i=0

(−1)N(i)aia2n−i−1

∣

∣

∣

∣

∣

∣

. (7)

Here N(i) is the number of 1s in the n-bit binary
representation in−1...i1i0 of i. That is, N(i) is the
parity of i. It is known that the singular values of

Ω
(n)
1 (|ψ〉) in Eq. (7) are just the concurrence of even

n qubits for the state |ψ〉 [20]. For two qubits, t1 =
t2 = |a0a3 − a1a2|.

LU classification of even n qubits invoking the
invariance of the concurrence for even n qubits

Theorem 2 and Eq. (7) lead to the following the-
orem.

Theorem 3. If two pure states of even n qubits
are LU equivalent then the two states have the same
concurrence for even n qubits.

In comparison, if two pure states of even n qubits
are SLOCC equivalent then either their concurrences
for even n qubits both vanish or neither vanishes
[20].

From Theorem 3, if two states of even n qubits
have different concurrences, then they belong to dif-
ferent LU equivalence classes. For example, for two
qubits the Bell states 1√

2
(|00〉+ |11〉) have the max-

imal concurrence 1
2 . let |ζ〉 = 1√

3
|00〉+

√
2√
3
|11〉. The

concurrence of |ζ〉 is
√
2
3 . In light of Theorem 3, |ζ〉

is LU inequivalent to the Bell state though |ζ〉 is
SLOCC equivalent to the Bell state. For two qubits,
the Schmidt coefficients are used for LU classifica-
tion [28].

Let c denote the concurrence. Clearly, 0 ≤ c ≤ 1
2 .

And let the family, denoted as Fc, consist of all the
states with the same concurrence c. It means that
if two states are LU equivalent then they belong to
the same family Fc. For example, GHZ and |0 · · · 0〉
of any even n qubits belong to F1/2 and F0, respec-
tively. Clearly, for any even n qubits there is a one to
one correspondence between the set {Fc|c ∈ [0, 1/2]}
of the families Fc and the interval [0, 1/2].

LU classification of odd n qubits invoking

singular values of Ω
(n)
1

A product of singular values of Ω
(n)
1 (|ψ〉) is just the

n-tangle for odd n qubits

For any state |ψ〉 of odd n qubits, the symmetric

matrix Ω
(n)
1 (|ψ〉) can be written as

(

e11 e12
e12 e22

)

. We

calculate e11, e12, and e22 in Appendix A. Let t1
and t2 be the singular values of Ω

(n)
1 (|ψ〉). Then,

a calculation yields that t21 = ∆+
√
∆2−4D
2 and t22 =

∆−
√
∆2−4D
2 , where ∆ = 2|e12|2 + |e11|2 + |e22|2 and

D = |e11e22 − e212|2.

LU classification of odd n qubits invoking the
invariance of the n-tangle for odd n qubits

Note that t21 + t22 = ∆ and t1t2 = |e11e22 − e212|.
Recall that |e11e22−e212| is just the n-tangle of odd n
qubits [19, 22]. Thus, the invariance of singular val-

ues of Ω
(n)
1 (|ψ〉) implies that the n-tangle and ∆ are

invariant under LU. For example, the above states
|W1〉 and |W2〉 are different in ∆, so they are LU
inequivalent.

We can conclude the following theorem from The-
orem 2 and the above discussion.

Theorem 4. If two pure states of odd n qubits are
LU equivalent then they have the same n-tangle for
odd n qubits.

In comparison, if two pure states of odd n qubits
are SLOCC equivalent then either their n-tangles for
odd n qubits both vanish or neither vanishes [19].

From Theorem 4, one can see that two pure states
of odd n qubits are LU inequivalent provided that
the two states are different in n-tangle. For |GHZ〉,
the n-tangle is 1/4, so any state whose n-tangle is
not 1/4 is LU inequivalent to |GHZ〉. It is known
that the n-tangle of odd n qubits is between 0 and
1/4. We can define the family Fg to be the set of
all the states whose n-tangles are g. Thus, if two
pure states of odd n qubits are LU equivalent then
they belong to the same family Fg. It is plain to
see that for any odd n qubits, there is a one to one
correspondence between the set {Fg|g ∈ [0, 1/4]} of
the families Fg and the interval [0, 1/4].
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LU classification of three qubits invoking

singular values of Ω
(3)
1,2

Singular values of Ω
(3)
1,2

A straightforward calculation yields that the sin-

gular values of Ω
(3)
1,2(|ψ〉) are S, S, 0, 0, where S is

put in Appendix A. For any state |A〉 of Acin et al.’s
canonical form in Eq. (6), S2 reduces to

S2 = λ20λ
2
2 + λ20λ

2
4 + |λ1λ4eiϕ − λ2λ3|2. (8)

Specially, for the SLOCC GHZ class in Table II,
we have S in Eq. (8); for the SLOCC W class in
Table II, S2 = λ22(λ

2
0 + λ23); for the SLOCC A-BC

class, S = |λ1λ4eiϕ − λ2λ3|; for the SLOCC B-AC
class, S = λ0λ2; for the SLOCC C-AB class and the
SLOCC |000〉 class, S = 0.

LU classification of Acin et al.’s canonical form for

three qubits invoking singular values of Ω
(3)
1,2

Recall that for three qubits, the space of the nor-
malized states in Eq. (6) is partitioned into nine
families under LU [26, 27]. It is well known that
pure states of three qubits were partitioned into six
SLOCC classes: GHZ, W, A-BC, B-AC, C-AB, and
A-B-C [3]. In terms of the singular values, we parti-
tion each one of the SLOCC classes GHZ, W, A-BC,
B-AC, and C-AB in Table IV under LU as follows.

In light of Theorem 4, one can know that two
states are LU inequivalent if the two states are differ-
ent in S. Next, let us demonstrate how to partition
the SLOCC class W under LU. Let the family FS

consist of all the states of the SLOCC W class with
the same value of S. Thus, we obtain a one to one
correspondence between the set {Fs|S ∈ (0,

√
2/3]}

of the LU families Fs and the interval (0,
√
2/3].

Similarly, we can partition GHZ, B-AC, and A-BC
under LU. See Table IV.

For the SLOCC C-AB class, S = 0. Note that
Acin et al.’s canonical form for SLOCC C-AB class
in Table II reduces to |ς〉AB|0〉C , where |ς〉AB =
(λ0|00〉 + λ1e

iϕ|10〉 + λ3|11〉)AB, where λ0λ3 6= 0.
Let c be the concurrence of |ς〉AB and the family
Fc consist of all the states |ς〉AB |0〉C with the same
value in c = λ0λ3. Thus, there is a one to one cor-
respondence between the set {Fc|c ∈ (0, 1/2]} of the
families Fc and the interval (0, 1/2].

TABLE IV. LU classification of the states of Acin et al.’s
canonical form

SLOCC the set of LU families
GHZ class {Fs|S ∈ (0, 1/2]}
W class {Fs|S ∈ (0,

√
2/3]}

B-AC class {Fs|S ∈ (0, 1/2]}
A-BC class {Fs|S ∈ (0, 1/2]}
C-AB class {Fc|c ∈ (0, 1/2]}
|000〉 class single family

SUMMARY

In this paper, from the coefficient matrices of
states of n qubits we construct the ℓ-spin-flipping
matrices and show that the ℓ-spin-flipping matrices
are congruent and unitary congruent under SLOCC
and LU, respectively. Thus, the ranks and the sin-
gular values of the ℓ-spin-flipping matrices are in-
variant under SLOCC and LU, respectively.

The invariance of ranks of the spin-flipping ma-
trices provides a simple way of classifying n-qubit
states under SLOCC. For example, we obtain com-
plete SLOCC classifications of two and three qubits.
The invariance of singular values of the spin-flipping

matrices Ω
(n)
1 implies the invariance of the concur-

rence for even n qubits and the invariance of the
n-tangle for odd n qubits. The invariance of the
concurrence and the invariance of the n-tangle per-
mit LU classifications for even n qubits and odd n
qubits, respectively. See Table V. It only performs
additions and multiplications of coefficients of states
to compute the concurrence for even n qubits and
the n-tangle for odd n qubits in comparison to the
methods [28, 29].

TABLE V. SLOCC and LU classification invoking the
concurrence and n-tangle

qubits ψ′ and ψ are SLOCC inequivalent
even n if only one of their concurrences is 0
odd n if only one of their n-tangles is 0

qubits ψ′ and ψ are LU inequivalent
even n if their concurrences are different
odd n if their n-tangles are different

Acknowledgement—This work was supported by
NSFC (Grant No. 10875061) and Tsinghua National
Laboratory for Information Science and Technology.
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APPENDIX A. SOME EXPRESSIONS

e12 =

2n−1−1
∑

i=0

(−1)N(i)aia2n−1−i,

e11 = 2

2n−2−1
∑

i=0

(−1)N(i)aia2n−1−1−i,

e22 = 2

2n−2−1
∑

i=0

(−1)N(i)a2n−1+ia2n−1−i.

S2 = |a0a3 − a1a2|2 + |a0a5 − a1a4|2

+|a0a7 − a1a6|2 + |a2a5 − a3a4|2

+|a2a7 − a3a6|2 + |a4a7 − a5a6|2.
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