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I. INTRODUCTION

Entangled states find a wide range of applications in quantum information processing tasks [1] and form
an integral part of quantum processors. Like highly entangled states, e.g., cluster and Brown et al. states,
Bell states, GHZ states, and their generalizations have also been extensively used for the implementation
of quantum teleportation [2–7], quantum information splitting [6–12], quantum secret sharing [4–6, 13, 14],
superdense coding [4, 7, 15], quantum cheque [16, 17], and quantum dialogue [18] to name a few.

These entangled states are prone to partial or complete loss of entanglement due to decoherence,
introducing arbitrary phase and bit-flip errors. In particular, as part of a quantum circuit, these subunits
need to be monitored for their purity. Appropriate error correction [19–22] needs to be performed so as to
render them useful for their assigned tasks in a larger network. A method of non-destructive discrimination
of Bell states has been demonstrated by Gupta et al. [23, 24], involving measurement on ancilla qubits,
which has subsequently found experimental verification [25]. This has been extended for automated error
correction, wherein the state information on the ancilla is used to recover the assigned state, as and when
any error arises due to phase or bit-flip errors [26]. This state discrimination procedure has been extended
for the generalized Bell states as well as for the maximally entangled d-dimensional qudit state [27].

Recently, the Bell state discrimination has been carried out using IBM’s cloud based quantum processor
[28]. Being made up of superconducting transmon qubits, it resolves the scalability issues faced by an NMR
based quantum computer [29, 30]. This has opened the avenue for checking the efficacy of several algorithms
and protocols, e.g., researchers have been successfully implemented a number of applications in quantum
information theory using IBM quantum computer [17, 25, 31–34]. Here, we demonstrate the automated
error correction for the Bell states. Subsequently, the GHZ state is discriminated non-destructively and the
corresponding error correction is experimentally demonstrated. The quantum state tomography is carried
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out with the associated simulation to explicate the efficacy of our method. We then proceed to give complete
error correction algorithm for the maximally entangled qudit case.

The paper is organized as follows. In section-II, we have described non-destructive discrimination (both
theoretical and experimental) of GHZ state. In section-III, we have experimentally verified the automated
error correction algorithm for Bell and GHZ states in the IBM quantum computer. Section-IV deals with
the state tomography of our experimental circuits. We generalize the automated error correction algorithm
for n-qudits in section-V. We conclude in section-VI by providing future directions of this work. Results of
all experimental circuits and calibration data of the IBM quantum processor are given in appendix-1 and
appendix-2 respectively.

II. NON-DESTRUCTIVE DISCRIMINATION ALGORITHM

Generalization of non-destructive discrimination algorithm has been proposed by Gupta et al. [23]. |ψx〉
is the generalized Bell states (GBS) and the initial state of any ancilla (represented as |a〉 or |ai〉) is |0〉. The
final state of the ancilla represents the phase, as |φ〉 or the parity, represented as |pi〉 (where i ∈ [1, n− 1]).
It is to be noted that, |φ〉 = |0〉 or |1〉 corresponds to ‘+’ or ‘-’ phase respectively.

A. Theoretical protocol

• Phase checking:

Figure 1: Circuit illustrating phase of the ancilla.

• Parity checking:

Figure 2: Circuit illustrating parity of the ancilla.

B. Experimentally verified with GHZ states

Quantum circuits and methods, used for nondestructive discrimination of Bell states, have been
experimentally realized using IBM quantum computer [25]. Due to the lack of coupling with all the qubits,
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Table I: The measurement results corresponding to different Bell and GHZ states are depicted in the
following table.

Bell States |p〉 |φ〉 GHZ States |p〉 |φ〉
|Ψ+

00〉 = 1√
2
(|00〉+ |11〉) |0〉 |0〉 |Ψ±000〉 = 1√

2
(|000〉 ± |111〉) |00〉 |0〉/|1〉

|Ψ−00〉 = 1√
2
(|00〉 − |11〉) |0〉 |1〉 |Ψ±001〉 = 1√

2
(|001〉 ± |110〉) |01〉 |0〉/|1〉

|Ψ+
01〉 = 1√

2
(|01〉+ |10〉) |1〉 |0〉 |Ψ±010〉 = 1√

2
(|010〉 ± |101〉) |11〉 |0〉/|1〉

|Ψ−01〉 = 1√
2
(|01〉 − |10〉) |1〉 |1〉 |Ψ±011〉 = 1√

2
(|011〉 ± |100〉) |10〉 |0〉/|1〉

CNOT gate is not accessible to all the qubits. Hence, the process of qubit swapping [35] can be used to
overcome this restriction. In the correction algorithm (phase flip correction), controlled Z gate is used to
correct the phase of the erroneous state. An equivalent quantum circuit for controlled Z gate (composed of
CNOT and X gates) can be found in the user manual [35].

Figure 3: Phase-checking circuit in IBM quantum computer. The box part generates the following GHZ
state, |Ψ−010〉.

The phase of |Ψ−010〉 is |1〉 (results are given in Appendix 1). After constructing all GHZ states, the phase
of ancilla for all |Ψ+

x 〉 and |Ψ−x 〉 are observed to be |0〉 and |1〉 respectively.

Figure 4: Parity-checking circuit in IBM quantum computer. The box part generates the following GHZ
state, |Ψ−010〉.

The parity of |Ψ−010〉 is |11〉 (results are given in Appendix 1). The parity of all GHZ states is checked by
changing the initial gates inside the box, shown in the above figure.

III. AUTOMATED ERROR CORRECTION ALGORITHM

Automated error correction algorithm [26] requires two steps to eliminate arbitrary phase change error
and bit-flip error. Arbitrary phase change error also requires two steps, which include removing arbitrary
phase errors followed by a phase flip operation [26].

A. Theoretical protocol

Any erroneous state is represented by superscript ‘ek’, where k∈{0,1,2,...} and final ancilla is denoted by
the superscript ‘f’.
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• Step 1: Arbitrary phase error correction

Figure 5: Circuit depicting arbitrary phase error correction.

• Step 2: Phase-flip error correction

Figure 6: Circuit depicting phase-flip error correction.

• Step 3: Bit-flip error correction

Figure 7: Circuit depicting bit-flip error correction.

The circuit presented in fig-5, removes arbitrary phase from the erroneous state. Thus only phase-flip error
remains in the erroneous state which is corrected in the next step. After Step 1, the phase of the erroneous
state is |0〉. In step 2, the circuit shown in fig-6, flips the phase of the erroneous state to its correct initial
phase |φ〉. Finally, circuit in fig-7, flips the bit of parity of erroneous state to its correct initial bit of the
parity |pi〉.

B. Experimentally verified with Bell states

We construct the automated error correction algorithm[26] in IBM quantum computer by using the above
equivalent circuits.
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Figure 8: Error correction of Bell state is depicted in the above circuit. First box is used to create a
Bell state with arbitrary phase error, phase flip error and bit flip error. Second box is used for arbitrary
phase correction, which is followed by the third and the last box demonstrating both phase flip and bit flip
correction respectively. The orange box in the first box represents a π/8 phase shift gate.

Ancillas of arbitrary phase correction, phase check and parity check are q[2], q[3] and q[4] respectively
(fig-8). The initial phase and parity are given correspondingly, |φ〉 = |1〉, and |p〉 = |1〉. This circuit corrects
|Ψe〉 = 1√

2
(|00〉+ eιπ/8|11〉) to |Ψ〉 = 1√

2
(|01〉 − |10〉) (results are given in Appendix 1). Correction of other

Bell states can be done by changing the state of parity and phase in the same circuit. When there is no error
in phase, the final state of phase will be |0〉. But if there is a flip error in initial state with respect to initial
phase then the final state of phase will be |1〉. This also holds same for bit flip error correction.

C. Experimentally verified with GHZ states

According to the algorithm, correction should be done in three steps [26]. Due to 5 qubit quantum
computer, all three steps can’t be done in one circuit just like Bell state(fig-8), as 6 qubits are needed (three
qubits for GHZ state, one qubit for arbitrary phase correction, one qubit for phase-flip correction and two
qubits for bit-flip correction). Hence, the following steps need to be carried out as shown in the below three
circuits.

1. Arbitrary phase correction

For GHZ states, the same algorithm is constructed as in case of Bell states. The correction of an erroneous
state |Ψe〉 = 1√

2
(|000〉+ eιπ/8|111〉) for initial phase |φ〉 = |1〉 and initial parity |p〉 = |11〉 is described below.

This step is concerned with removing arbitrary phase (here eιπ/8), which further has a phase-flip error
correction, from initial erroneous state as in the case of the second box of the Bell state correction (fig-8).

Figure 9: Circuit depicting arbitrary phase correction. The box part creates |Ψe〉 state, where the orange
box is represented for the π/8 phase shift gate.

This circuit (fig-9) converts the state |Ψe〉 into |Ψ000〉 = 1√
2
(|000〉+ |111〉) (results are given in Appendix

1).
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2. Phase flip correction

Arbitrary phase has been removed. Now this step deals with the correction of phase flip error, same as
the third box of Bell states correction (fig-8). This circuit follows the erroneous state as phase checking, but
in the end, if there exits a flip then a controlled Z gate comes into play to fix the flip error.

Figure 10: Circuit illustrating phase flip correction. The box part creates the state, |Ψ+
000〉, where initial

phase, |φ〉 = |1〉.

After the application of the circuit (fig-10) phase of the state change from (+) to (-). The state |Ψ+
000〉

will change to |Ψ−000〉 (results are given in Appendix 1 ) as the initial phase |φ〉 = |1〉. The final state of |φ〉
will be |1〉 as it changes the phase of the erroneous state.

3. Bit flip correction

The last step of the algorithm is the bit-flip correction, same as the last box of Bell states correction (fig-8).
Just like the phase correction, the circuit follows erroneous state as parity checking and flip the parity of the
state by CNOT gate if it doesn’t match with initial parity.

Figure 11: Circuit illustrating bit flip correction. The box part creates the state, |Ψ−000〉, where initial parity,
|p〉 = |11〉.

After the implementation of the circuit (fig-11) parity will be corrected i.e. the state |Ψ−000〉 will change
to our desired or correct state |Ψ−010〉 (results are given in Appendix 1). The final state of parity after
correction will be |10〉. From the final state of parity after correction we can have the information about
the GHZ erroneous state after arbitrary correction. This information is given in the following table.

State
Parity
check
result

Final parity
state for initial
parity = |00〉

Final parity
state for initial
parity = |01〉

Final parity
state for initial
parity = |10〉

Final parity
state for initial
parity = |11〉

|Ψ±000〉 |00〉 |00〉 |01〉 |11〉 |10〉
|Ψ±001〉 |01〉 |01〉 |00〉 |10〉 |11〉
|Ψ±010〉 |11〉 |10〉 |11〉 |01〉 |00〉
|Ψ±011〉 |10〉 |11〉 |10〉 |00〉 |01〉

Corrections to other GHZ states can be done by changing the desire state of initial phase and parity.
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IV. QUANTUM STATE TOMOGRAPHY

Quantum state tomography is performed to calculate an experimental density matrix which helps to check
the accuracy of the experimental process. Experimental density matrix of n qubits is,

ρE =
1

2n

3∑
i1,i2,...,in=0

〈σi1 ⊗ σi2 ⊗ ...⊗ σin〉(σi1 ⊗ σi2 ⊗ ...⊗ σin) (1)

where ik, k ∈ (1, 2, ..., n), σ0 = I, σ1 = X, σ2 = Y and σ3 = Z Pauli matrices. 〈σi1 ⊗ σi2 ⊗ ... ⊗
σin〉 is evaluated experimentally by obtaining the respective probabilities when the qubits are measured
in standard basis ([36–42]). IBM Experience uses Z-basis measurement. A Hadamard gate (H) is added
before measurement for X-basis measurement and the phase shift gate S† before Hadamard gate is added for
Y-basis measurement. We build experimental density matrices of the required final state of the above circuits.
Each measurement runs 8192 times. Each density matrix is composed of a real part(Re[ρE ]) and imaginary
part(Im[ρE ]). We have plotted the real part of each experimental density matrix with its theoretical density
matrix. After constructing density matrices, fidelity can be obtained as a quantitative measure of accuracy.

Fidelity, F (ρT , ρE) = Trace(

√√
ρT .ρE .

√
ρT ) [43] where ρT is the theoretical density matrix. Since all

our theoretical density matrices are pure i.e. Trace(ρ2)= 1, we have used another definition of fidelity,

F (ρT , ρE) =
√
〈Ψ|ρE |Ψ〉 [43], where ρT = |Ψ〉〈Ψ|. Average absolute deviation, 〈∆x〉 = 1

n2

∑n
i,j=1 |xTi,j−xEi,j |

and maximum absolute deviation, ∆xmax = Max|xTi,j − xEi,j |, where i, j ∈ [1, n] and xTi,j and xEi,j are the ith

row and jth column elements of ρT and ρE respectively.

A. Phase checking

1. GHZ state

In section-II B phase checking circuit is constructed for a state |Ψ−010〉. The GHZ state |Ψ−010〉 must be
verified for non-destructive discrimination of that state. First three qubits which are encoded for GHZ state,
are required to do complete state tomography to construct the density matrix.
The theoretical density matrix,

ρT = |Ψ−010〉〈Ψ
−
010|

=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0.5 0 0 0.5 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0.5 0 0 0.5 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(2)

The experimental density matrix,

ρE = Re[ρE ] + ιIm[ρE ]

Re[ρE ] =



0.0000 −0.0016 0.0019 −0.0024 0.0019 −0.0040 0.0030 0
−0.0016 0.0000 −0.0001 −0.0059 0.0018 −0.0051 0 −0.0020
0.0019 −0.0001 0.4940 −0.0016 0.0008 −0.5000 0.0009 −0.0005
−0.0024 −0.0059 −0.0016 0.0000 0 0.0003 0.0057 0.0074
0.0019 0.0018 0.0008 0 0.0000 −0.0026 0.0004 −0.0031
−0.0040 −0.0051 −0.5000 0.0003 −0.0026 0.5060 0.0006 0.0006
0.0030 0 0.0009 0.0057 0.0004 0.0006 0.0000 0.0039

0 −0.0020 −0.0005 0.0074 −0.0031 0.0006 0.0039 0.0000


(3)
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Im[ρE ] =



0 −0.0049 −0.0029 −0.0025 −0.0008 0.0011 0 0.0080
0.0049 0 0.0025 −0.0029 −0.0006 −0.0030 0.0020 0
0.0029 −0.0025 0 0.0054 −0.0027 0.0030 0.0065 −0.0011
0.0025 0.0029 −0.0054 0 −0.0020 0.0037 −0.0014 0.0023
0.0008 0.0006 0.0027 0.0020 0 −0.0004 −0.0024 0.0005
−0.0011 0.0030 −0.0030 −0.0037 0.0004 0 −0.0015 0.0031

0 −0.0020 −0.0065 0.0014 0.0024 0.0015 0 0.0029
−0.0080 0 0.0011 −0.0023 −0.0005 −0.0031 −0.0029 0


(4)

Figure 12: Construction of GHZ state |Ψ−010〉.

Average absolute deviation, 〈∆x〉 = 0.2%, maximum absolute deviation, ∆xmax = 0.74% and fidelity,

F (ρT , ρE) =
√
〈Ψ−010|ρE |Ψ

−
010〉 = 1.

2. Ancilla

As the state |Ψ−010〉 is used for the circuit, the ancilla has to be |Ψ〉 = |1〉. Ancilla is encoded into q[3] of
the circuits, which means a complete state tomography is done on this qubit.
The theoretical density matrix,

ρT = |Ψ〉〈Ψ|

=

(
0 0
0 1

)
(5)

The experimental density matrix,

ρE = Re[ρE ] + ιIm[ρE ]

Re[ρE ] =

(
0 0.0010

0.0010 1.0000

)
(6)

Im[ρE ] =

(
0 0.0010

−0.0010 0

)
(7)
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Figure 13: Construction of the ancilla |Ψ〉 = |1〉.

Average absolute deviation, 〈∆x〉 = 0.05%, maximum absolute deviation, ∆xmax = 0.1% and fidelity,

F (ρT , ρE) =
√
〈Ψ|ρE |Ψ〉 = 1.

B. Parity checking

1. GHZ state

In section-II B parity checking circuit describes the parity of the GHZ state |Ψ−010〉. A complete state
tomography of first three qubits(q[0], q[1], q[2]) which are encoded for GHZ state in the circuit, is needed
to verify the non-destructive discrimination of the state |Ψ−010〉.
The theoretical density matrix,

ρT = |Ψ−010〉〈Ψ
−
010|

=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0.5 0 0 0.5 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0.5 0 0 0.5 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(8)

The experimental density matrix,

ρE = Re[ρE ] + ιIm[ρE ]

Re[ρE ] =



0.0000 −0.0013 0.0024 −0.0004 0.0001 −0.0025 −0.0004 −0.0002
−0.0013 0.0000 0.0011 0.0029 −0.0040 −0.0006 0.0002 −0.0041
0.0024 0.0011 0.4970 0.0018 −0.0009 −0.5000 −0.0004 0.0040
−0.0004 0.0029 0.0018 0.0000 0.0000 0.0044 −0.0035 −0.0001
0.0001 −0.0040 −0.0009 0.0000 0.0000 0.0008 −0.0016 0.0024
−0.0025 −0.0006 −0.5000 0.0044 0.0008 0.5030 −0.0021 0.0024
−0.0004 0.0002 −0.0004 −0.0035 −0.0016 −0.0021 0.0000 −0.0003
−0.0002 −0.0041 0.0040 −0.0001 0.0024 0.0024 −0.0003 0.0000


(9)
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Im[ρE ] =



0 0.0008 0.0044 −0.0009 0.0037 0.0041 −0.0036 −0.0026
−0.0008 0 −0.0056 0.0039 0.0016 0.0017 −0.0036 −0.0061
−0.0044 0.0056 0 0.0053 0.0041 0.0009 0.0027 −0.0021
0.0009 −0.0039 −0.0053 0 0.0019 0.0001 −0.0006 0.0007
−0.0037 −0.0016 −0.0041 −0.0019 0 0.0023 −0.0006 −0.0021
−0.0041 −0.0017 −0.0009 −0.0001 −0.0023 0 −0.0004 0.0074
0.0036 0.0036 −0.0027 0.0006 0.0006 0.0004 0 0.0018
0.0026 0.0061 0.0021 −0.0007 0.0021 −0.0074 −0.0018 0


(10)

Figure 14: Construction of the GHZ state |Ψ−010〉
.

Average absolute deviation, 〈∆x〉 = 0.15%, maximum absolute deviation, ∆xmax = 0.44% and fidelity,

F (ρT , ρE) =
√
〈Ψ−010|ρE |Ψ

−
010〉 = 1.

2. Ancilla

Parity of the required state |Ψ−010〉 is |Ψ〉 = |11〉. Parity of the state is encoded into ancilla as q[3] and q[4]
of the circuit. A complete state tomography is performed to construct the experimental density matrix for
the ancilla.
The theoretical density matrix,

ρT = |Ψ〉〈Ψ|

=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 (11)

The experimental density matrix,

ρE = Re[ρE ] + ιIm[ρE ]

Re[ρE ] =

 0 −0.0010 0.0060 −0.0008
−0.0010 0 0.0008 0.0020
0.0060 0.0008 0 −0.0030
−0.0008 0.0020 −0.0030 1.0000

 (12)
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Im[ρE ] =

 0 −0.0003 −0.0043 −0.0115
0.0003 0 −0.0015 0.0057
0.0043 0.0015 0 −0.0003
0.0115 −0.0057 0.0003 0

 (13)

Figure 15: Construction of the state |Ψ〉.

Average absolute deviation, 〈∆x〉 = 0.17%, maximum absolute deviation, ∆xmax = 0.6% and fidelity,

F (ρT , ρE) =
√
〈Ψ|ρE |Ψ〉 = 1.

C. Error correction

1. Bell state

In section-III B, according to the implemented circuit, the final state is |Ψ〉 = 1
2 (|01〉 − |10〉). |Ψ〉 is

constructed at q[0] and q[1], which means complete state tomography is imposed at these qubits.
The theoretical density matrix,

ρT = |Ψ〉〈Ψ|

=

0 0 0 0
0 0.5 −0.5 0
0 −0.5 0.5 0
0 0 0 0

 (14)

The experimental density matrix,

ρE = Re[ρE ] + ιIm[ρE ]

Re[ρE ] =

 0 −0.0020 −0.0040 0
−0.0020 0.4900 −0.5000 0.0040
−0.0040 −0.5000 0.5100 0.0020

0 0.0040 0.0020 0

 (15)

Im[ρE ] =

 0 −0.0035 0.0025 −0.0027
0.0035 0 0.0033 0.0055
−0.0025 −0.0033 0 −0.0045
0.0027 −0.0055 0.0045 0

 (16)
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Figure 16: Construction of Bell state |Ψ〉 = 1
2 (|01〉 − |10〉)

Average absolute deviation, 〈∆x〉 = 0.28%, maximum absolute deviation, ∆xmax = 1% and fidelity,

F (ρT , ρE) =
√
〈Ψ|ρE |Ψ〉 = 1.

2. GHZ state

In section-III C, we have corrected an erroneous state |Ψe〉 to a state |Ψ−010〉 as the initial phase and parity
are |1〉 and |11〉 respectively. At the end of the circuits i.e. bit-flip correction (section-III C 3) we will get our
desired state |Ψ−010〉. So a complete state tomography for GHZ state(first three qubits of the circuit as they
are encoded for GHZ state) is needed for the verification.
The theoretical density matrix,

ρT = |Ψ−010〉〈Ψ
−
010|

=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0.5 0 0 0.5 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0.5 0 0 0.5 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(17)

The experimental density matrix,

ρE = Re[ρE ] + ιIm[ρE ]

Re[ρE ] =



0.0000 0.0020 −0.0046 −0.0017 0.0053 0.0025 0.0017 0
0.0020 0.0000 −0.0040 0.0006 0.0025 0.0012 0 −0.0032
−0.0046 −0.0040 0.5010 0.0010 −0.0020 −0.5000 −0.0035 0.0020
−0.0017 0.0006 0.0010 0.0000 0 0.0005 0 0.0030
0.0053 0.0025 −0.0020 0 0.0000 0.0020 −0.0051 0.0007
0.0025 0.0012 −0.5000 0.0005 0.0020 0.4990 −0.0010 0.0021
0.0017 0 −0.0035 0 −0.0051 −0.0010 0.0000 −0.0020

0 −0.0032 0.0020 0.0030 0.0007 0.0021 −0.0020 0.0000


(18)
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Im[ρE ] =



0 −0.0004 0.0013 −0.0017 0.0011 0.0055 −0.0004 0.0021
0.0004 0 0.0027 0.0008 0.0055 0.0029 −0.0021 −0.0006
−0.0013 −0.0027 0 0.0021 0.0076 0.0016 −0.0014 −0.0012
0.0017 −0.0008 −0.0021 0 −0.0006 −0.0026 −0.0027 −0.0026
−0.0011 −0.0055 −0.0076 0.0006 0 0.0011 0.0018 −0.0020
−0.0055 −0.0029 −0.0016 0.0026 −0.0011 0 −0.0030 0.0023
0.0004 0.0021 0.0014 0.0027 −0.0018 0.0030 0 −0.0009
−0.0021 0.0006 0.0012 0.0026 0.0020 −0.0023 0.0009 0


(19)

Figure 17: Construction of the GHZ state |Ψ−010〉.

Average absolute deviation, 〈∆x〉 = 0.17%, maximum absolute deviation, ∆xmax = 0.53% and fidelity,

F (ρT , ρE) =
√
〈Ψ−010|ρE |Ψ

−
010〉 = 1.

V. GENERALIZATION IN Cdn

Above automated error correction circuit can be generalized for qudits, based on the fact that the
non-destructive discrimination algorithm, which is the backbone of our circuit, is easily extendable to higher
dimensions [23], [24], [27]. Thus by extending our error correcting circuit in the same lines of discriminatory
algorithm, will result in the correction of errors in higher dimensions.

A. Definitions

Bell State discrimination can be easily generalized to entangled states of n qudits (d-dimensional states).
The formalism is adopted from Panigrahi et al.[27].

The Pauli matrices are replaced by their d-dimensional analogs. The X and Z gates are generalized to Xd

and Zd respectively,

Zd|j〉 = e2πij/d|j〉 (20)

Xd|j〉 = |j − 1〉 (21)

X†d|j〉 = |j + 1〉 (22)
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where the change in the ket is in mod d arithmetic. The generalized Hadamard transform given by,

Hd|j〉 =
1√
d

d−1∑
k=0

e2πijk/d|k〉 (23)

H†d|j〉 =
1√
d

d−1∑
k=0

e−2πijk/d|k〉 (24)

such that the operators Xd and Zd are related as Xd = HdZdH
†
d. Note that unlike the qubit case, Zd, Xd

and Hd are not Hermitian. The CNOT gate(CX) is generalized to CXd
where,

CXd1→2
|i〉|j〉 = |j − i〉 (25)

C†Xd1→2
|i〉|j〉 = |j + i〉 (26)

The representation CXd1→2
|i〉|j〉 means |i〉 as the control qudit and |j〉 as the target qudit.

The generalised maximally entangled states for n-qudits can be represented as,

|Ψpq1q2.....qn−1〉 =
1√
d

d−1∑
j=0

e2πijp/d|j〉|j + q1〉|j + q2〉......|j + qn−1〉 (27)

Here p is an integer representing the phase and qi the parity of the i+ 1th qudit.

B. Phase measurement

Clearly, analogous to the two-dimensional case, the phase and parity information of the desired
d-dimensional state to be sent, should first be attained on the ancilla qudit[24]. For this purpose, we use the
following operations on the composite Hilbert space of the original d-dimensional state and the ancilla.

|Ψpq1q2.....qn−1〉|p〉 = [I⊗n ⊗H†d]× [

m=n⊗
m=1

CXd
(|Ψm〉 ←− |A〉)]× [I⊗n ⊗Hd]|Ψpq1q2.....qn−1〉|0A〉 (28)

Clearly, as the equation suggests, the phase bit information gets encoded into the ancilla qudit.

C. Parity measurement

For the parity measurement, we use the following operations:

|Ψpq1q2.....qn−1
〉|qi − qi−1〉 = [C†Xd

(|Ψi〉 −→ |Ai〉)CXd
(|Ψi−1〉 −→ |Ai〉)]|Ψpq1q2.....qn−1

〉|0Ai
〉 (29)

The ancilla qudit can then be measured to attain the relative parity information[24]. Here i runs from 1
to n − 1 but when i = 1 then q0 = |0〉 and |Ψ0〉 = |p〉 . Note that the operators in the qudit space are not
Hermitian unlike in the qubit space. Both parts of the algorithm are clearly depicted in fig-18.
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Figure 18: Phase and parity measurement algorithm. Here the left part is for phase measurement and right
part is for parity measurement.

D. Error correction algorithm

The error correction is completed in three steps, as in 2-D case. The state to be corrected can be represented
as,

|Ψe〉 =
1√
d

d−1∑
j=0

e2πijp
′
/deiδj |j〉|j + q

′

1〉|j + q
′

2〉......|j + q
′

n−1〉 (30)

1. Step 1

This step deals with the removal of arbitrary phases introduced into the state[26]. The phase of the
erroneous state is transferred to the ancilla. This is a result of the entanglement of original state with the

ancilla on application of CXd
, followed by disentanglement by C†Xd

. It can be clearly seen here:

|Ψe1〉|t〉 = [[C†Xd
(|Ψ0〉 −→ |A〉)]⊗ I⊗n]× [

m=n⊗
m=1

CXd
(|Ψm〉 ←− |A〉)]× [I⊗n ⊗Hd]|Ψe〉|0A〉 (31)

= (
1√
d

d−1∑
j=0

e2πijp
′
/deiδj |j〉|j + q

′

1〉|j + q
′

2〉......|j + q
′

n−1〉)[
d−1∑
k=0

|k〉]

=
1√
d

d−1∑
j,k=0

e2πi(j+k)p
′
/deiδj+k |j〉|j + q

′

1〉|j + q
′

2〉......|j + q
′

n−1〉|k〉

=
1√
d

d−1∑
j,k=0

e2πi(j+k)p
′
/deiδj+k |j〉|j + q

′

1〉|j + q
′

2〉......|j + q
′

n−1〉|k + j〉

=
1√
d

d−1∑
j,k=0

e2πikp
′
/deiδk |j〉|j + q

′

1〉|j + q
′

2〉......|j + q
′

n−1〉|k〉
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= (
1√
d

d−1∑
j=0

|j〉|j + q
′

1〉|j + q
′

2〉......|j + q
′

n−1〉)[
d−1∑
k=0

e2πikp
′
/deiδk |k〉] (32)

2. Step 2- Phase difference

If we are interested in measuring the phase error in the state, we can use the following operation:

|Ψp〉|p− p
′
〉 = [I⊗n ⊗Hd]× [C†Xd

(|Ψ0〉 −→ |A〉)]⊗ I⊗n]× [

m=n⊗
m=1

CXd
(|Ψm〉 ←− |A〉)]

× [I⊗n ⊗H†d]|Ψp′q
′
1q
′
2.....q

′
n−1
〉|p〉

(33)

= (
1√
d

d−1∑
j=0

e2πijp
′
/d|j〉|j + q

′

1〉|j + q
′

2〉......|j + q
′

n−1〉)[
d−1∑
k=0

e−2πikp/d|k〉]

=
1√
d

d−1∑
j,k=0

e2πijp
′
/de2πik(p

′
−p)/d|j〉|j + q

′

1〉|j + q
′

2〉......|j + q
′

n−1〉|k〉

=
1√
d

d−1∑
j,k=0

e2πijp/de2πik(p
′
−p)/d|j〉|j + q

′

1〉|j + q
′

2〉......|j + q
′

n−1〉|k〉

= (
1√
d

d−1∑
j=0

e2πijp/d|j〉|j + q
′

1〉|j + q
′

2〉......|j + q
′

n−1〉)[|p− p
′
〉] (34)

3. Step 2- Phase correction

Note that the step given above is redundant after the state goes through step 1, if we’re not interested
in getting the phase error information on the ancilla. The following operation is sufficient for the phase
correction:

|Ψe2〉|p〉 = [CZd
(|Ψ0〉 ←− |p〉)]|Ψe1〉|p〉 (35)

= (
1√
d

d−1∑
j=0

e2πijp/d|j〉|j + q
′

1〉|j + q
′

2〉......|j + q
′

n−1〉)[|p〉] (36)

where, CZd
(|Ψ0〉 ←− |p〉) = (Zd)

p|Ψ0〉. Step 1 and 2 are illustrated in fig-19.
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Figure 19: Phase error correction. Here phase is corrected by following step 1 and step 2 (phase correction)
algorithms.

4. Step 3

This is the final step required to retrieve the original n-qudit state. This operation is based on the same
principle as step 1. For n-qudit system, n − 1 ancilla are required. Similar to the 2-d case, we can retrieve
the original qudit sequence by using the relative parity information obtained from the original state.

|Ψpq1q2.....qn−1〉|qi − q
′

i〉 = [C†Xd
(|Ψi〉 ←− |Ai〉)]× [CXd

(|Ψi〉 −→ |Ai〉)]

× [C†Xd
(|Ψi−1〉 −→ |Ai〉)]|Ψpq

′
1q
′
2.....q

′
n−1
〉|qi − qi−1〉

(37)

= (
1√
d

d−1∑
j=0

e2πijp/d|j〉|j + q
′

1〉|j + q
′

2〉......|j + q
′

n−1〉)(|qi − qi−1〉)

=
1√
d

d−1∑
j=0

e2πijp/d|j〉|j + q
′

1〉|j + q
′

2〉......|j + q
′

n−1〉|(qi − q
′

i)− (qi−1 − q
′

i−1)〉

= (
1√
d

d−1∑
j=0

e2πijp/d|j〉|j + q1〉|j + q2〉......|j + qi...〉)[|(qi − q
′

i)− (qi−1 − q
′

i−1)〉] (38)

Here qi−1 = q
′

i−1 as this algorithm corrected parity upto i-1 and now it is correcting for i. So the final ancilla

will be |qi − q
′

i〉. Step 3 is illustrated in fig-20.
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Figure 20: Parity correction.

The original state is retrieved as given in equation (38) above.

VI. CONCLUSION

Experimental verification of automated error correction algorithm for Bell states and GHZ states, and
nondestructive discrimination of GHZ states have been tested on a five-qubit quantum computer. Due to
the limitation of IBM quantum computer[25], GHZ states’ discrimination and correction have been performed
in different stages. Our experimental results are consistent with the theoretical results given by Pandey et
al.[26]. Quantum state tomography results show retainment of the Generalized Bell State’s identity. It
confirms with the average absolute deviation of 0.05% ∼ 0.28% , maximum absolute deviation of 0.1% ∼ 1%
and fidelity of being 1 for all tomography results. The advantage of the use of ancilla based approach, is that
it can be carried out with minimal interference to the quantum circuit of which the above entangled state
forms a part. Subsequently, the procedure for automated error correction for the generalized entangled qudit
state is explicated whose experimental implementation requires more involved phase gates. We hope this
qudit entangled state discrimination and error correction finds experimental verification in near future. We
aim that the present experiment will soon be extended to the experimental discrimination and automated
error correction of more complex entangled states.
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Appendix 1: Results of all above circuits in IBM quantum computer

(a) Correction of Bell state (b) Phase-checking of
|Ψ−010〉

(c) Parity-checking of
|Ψ−010〉

(d) Arbitrarily phase
correction

(e) Phase flip correction
when |φ〉 = |1〉

(f) Bit flip correction
when |p〉 = |11〉
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Appendix 2: Calibration data of the IBM quantum computer
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