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Abstract

Quantum partial search algorithm is approximate search. It aims to find a target
block (which has the target items). It runs a little faster than full Grover search. In
this paper, we consider quantum partial search algorithm for multiple target items
unevenly distributed in database (target blocks have different number of target items).
The algorithm we describe can locate one of the target blocks. Efficiency of the
algorithm is measured by number of queries to the oracle. We optimize the algorithm
in order to improve efficiency. By perturbation method, we find that the algorithm
runs the fastest when target items are evenly distributed in database.
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1 Introduction

Quantum partial search algorithm [1, 2, 3] trades accuracy for speed, namely, the algorithm finds the block where
the target item is located instead of the exact address of the target item. The algorithm is based on the full
quantum search algorithm (famous Grover algorithm [4, 5]). Grover algorithm acquires quadratic speedup over
corresponding classical search algorithm. Grover algorithm finds the target item in the database. Target item
also called marked item in the literature. Grover algorithm is optimal [6, 7] and the quantum partial search
algorithm is also optimal among other protocols [8, 9, 10, 11]. The generalization of partial search algorithm for
multiple target items has been studied in [12, 13]. In this paper, we consider the case that different blocks have
different number of target items (uneven distribution).

The total number of items in the database is denoted by N . Classically, we consider database as a set of N
items. In quantum case, the database is an N dimensional Hilbert space. Each basis vector |y〉 corresponds to
an item. Both the Grover algorithm and partial search algorithm consist of repetitions of the Grover iterations.
The Grover iteration is based on the oracle model [14] and each of Grover iteration has one query to the oracle
(black box). We use the number of queries to the oracle (number of Grover iteration) as the complexity measure.
If there is only one target item, Grover algorithm finds the target item with probability close to 1 in

jfull =
π

4

√
N +O(

1

N
), N → ∞ (1)

number of queries to the oracle [4, 14]. If we have total of z target items, Grover algorithm can find one of the
marked items in

jfull =
π

4

√

N

z
+O(

1

N
), N → ∞ (2)

queries to the oracle. Quantum partial search algorithm aims to find the blocks with target items instead of the
accurate locations of the target items. We can divide the database of N items into K blocks which have b items.
Each block has the same number of items, i.e., N = bK. In general, partial search algorithm can win over the full
Grover algorithm by a number scaling as

√
b both in one target item case [1, 2] and multiple target case [12, 13].

This is the result of optimization [8, 12]. We can run the partial search algorithm on different set of partitions
simultaneously (those are partitions popular with users).
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Number of target blocks is denoted by t. In this paper, we only consider t < K/4 (which is worthwhile for
partial search algorithm). When t ≥ K/4, we can randomly pick up one block and run the full quantum search
algorithm for unknown number of marked items proposed in [7]. For one block, we need at most 4

√
b number of

queries to the oracle to find one of the marked items or to claim that there is no target items in this block (with
trivial small probabilities of failure). If no marked items in this block was found, we pick up another block and
run the search again. The total expected number of Grover iterations is therefore

jt≥N/4 ≤
∞
∑

l=0

(

3

4

)l

4
√
b = 16

√
b ∼ O(

√
b) (3)

However, when we do not know the number of target blocks, we may consider the partial search algorithm for
unknown number of marked blocks and unknown number of marked items in future.

This paper has two parts. In first part, we study the partial search algorithm for uneven distribution of
multiple target items. Then we optimize the algorithm in large block limit b → ∞. In second part, we study the
partial search algorithm for uneven distribution of multiple target items by perturbation method (perturbation
from even distribution). We find that more queries is needed for uneven distribution in second order perturbation
proportional to the variance of target distribution in blocks. For reader’s convenience, a summary of notations
is in Table 1.

2 Partial search algorithm for uneven distribution of target items

In this section, we study the partial search algorithm of uneven distribution of target items in details. We use two
kinds of Grover iterations: global and local Grover iterations. The number of global and local Grover iterations
should satisfy certain constraint called cancellation equation. We study optimization of the algorithm under such
constraint.

2.1 Steps of the algorithm

Assume that the total number of items in the database is a power of 2, i.e., N = 2n. We can construct the
uniform superposition of all basis vectors fast and efficiently by applying the Hadamard gate H [14]:

|s1〉 = H⊗n|0〉 = 1√
N

N−1
∑

y=0

|y〉, 〈s1|s1〉 = 1 (4)

Here |y〉 is an element of orthonormal basis. The database is represented by an N dimensional Hilbert space.
The steps of partial search algorithm are listed below:

Step 1. j1 global Grover iterations Ĝ1 defined as

Ĝ1 = −Îs1 ÎT (5)

The operator

ÎT = Î − 2

z
∑

t∈A

|t〉〈t| (6)

is a reflection in a plane perpendicular to all target items. Here z is the total number of target items in
the database; A is the set of all target items and Î is the identity operator. The operator

Îs1 = Î − 2|s1〉〈s1| (7)

is a reflection in a plane perpendicular to the average of items. Let us explain reflection in the average.
For example, for an arbitrary vector |v〉

|v〉 =
N−1
∑

y=0

ay|y〉 (8)
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Table 1: Summary of notations.

Notation Definition Remarks

N total number of items in the database As b → ∞, we have N → ∞.

n number of bits necessary to represent the database (N items) n = log
2
N

K total number of blocks in the database each block has same number of items

b number of items in each block N = bK, b → ∞
z total number of target items in the database target item also known as marked item

t number of target blocks in the database t < K/4

β ratio between t and K β = t/K

τi number of marked items in i-th marked block z =
∑

i τi, i = 1, 2, · · · t
τ̄ average number of marked items in a marked block τ̄ = z/t

εi τi is perturbation of τ̄ τi = τ̄(1 + εi), εi is small

δ2(τ) variance of τi δ2(τ) =
(

τ̄2/t
)
∑t

i=1
ε2i

A set of all target items in the database number of elements in A is z

Ai set of all target items in i-th target block number of elements in Ai is τi

X set of all non-target items in the database number of elements in X is (N − z)

Xi set of all non-target items in i-th target block number of elements in Xi is (b − τi)

Ĝ1 global Grover iteration refer to formulae (5)-(7)

Ĝ2 local Grover iteration see equations (11)-(13)

j1 number of global Grover iterations j1 ∝
√
N → ∞

j2 number of local Grover iterations j2 ∝
√
b → ∞

Î identity operator

|s1〉 average of all items in the database |s1〉 = 1/
√
N

∑N−1

y=0
|y〉

|s2〉 average of all items in a block |s2〉 = 1/
√
b
∑

y∈one block
|y〉

Îs1 reflection about the state |s1〉 Îs1 = Î − 2|s1〉〈s1|; see equation (7)

Îs2 reflection about the state |s2〉 Îs2 = Î − 2|s2〉〈s2|; see equation (12)

ÎT reflection about all the target states ÎT = Î − 2
∑z

t∈A |t〉〈t|; see equation (6)

θ angle of global Grover iteration sin2 θ = z/N ; see equation (10)

θi angles of local Grover iterations in i-th target blocks sin2 θi = τi/b; see equation (14)

|ti〉 average of target items in i-th target blocks |ti〉 = 1/
√
τi

∑τi
t∈Ai

|t〉

|ntti〉 average of non-target items in i-th target blocks |ntti〉 = 1/
√
b − τi

∑b−τi
y∈Xi

|y〉

|u〉 average of all items in non-target blocks see equation (17)

η
defined by the formula on the right side

j1 = π
4

√

N/z − η
√
b

α j2 = α
√
b

η0 optimal value of η in even distribution case
see equation (38)

α0 optimal value of α in even distribution case

ηK optimal value of η in uneven distribution case determined by cancellation equation (30)

αK optimal value of α in uneven distribution case determined by optimization condition (37)

f(η, α) function to maximize in order to minimize the number of iterations f = η − α

3



Here ay is a complex number. The operator −Îs1 acts as

− Îs1 |v〉 =
N−1
∑

y=0

ăy|y〉, ăy = 2ā− ay, ā =

N−1
∑

y=0

ay
N

(9)

Reflection operators can also be viewed as rotations. The rotation angle of global Grover iteration Ĝ1

(5) is

sin2 θ =
z

N
(10)

Step 2. j2 local Grover iterations Ĝ2. The local iteration is defined by

Ĝ2 = −
(

K
⊕

blocks

Îs2

)

ÎT (11)

The local operator Îs2 is given by
Îs2 = Î − 2|s2〉〈s2| (12)

Here

|s2〉 =
1√
b

∑

y∈one block

|y〉 (13)

is average of all items in a block. Local Grover iteration is usual Grover iteration for a block (considered
as a database). Therefore, one can run the local Grover iteration on the same hardware which is used
for global Grover iteration. Direct sum means that we run local search in each block simultaneously.
The rotation angle for local Grover iteration Ĝ2 (11) is

sin2 θi =
τi
b

(14)

Step 3. One last reflection Îs1 (7) vanishes amplitudes of all items in non-target blocks.

Step 4. Measurement will reveal a target block with high probability.

During the algorithm, in a target block, amplitudes of all target items are the same. So we can only follow
the amplitude of the average of all target items in one block:

|ti〉 =
1√
τi

τi
∑

t∈Ai

|t〉 (15)

It is the normalized sum of all target items in i-th target block. The set of all target items in i-th target block
is denoted as Ai. Also the amplitudes of non-target items in one target block are the same. Therefore we define
the normalized sum of all non-target items in i-th target block:

|ntti〉 =
1√

b− τi

b−τi
∑

y∈Xi

|y〉 (16)

Here the set of all non-target items in i-th target block is denoted as Xi. The normalized sum of items in all
non-target block is denoted by |u〉:

|u〉 = 1√
N − bt

N−bt
∑

y∈non-target blocks

|y〉, (17)

where y ∈ (X −
∑

iXi) and X is the set of all non-target items in the database. In conclusion, the algorithm

is a representation of SO(2t+ 1) group. Because of local Grover iteration Ĝ2 (11) acting locally on the blocks,
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therefore, in the bases |ti〉, |ntti〉 and |u〉, Ĝ2 has the block diagonal form:

Ĝj2
2 =



























cos(2j2θ1) sin(2j2θ1) 0 0 · · · 0 0 0
− sin(2j2θ1) cos(2j2θ1) 0 0 · · · 0 0 0

0 0 cos(2j2θ2) sin(2j2θ2) · · · 0 0 0
0 0 − sin(2j2θ2) cos(2j2θ2) · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · cos(2j2θt) sin(2j2θt) 0
0 0 0 0 · · · − sin(2j2θt) cos(2j2θt) 0
0 0 0 0 · · · 0 0 1



























, (18)

which is a (2t+1)× (2t+ 1) orthogonal matrix. Note that local iteration Ĝ2 acts trivially on non-target blocks.

2.2 Cancellation equation

After Step 1 (j1 global Grover iterations Ĝ1), we get the state of the database:

Ĝj1
1 |s1〉 =

sin ((2j1 + 1) θ)√
z

∑

t∈A

|t〉+ cos ((2j1 + 1) θ)√
N − z

∑

y∈X

|y〉 (19)

=
sin ((2j1 + 1) θ)√

z

t
∑

i=1

√
τi|ti〉+

cos ((2j1 + 1) θ)√
N − z

t
∑

i=1

√

b− τi|ntti〉

+cos ((2j1 + 1) θ)

√

b(K − t)

N − z
|u〉

Here we rewrite the result in the bases |ti〉 (15), |ntti〉 (16) and |u〉 (17). The amplitude of all the non-target
block states is ant:

ant =
cos ((2j1 + 1) θ)√

N − z
(20)

It will remain unchanged during the Step 2.
In order to calculate Ĝj2

2 Ĝj1
1 |s1〉, we can directly apply the matrix formalism of Ĝj2

2 (18) on the state Ĝj1
1 |s1〉.

Then we have

Ĝj2
2 Ĝj1

1 |s1〉 =
t
∑

i=1

ati |ti〉+
t
∑

i=1

antti |ntti〉+ ant
√

(b(K − t))|u〉 (21)

with

ati =

√

τi
z
cos (2j2θi) sin ((2j1 + 1) θ) +

(

√

b− τi
N − z

)

sin (2j2θi) cos ((2j1 + 1) θ) ; (22)

antti = −
√

τi
z
sin (2j2θi) sin ((2j1 + 1) θ) +

(

√

b− τi
N − z

)

cos (2j2θi) cos ((2j1 + 1) θ) (23)

The vector (21) describes the state of the database after Step 2.
After Step 3, the amplitudes of states in non-target block should vanish. Specifically, the amplitude ant

should be twice of the average, i.e., ant = 2ā, because the operator −Îs1 inverts the amplitudes about the
average, see equation (9). Then we have the constraint relation

ant =
2

N

(

b(K − t)ant +

t
∑

i=1

(

ati
√
τi + antti

√

b− τi

)

)

, (24)

which leads to

N

(

t

K
− 1

2

)

ant =
t
∑

i=1

(

ati
√
τi + antti

√

b− τi

)

(25)
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Substituting ant (20), ati (22) and antti (23) into above relation, we have

N√
N − z

(

t

K
− 1

2

)

cos ((2j1 + 1)θ) (26)

=

t
∑

i=1

(

τi√
z
cos (2j2θi) sin ((2j1 + 1)θ) +

√

τi(b − τi)

N − z
sin (2j2θi) cos ((2j1 + 1)θ)

−
√

τi(b− τi)

z
sin (2j2θi) sin ((2j1 + 1)θ) +

b− τi√
N − z

cos (2j2θi) cos ((2j1 + 1)θ)

)

which is called cancellation equation. If above relation holds, the amplitudes of items in non-target block will
vanish. And the final state is

Îs1Ĝ
j2
2 Ĝj1

1 |s1〉 =
t
∑

i=1

(

(ati − ant
√
τi) |ti〉+

(

antti − ant
√

b− τi

)

|ntti〉
)

(27)

So the measurement will reveal a target block.

2.3 Large block limit: b → ∞
The numbers of iterations j1 and j2 usually scale as [8, 9]

j1 =
π

4

√

N

z
− η

√
b, j2 = α

√
b; η > 0, α > 0, (28)

when N → ∞. In thermodynamics limit b → ∞, the cancellation equation (26) reduces into
(

t√
K

−
√
K

2

)

sin

(

2η

√

z

K

)

=
t
∑

i=1

(

1√
K

cos (2α
√
τi) sin

(

2η

√

z

K

)

−
√

τi
z
sin (2α

√
τi) cos

(

2η

√

z

K

))

, (29)

which has a simpler expression for η

tan

(

2η

√

z

K

)

=
2
√
K
∑t

i=1

√
τi sin

(

2α
√
τi
)

√
z
(

K − 4
∑t

i=1 sin
2 (α

√
τ i)
) (30)

Note the denominator on RHS is always positive if t < K/4.

2.4 Optimization

We use the number of queries to the oracle as complexity measure of the algorithm. In order to accelerate the
algorithm, we have to optimize. We want to minimize total number of queries to the oracle given by j1 + j2:

j1 + j2 =
π

4

√

N

z
− (η − α)

√
b (31)

Therefore we want to maximize the function f(η, α) = η − α. By Lagrange multiplier method, we construct the
function

L(η, α, λ) = f(η, α)− λ

(

√
z tan

(

2η

√

z

K

)

(

2
t
∑

i=1

cos (2α
√
τi) +K − 2t

)

− 2
√
K

t
∑

i=1

√
τi sin (2α

√
τi)

)

(32)

Here λ is the Lagrangian multiplier. Maximization of L(η, α, λ) leads to the equations

0 = 1− λ

(

2z√
K cos2

(

2η
√

z
K

)

(

2

t
∑

i=1

cos (2
√
τiα) +K − 2t

))

; (33)

0 = −1 + λ

(

4
√
z tan

(

2η

√

z

K

) t
∑

i=1

√
τi sin (2

√
τiα) + 4

√
K

t
∑

i=1

τi cos (2
√
τiα)

)

; (34)

0 =
√
z tan

(

2η

√

z

K

)

(

2
t
∑

i=1

cos (2
√
τiα) +K − 2t

)

− 2
√
K

t
∑

i=1

√
τi sin (2

√
τiα) (35)
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We combine these equations to eliminate Lagrangian multiplier λ and η and get one equation for α:

(

2

(

t
∑

i=1

cos (2α
√
τi)

)

+K − 2t

)(

2

(

t
∑

i=1

(Kτi − z) cos (2α
√
τi)

)

− z(K − 2t)

)

= 0 (36)

Note that 2
(

∑t
i=1 cos

(

2α
√
τi
)

)

+K − 2t > K − 4t. Besides, we only consider the case (K − 4t) > 0. Therefore,

only second factor can vanish

2

(

t
∑

i=1

(Kτi − z) cos (2α
√
τi)

)

− z(K − 2t) = 0 (37)

for maximum value of f(η, α). This is optimization condition. The solutions are denoted as ηK and αK

respectively. Let us compare to the trivial even distribution case. When τi = τ̄ , we retrieve the optimal value
for least number of iterations in even distribution database case [12]. We denote the optimal values of α and η
in even distribution as α0 and η0:

tan

(

2η0

√

z

K

)

=

√
3tK − 4t2

K − 2t
, cos

(

2α0

√
τ̄
)

=
K − 2t

2(K − t)
(38)

3 Perturbation

Numerical results show that the more uniform the distribution of target items, the less queries to the oracle are
needed [13]. In this section, we consider the uneven distribution of target items as the perturbation from even
distribution, namely

τi = τ̄(1 + εi),

t
∑

i=1

εi = 0 (39)

Perturbation εi is a small number in the range −1 < εi < 1. Note that the variance of τi is

δ2(τ) =
τ̄2

t

t
∑

i=1

ε2i (40)

As the result, the optimal values ηK and αK change as

ηK = η0 +∆ηK , αK = α0 +∆αK (41)

3.1 The limit of many blocks: K → ∞
Theorem 1. In the limit of many blocks (K → ∞), uneven distribution requires more queries to the

oracle than even distribution by

f(η0, α0)− f(ηK , αK) =

(√
3π2 − 3π + 9

√
3

144

)

δ2(τ)

τ̄5/2
≈ 0.1615

δ2(τ)

τ̄5/2
(42)

in second order perturbation.

Proof. We notice that ∆ηK and ∆αK are nonzero at least in the second order of εi, because

t
∑

i=1

εi = 0 (43)

In following calculations, we keep the second order of εi, first order of ∆ηK and ∆αK . In the limit K → ∞,
cancellation equation (30) simplifies as

η =
1

z

t
∑

i=1

√
τi sin (2α

√
τi) (44)

7



In second order of εi, we have
√
τi ≈

√
τ̄

(

1 +
1

2
εi −

1

8
ε2i

)

, (45)

which gives rise to

t
∑

i=1

√
τi sin (2αK

√
τi) = t

√
τ̄ sin

(

2α0

√
τ̄
)

+ 2tτ̄ cos
(

2α0

√
τ̄
)

∆αK

−
(

t

2
√
τ̄
α2
0 sin

(

2α0

√
τ̄
)

− t

4τ̄
α0 cos

(

2α0

√
τ̄
)

+
t

8τ̄
√
τ̄
sin
(

2α0

√
τ̄
)

)

δ2(τ) (46)

Substituting above relation into (44), we get

η0 +∆ηK =
1√
τ̄
sin
(

2α0

√
τ̄
)

+ 2 cos
(

2α0

√
τ̄
)

∆αK

+

(

− α2
0

2τ̄
√
τ̄
sin
(

2α0

√
τ̄
)

+
α0

4τ̄2
cos
(

2α0

√
τ̄
)

− 1

8τ̄2
√
τ̄
sin
(

2α0

√
τ̄
)

)

δ2(τ) (47)

On the other hand, from (44), in the case of even distribution, we know

η0 =
1√
τ̄
sin
(

2α0

√
τ̄
)

(48)

And in the limit K → ∞, parameter α0 (38) is

α0 =
π

6
√
τ̄

(49)

with

sin
(

2α0

√
τ̄
)

=

√
3

2
, cos

(

2α0

√
τ̄
)

=
1

2
(50)

Substituting above relations into (47), we get

∆ηK = ∆αK −
(√

3π2 − 3π + 9
√
3

144

)

δ2(τ)

τ̄5/2
(51)

Remember that f = η − α, then

f(η0, α0)− f(ηK , αK) = (η0 − α0)− (ηK − αK) = −∆ηK +∆αK

=

(√
3π2 − 3π + 9

√
3

144

)

δ2(τ)

τ̄5/2
≈ 0.1615

δ2(τ)

τ̄5/2
(52)

So we proved Theorem 1.

3.2 Finite number of blocks

Theorem 2. Consider finite number of blocks (number of blocks is K). In second order of perturbation around
even distribution, uneven distribution of target items requires more queries then even distribution

by

f(η0, α0)− f(ηK , αK) > g(β)
δ2(τ)

τ̄5/2
(53)

with β = t/K and

g(β) =

√
3− 4β(1 − 2β)(π2(1− β) + 9) + 3π(−8β2 + 7β − 1)

144(1− β)
(54)

When 0 < β < βc, function g(β) is positive. Here βc is a root of polynomial of 5 degree: g(βc) = 0. Approximate
expression is βc ≈ 0.6281.
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Proof. The proof is in four steps.

Step 1. Find perturbation ∆αK (41) in first order of δ2(τ) (40). Firstly, the optimization condition (37) for
uneven distribution can be rewritten as

t
∑

i=1

2Kτi cos (2αK
√
τi)− 2tτ̄

t
∑

i=1

cos (2αK
√
τi)− z(K − 2t) = 0 (55)

In the case of even distribution, optimization condition (37) has the simpler form

2tKτ̄ cos
(

2α0

√
τ̄
)

− 2t2τ̄ cos
(

2α0

√
τ̄
)

− z(K − 2t) = 0 (56)

Subtracting equations (55) and (56), we get

t
∑

i=1

2Kτi cos (2αK
√
τi)− 2tτ̄

t
∑

i=1

cos (2αK
√
τi) = 2tKτ̄ cos

(

2α0

√
τ̄
)

− 2t2τ̄ cos
(

2α0

√
τ̄
)

(57)

Next, in second order of εi (39), we expand the following expressions

t
∑

i=1

cos (2αK
√
τi) = t cos

(

2α0

√
τ̄
)

− 2t
√
τ̄ sin

(

2α0

√
τ̄
)

∆αK

+

(

t

4τ̄
√
τ̄
α0 sin

(

2α0

√
τ̄
)

− t

2τ̄
α2
0 cos

(

2α0

√
τ̄
)

)

δ2(τ); (58)

t
∑

i=1

τi cos (2αK
√
τi) = tτ̄ cos

(

2α0

√
τ̄
)

− 2tτ̄
√
τ̄ sin

(

2α0

√
τ̄
)

∆αK

−
(

3t

4
√
τ̄
α0 sin

(

2α0

√
τ̄
)

+
1

2
tα2

0 cos
(

2α0

√
τ̄
)

)

δ2(τ) (59)

Substituting above relations into (57), we can solve ∆αK (41):

∆αK = −
(

1− 2β

4
√
3− 4β

α2
0

τ̄
√
τ̄
+

3 + β

8(1− β)

α0

τ̄2

)

δ2(τ), (60)

where β = t/K and α0 is defined in (38).

Step 2. Analysing ∆ηK (41) by cancellation equation (30), we calculate ∆ηK explicitly in first order of δ2(τ)
(40). From cancellation equation (30), in first order of ∆ηK , we have

tan

(

2η0

√

z

K

)

+ 2

√

z

K

(

1 + tan2
(

2η0

√

z

K

))

∆ηK =
2
√
K
∑t

i=1

√
τi sin

(

2αK
√
τi
)

√
z
(

2
∑t

i=1 cos
(

2αK
√
τi
)

+K − 2t
) (61)

For even distribution, we have the cancellation equation (30):

tan

(

2η0

√

z

K

)

=
2t
√
τ̄K sin

(

2α0

√
τ̄
)

√
z
(

2t cos
(

2α0

√
τ̄
)

+K − 2t
) (62)

Substituting above equation and the approximate equations (46) and (58) in (61), we can solve ∆ηK
explicitly in first order of δ2(τ). The details of calculation please refer to the Appendix. The result is

∆ηK = −
(

(1− β)(1 − 2β)√
3− 4β

α2
0

τ̄
√
τ̄
+

(4β3 − 8β2 + 3β + 1)

4(1− β)2
α0

τ̄2
+

(1 − 2β)
√
3− 4β

16(1− β)

1

τ̄2
√
τ̄

)

δ2(τ) (63)

Step 3. Prove the inequality (53). The difference between number of queries for uneven distribution of target
items and even distribution of target items is f(η0, α0) − f(ηK , αK), see (31). Because f = η − α, we
have

f(η0, α0)− f(ηK , αK) = ∆αK −∆ηK (64)
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According to ∆αK (60) and ∆ηK (63), we find

∆αK −∆ηk =

(

(1− 2β)
√
3− 4β

4

α2
0

τ̄
√
τ̄
+

(

−8β2 + 7β − 1
)

8(1− β)

α0

τ̄2
+

(1− 2β)
√
3− 4β

16(1− β)

1

τ̄2
√
τ̄

)

δ2(τ) (65)

In order to combine the three terms of above equation, we introduce the inequality

∆αK −∆ηk >

(

π2(1 − 2β)
√
3− 4β

144
+

π
(

−8β2 + 7β − 1
)

48(1− β)
+

(1− 2β)
√
3− 4β

16(1− β)

)

δ2(τ)

τ̄5/2
, (66)

because α0 > π/6
√
τ̄ , see equation (38). At last, combine (64) and (66), then we have

f(η0, α0)− f(ηK , αK) > g(β)
δ2(τ)

τ̄5/2
(67)

with

g(β) =

√
3− 4β(1− 2β)(π2(1− β) + 9) + 3π(−8β2 + 7β − 1)

144(1− β)
(68)

Step 4. The denominator of g(β) is obviously positive. Therefore, we consider the inequality
√

3− 4β(1 − 2β)(π2(1− β) + 9) + 3π(−8β2 + 7β − 1) > 0, (69)

which has the solution 0 < β < βc. Here βc is an algebraic number: it is a root of polynomial of 5
degree:

√

3− 4βc(1 − 2βc)(π
2(1− βc) + 9) + 3π(−8β2

c + 7βc − 1) = 0 (70)

Approximate expression is βc ≈ 0.6281. In many blocks limit (K → ∞), namely β = t/K → 0, we have

g(0) =

√
3π2 − 3π + 9

√
3

144
≈ 0.1615, (71)

which coincides with equation (42) in Theorem 1. The diagram of function g(β) in the interval (0, 0.75)
is in Figure 1. So we proved Theorem 2.

Figure 1: Diagram of function g(β) (54) in region β ∈ (0, 0.75). Inequality g(β) > 0 has the solution 0 < β < βc.

4 Summary

In this paper we study quantum partial search algorithm for multiple target items unevenly distributed in the
target blocks (different target blocks have different number of target items). The number of global and local
Grover iteration should satisfy the cancellation equation (26). We study the optimization of the algorithm and
present the optimization condition (37) in large block limit (b → ∞). We also prove that uneven distribution of
multiple target items requires more queries than even distribution case by perturbation method for concentration
of target blocks: 0 < β < 0.6281 (β = t/K). It is open problem of studying the partial search algorithm for large
β. Note that after the algorithm, the database will be in the state (27).
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Appendix The proof of equation (63)

The optimal value of α and η (28) for even distribution of target items are denoted as η0 and α0 (38). Their
values can be rewritten as

tan

(

2η0

√

z

K

)

=

√

3β − 4β2

1− 2β
, cos

(

2α0

√
τ̄
)

=
1− 2β

2(1− β)
, sin

(

2α0

√
τ̄
)

=

√
3− 4β

2(1− β)
(72)

with β = t/K. On the other hand, the approximate equations (46) and (58) can be reformulated as

t
∑

i=1

√
τi sin (2αK

√
τi) =t

√
τ̄ sin

(

2α0

√
τ̄
)

+ Pδ2(τ); (73)

t
∑

i=1

cos (2αK
√
τi) =t cos

(

2α0

√
τ̄
)

+Qδ2(τ). (74)

The coefficient P is found as

P = −1

2
sin
(

2α0

√
τ̄
) tα2

0√
τ̄
+

1

4
cos
(

2α0

√
τ̄
) tα0

τ̄
− 1

8
sin
(

2α0

√
τ̄
) t

τ̄
√
τ̄
+ 2tτ̄ cos

(

2α0

√
τ̄
) ∆αK

δ2(τ)
(75)

Substituting ∆αK (60) and the optimal value α0 (72) into above relation, after some algebra, coefficient P equals
to

P = − (1− β)√
3− 4β

tα2
0√
τ̄
− (1− 2β)(1 + β)

4(1− β)2
tα0

τ̄
+

√
3− 4β

16(1− β)

t

τ̄
√
τ̄

(76)

Similar, the coefficient Q in (74) has the expression

Q =

√
3− 4β

2(1− β)2
tα0

τ̄
√
τ̄

(77)

With the help of approximation equations (73) and (74), the right hand side of equation (61) in first order of
δ2(τ) becomes

RHS of (61) =
2
√
K
(

t
√
τ̄ sin

(

2α0

√
τ̄
)

+ Pδ2(τ)
)

√
z
(

2t cos
(

2α0

√
τ̄
)

+ 2Qδ2(τ) +K − 2t
)

=
2t
√
Kτ̄ sin

(

2α0

√
τ̄
)

√
z
(

2t cos
(

2α0

√
τ̄
)

+K − 2t
) +

2
√
KPδ2(τ)√

z
(

2t cos
(

2α0

√
τ̄
)

+K − 2t
) − 4t

√
Kτ̄ sin

(

2α0

√
τ̄
)

Qδ2(τ)
√
z
(

2t cos
(

2α0

√
τ̄
)

+K − 2t
)2 (78)

Combining above result with left hand side of equation (61), and using the identity (62), we have the result

(

1 + tan2
(

2η0

√

z

K

))

∆ηK =
KPδ2(τ)

z
(

2t cos
(

2α0

√
τ̄
)

+K − 2t
) − 2tK

√
τ̄ sin

(

2α0

√
τ̄
)

Aδ2(τ)

z
(

2t cos
(

2α0

√
τ̄
)

+K − 2t
)2 (79)

Note that η0 and α0 have the expressions (72). Then above equation gives

∆ηK =

(

(1− 2β)
P

tτ̄
− β

√

3− 4β
Q

t
√
τ̄

)

δ2(τ) (80)

Last, substituting coefficient P (76) and Q (77) into above equation, after some algebra, we solve ∆ηK in first
order of δ2(τ) explicitly:

∆ηK = −
(

(1− β)(1 − 2β)√
3− 4β

α2
0

τ̄
√
τ̄
+

(4β3 − 8β2 + 3β + 1)

4(1− β)2
α0

τ̄2
+

(1− 2β)
√
3− 4β

16(1− β)

1

τ̄2
√
τ̄

)

δ2(τ) (81)
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