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Abstract

We study the ability of a quantum channel to generate quantum coherence when it applies

to incoherent states. Based on probabilistic averages, we define a measure of such coherence

generating power (CGP) for a generic quantum channel, based on the average coherence gen-

erated by the quantum channel acting on a uniform ensemble of incoherent states. Explicit

analytical formula of the CGP for any unitary channels are presented in terms of subentropy.

An upper bound for CGP of unital quantum channels has been also derived. Detailed exam-

ples are investigated.
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1 Introduction

Originating from the fundamental superposition principle of quantum mechanics, quantum co-

herence is a kind of important quantum resources. It plays key roles in the interference of light,

the laser, superconductivity and quantum thermodynamics [1, 2, 3], as well as in some quantum

information tasks [4, 5, 6, 7] and biological processes [8, 9, 10, 11]. However, the rigorous theories

of quantum coherence have been proposed only recently [12]. While the rigorous characteriza-

tion of the superposition in terms of resource theory appeared even late [13], although the idea

of measuring the degree of superposition in quantum states had been introduced early in [14].

The coherence measures are provided to quantify the amount of quantum coherence for

a given quantum system. After the work of Baumgratz et al. [12], various aspects of coherence

have been studied in the literature. Recently, many different kinds of coherence measures such as

coherence of formation, relative entropy of coherence, l1 norm of coherence, distillable coherence,

robustness of coherence, coherence averaged over all basis sets or the Haar distributed pure

states, and max-relative entropy of coherence have been investigated [12, 15, 16, 17, 18, 19, 20].

The notion of speakable and unspeakable coherence is discussed in [21].

Based on these measures of coherence, the connections of coherence with path distinguisha-

bility and asymmetry have been studied [22, 23]. For bipartite and multipartite systems, the

relationship between quantum coherence and other quantum correlations such as quantum en-

tanglement and quantum discord has also been studied [24, 25, 26, 27, 28, 29]. It has been shown

that there is a one to one mapping between the quantum entanglement and quantum coherence

[30].

Apart from the above investigations, Mani and Karimipour [31] first introduced the concept of

cohering power and de-cohering power of generic quantum channels. They defined the coherence

generating power (CGP) of a quantum channel to quantify the power of a channel in generating

quantum coherence by optimizing the output coherence. And several examples of qubit channels

including unitary gates are presented. Different kinds of operations which can either preserve

or generate coherence have been also studied [32, 33]. Probabilistic averages were firstly used to

study the CGP by Zanardi et al. [34, 35]. They presented a way to quantify the CGP of a unitary

gates, by introducing a measure based on the average coherence generated by the channel acting

on a uniform ensemble of incoherent states. In deriving explicit analytical formulae of CGP for

any dimensional systems, they used the Hilbert-Schmidt norm as a measure of coherence.

However, the Hilbert-Schmidt norm measure is not a bona fide measure of coherence. It

does not have the desired monotonicity property in general, although it facilitates the calculation

of CGP. In the present paper we use the relative entropy coherence measure, which is a well

defined measure of coherence and satisfies all the required properties of a bona fide measure of
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coherence, together with informationally operational implications. We use the relative entropy

of coherence to quantify the CGP of a generic quantum channel via probabilistic averages. We

give an explicit analytical formula of CGP for any unitary channels. An upper bound for CGP of

a unital quantum channel is also derived.

2 CGP of quantum channels

The measure of coherence under consideration in the present paper is the relative entropy of

coherence [12]:

Cr(ρ) = S(ρdiag)− S(ρ), (2.1)

where S(ρ) = −Tr (ρ ln ρ) is the von Neumann entropy of a quantum state ρ and ρdiag is

the diagonal part of ρ with respect to the standard basis. Through out the paper, we take

{|i〉 : i = 1, . . . , N} the standard computational basis in an N-dimensional Hilbert space HN . De-

note I the set of incoherent states with respect to the basis. An incoherent state Λ in I has the

form Λ = diag(λ1, . . . , λN), where λ = (λ1, . . . , λN) constitutes an N-dimensional probability

vector with ∑
N
i=1 λi = 1. Obviously Cr(Λ) = 0. The problem one may ask is that if Λ undergoes

a generic quantum channel Φ, i.e., a trace-preserving completely positive and linear map, what

the coherence of Φ(Λ) will be.

To characterize the coherence generating power of a generic quantum channel Φ, one needs

to average over all the incoherent states Λ. Nevertheless, the definition of CGP of a quantum

channel is not unique. All current approaches provided involve optimizations problems that are

extremely hard to deal with for generic channels. By adopting the probabilistic averages [34, 35],

we define the coherence generating power CGP(Φ) of Φ to be

CGP(Φ) :=
∫

I
dµ(Λ)Cr(Φ(Λ))

=
∫

I
dµ(Λ)

[
S(Φ(Λ)diag)− S(Φ(Λ))

]
, (2.2)

where dµ(λ) = Γ(N)δ
(

1 − ∑
N
j=1 λj

)
∏

N
j=1 dλj, i.e., µ is the probability measure on a uniform

ensemble of incoherent states.

We first calculate the CGP(Φ) for unitary channels Φ = AdU such that Φ(Λ) = UΛU†, where

U denotes unitary transformations and † the transpose and conjugation. Before giving the main

results, we introduce some basic notations. Let p = [p1, . . . , pN ]
T and q = [q1, . . . , qN ]

T be two

probability vectors in RN , where T denotes the transpose. The Shannon entropy of p and the relative

entropy of p and q are defined by H(p) = −∑
N
i=1 pi ln pi and H(p||q) = ∑

N
i=1 pi(ln pi − ln qi),

respectively, where 0 ln 0 = 0.
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An N × N matrix B = [bij] is said to be stochastic if bij > 0, and ∑
N
i=1 bij = 1 for every

j = 1, . . . , N. If ∑
N
j=1 bij = 1 holds also for every i = 1, . . . , N, then a stochastic B is said to be bi-

stochastic. Let B be a bi-stochastic N × N matrix and p an N-dimensional probability vector. The

weighted entropy of B with respect to p is defined by H p(B) = ∑
N
j=1 pjH(β j), where B = [β1, . . . , βN ]

is the column-block partition of B. In particular, when p = [1/N, . . . , 1/N]T , one denotes

H(B) =
1

N

N

∑
j=1

H(β j). (2.3)

It can be proved that H p(B) 6 H(Bp) 6 H p(B) + H(p).

Let Φ be a quantum channel and Φ = ∑µ AdMµ
be its Kraus representation. Define the Kraus

matrix B(Φ) of Φ by B(Φ) = ∑µ Mµ ⋆ Mµ, where ⋆ denotes the Schur product of matrices, that

is, the entrywise product of two matrices, and Mµ is the complex conjugate of Mµ. It is easy to

show that B(Φ) is a stochastic matrix if Φ is a quantum channel on H, and B(Φ) is a bi-stochastic

matrix if Φ is a unital quantum channel (Φ being unital here means that Φ(1) = 1). Moreover,

B(Φ†) = B(Φ)T [36]. In this case, one also has p = B(Φ)λ, where p = [p1, . . . , pN ]
T with

pj = 〈j |Φ(ρ)| j〉, j = 1, . . . , N, and λ = [λ1, . . . , λN ]
T with λi giving by the spectral decomposition

ρ = ∑
N
j=1 λj|j〉〈j| of a quantum state ρ.

If B = [bij] is a N × N bi-stochastic matrix and λ = [λ1, . . . , λN ]
T a probability vector, then

Bλ is also a probability vector. Its Shannon entropy is given by H(Bλ). It is well-known that

the action of bi-stochastic B on probability vectors increases the uncertainty, i.e. H(Bλ) > H(λ)

— a fact for the first step in proving the famous H-theorem [37]. With respect to a random

probability vector λ subjecting to a uniform distribution over the probability simplex ∆N−1 ={
[x1, . . . , xN ] ∈ RN

+ : ∑
N
j=1 xj = 1

}
, the corresponding probability measure dµ(λ) is given by the

one in (2.2). Moreover, the subentropy associated with λ is defined by

Q(λ) = −
N

∑
i=1

λN
i ln λi

∏j 6=i(λi − λj)
, (2.4)

which takes its maximal value Q(1N/N) = ln N − HN + 1 for the completely mixed states, where

HN = ∑
N
j=1 1/j is the N-th harmonic number [38, 39].

Similarly, we can define weighted subentropy of a stochastic matrix B with respect to a prob-

ability vector p, Qp(B) = ∑
N
j=1 pjQ(β j), where B = [β1, . . . , βN ] is the column-block partition of

B. In particular, when p = [1/N, . . . , 1/N]T , we denote

Q(B) =
1

N

N

∑
j=1

Q(β j). (2.5)

The explicit formula of CGP for the unitary channels can be given by the subentropy.
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3 CGP of unitary and unital channels

Based on the definition of CGP of a quantum channel, we may derive an explicit analytical

formula of the CGP for any unitary channels.

Theorem 3.1. For any given N × N unitary matrix U, the CGP of the unitary channel AdU is given by

CGP(U) = Q(B(U)T), (3.1)

where B(U) := B(AdU) = U ⋆ U.

Before proving the theorem, we first give the following Lemma.

Lemma 3.2. Let B be an N × N bi-stochastic matrix. Then
∫

H(Bλ)dµ(λ) = HN − 1 + Q(BT).

Furthermore,

∫
[H(Bλ)− H(λ)]dµ(λ) = Q(BT). (3.2)

Proof. We calculate the following integrals related to the left hand side of (3.2):

IB =
∫

H(Bλ)dµ(λ) and I1 =
∫

H(λ)dµ(λ).

Concerning IB, we have

IB =
∫

H(Bλ)dµ(λ) = −
N

∑
i=1

∫ ( N

∑
j=1

bijλj

)
ln

(
N

∑
j=1

bijλj

)
dµ(λ).

It suffices to calculate

Γ(N)
∫ ( N

∑
j=1

pjλj

)
ln

(
N

∑
j=1

pjλj

)
δ

(
1 −

N

∑
j=1

λj

)
N

∏
k=1

dλk = I ′
p(1),

where

Ip(α) = Γ(N)
∫ ( N

∑
j=1

pjλj

)α

δ

(
1 −

N

∑
j=1

λj

)
N

∏
k=1

dλk (3.3)

and I ′
p(1) =

dIp(α)
dα

∣∣∣
α=1

. After some tedious calculation , we have (see Eq. (5.2) in Appendix A),

Ip(α) =
Γ(N)Γ(α + 1)

Γ(α + N)

N

∑
j=1

pα+N−1
j

∏i 6=j(pj − pi)

and (see Eq. (5.3) in Appendix A)

I ′
p(1) = − 1

N
(HN − 1 + Q(p)) . (3.4)
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By partitioning B as a row-block matrix:

B =




b1

...

bN


 ,

where bi = [bi1, . . . , biN ] for i = 1, . . . , N, we obtain

IB = −
N

∑
i=1

I ′
bT

i
(1) = HN − 1 +

1

N

N

∑
i=1

Q(bT

i ). (3.5)

Taking B = 1, we have I1 = HN − 1, which gives rise to (3.2).

Remark It can shown that Q(BT) 6 H(B), see Appendix B. Hence (3.2) also implies that
∫
[H(Bλ)− H(λ)]dµ(λ) 6 H(B).

Proof of Theorem 3.1. Let Λ = diag(λ1, . . . , λN) be an incoherent state in I , and Φ = AdU be a

unitary channel. Denote λ = (λ1, . . . , λN) the probability vector form of Λ. Then

S((UΛU†)diag) = H(B(Φ)λ) and S(UΛU†) = H(λ).

Thus S((UΛU†)diag)− S(UΛU†) = H(B(Φ)λ)− H(λ). Therefore

Γ(N)
∫
[dΛ](1 − Tr (Λ))

(
S(Φ(Λ)diag)− S(Λ)

)
=
∫

dµ(λ) (H(B(Φ)λ)− H(λ)) .

That is,

CGP(Φ) =
∫

dµ(λ) (H(B(Φ)λ)− H(λ))

=
1

N

N

∑
i=1

Q(bT

i (Φ)) = Q(B(U)T).

We have done.

From the Theorem we see that the possible values of CGP form the closed interval [0, ln N −
HN + 1]. An interesting question is which kind of unitary channels would give rise to the maxi-

mal value of CGP. Let us consider the set of U such that

{U : CGP(U) = ln N − HN + 1} =

{
U : B(U) =

1

N
P

}
, (3.6)

where P is the matrix with all entries being one. Obviously U must be of the following form:

U = 1√
N

Z, where Z = [zij] with the complex entries zij satisfying
∣∣zij

∣∣ = 1. For example, for

N = 2, we have

U =
1√
2

eiφ

[
eiθ −e−iγ

eiγ e−iθ

]
. (3.7)
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If Φ is a unital quantum channel, one has

S(Φ(ρ))− S(ρ) > S(ρ||Φ∗ ◦ Φ(ρ)), (3.8)

where S(ρ||σ) := −Tr (ρ(ln ρ − ln σ)) is the relative entropy, and Φ∗ is the dual of Φ in the sense

that Tr (XΦ∗(Y)) = Tr (Φ(X)Y) for any N × N matrices X and Y [40]. In this case we have

Corollary 3.3. If Φ is a unital quantum channel, then

CGP(Φ) 6 Q(B(Φ)T), (3.9)

where B(Φ) is the Kraus matrix of Φ.

4 Examples

In the following, as applications of our Theorem 3.1, we calculate the CGP for some detailed

unitary transformations.

Example 4.1. Consider the Hadamard gate H = 1√
2

[
1 1

1 −1

]
. The Kraus matrix is given by

B(H) = 1
2

[
1 1

1 1

]
. Therefore, from the Theorem we have CGP(H) = ln 2 − 1/2.

Example 4.2. For Uθ =

[
cos θ sin θ

− sin θ cos θ

]
, the Kraus matrix is given by B(Uθ) =

[
cos2 θ sin2 θ

sin2 θ cos2 θ

]
.

Its CGP is given by

CGP(Uθ) =
sin4 θ ln sin2 θ − cos4 θ ln cos2 θ

cos2 θ − sin2 θ
. (4.1)

As a demonstration, we plot the CGP(Uθ) as the function of θ ∈ [0, π]. From Fig. 1, we see

that the coherence generating power of Uθ is a periodic function of θ. In particular, the maximal

CGP for Uθ is ln N − HN + 1 = ln 2 − 1/2 = 0.193. We also see that the maximal CGP of Uθ is

attained at θ = π/4 and 3π/4.

Example 4.3 (Square root of swap gate). The
√

swap gate is universal in the sense that any

quantum multi-qubit gates can be constructed from
√

swap and single qubit gates,

√
swap =




1 0 0 0

0 1
2(1 + i) 1

2(1 − i) 0

0 1
2(1 − i) 1

2(1 + i) 0

0 0 0 1




.

By direct computation we have

CGP(
√

swap) =
1

2
ln 2.
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Figure 1: The coherence generating power of Uθ vs θ

.

Example 4.4. For a partial swap operator [41], one has Ut ∈ U(Cd ⊗ Cd): Ut =
√

tId ⊗ Id +

i
√

1 − t S, where S = ∑
d
i,j=1 |ij〉〈ji| and t ∈ [0, 1]. In particular, for d = 2, we have

Ut =




√
t +

√
1 − ti 0 0 0

0
√

t
√

1 − ti 0

0
√

1 − ti
√

t 0

0 0 0
√

t +
√

1 − ti




.

Then

B(Ut) = Ut ⋆ Ut =




1 0 0 0

0 t 1 − t 0

0 1 − t t 0

0 0 0 1




and

CGP(Ut) =
t2 ln t − (1 − t)2 ln(1 − t)

2(1 − 2t)
, t ∈ [0, 1].

Again, we plot the CGP(Ut) as the function of t ∈ [0, 1]. From Fig. 2, we see that the maximal

CGP of Ut, attained at t = 0.5, is given by CGP(U1/2) =
1
4(2 ln 2 − 1) = 0.097, which is less than

the maximal CGP, ln 4 − H4 + 1 = ln 4 − 1/2 − 1/3 − 1/4 = 0.303, of 4 × 4 unitary matrices.

5 Conclusion

Based on probabilistic averages, we have defined a measure of the coherence generating power of

a unitary operation: the average coherence generated by the unitary channel acting on a uniform

ensemble of incoherent states. We have presented the explicit analytical formula of CGP for any
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Figure 2: The coherence generating power of Ut

unitary channel and any finite dimensions in terms of subentropy. An upper bound for CGP of

a unital quantum channel has been also derived. Detailed examples have been studied.

We remark that Zanardi et al. [34, 35] studied the cohering and de-cohering power for unitary

gates, based on the coherence measure of Hilbert-Schmidt norm, which is not really a well-

defined measure of coherence. And their method is only suitable for unital quantum channels

since the Hilbert-Schmidt norm is non-increasing under unital quantum channels. Hence the

related computation is relatively easy as it involves only integrals in uniform Haar measure over

pure states. In this work we used the bona fide coherence measure of relative entropy. Our

approach applies to any quantum channels. The related computation concerns complex integral

techniques with Dirac delta function and its Fourier integral representations. In addition, the

formula in [34, 35] for CGP of unitary channels strongly depends on the dimension: the CGP

approaches to zero when the dimension increases. However, our CGP of any unitary channels

does not always approach to zero when the dimension goes to infinite. It is generally very

difficult to compute the CGP for generic quantum channels. Our approach may highlight further

researches on such characterization of quantum coherence.
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Appendix A: About the proof of the Theorem

We first introduce the following Lemma.

Lemma 5.1 (Jordan lemma). Let f (z) be analytic in the upper half-plane Im(z) > 0, except for a finite

number of isolated points. Let also CR be an arc of a semicircle |z| = R in the upper half-plane. If for each

z on CR, there is some constant KR such that | f (z)| 6 KR and KR → 0 as R → ∞, then for a > 0

lim
R→∞

∫

CR

eiaz f (z)dz = 0. (5.1)

Proof. Set z = Reiθ and take into account that sin θ > 2
π θ for 0 6 θ 6 π

2 . We have that, if R → ∞,

∣∣∣∣
∫

CR

eiaz f (z)dz

∣∣∣∣ 6 KR · R ·
∫ π

0
e−aR sin θdθ

6 KR
π

a

(
1 − e−aR

)
→ 0.

This completes the proof.

If a < 0 and f (z) satisfies the conditions of Jordan lemma at Im(z) 6 0, the formula is still

valid but at the integration over the arc CR in the lower half-plane. Similar statements take

place at a = ±iα(α > 0) if the CR-integration occurs in the right (ℜ(z) > 0) or left (ℜ(z) 6 0)

half-plane, respectively.

Now we prove the following two formulae used in the proof of the Theorem 3.1.

(i).

Ip(α) =
Γ(N)Γ(1 − α − N)

Γ(−α)

N

∑
j=1

pα+N−1
j

∏i 6=j(pi − pj)
, (5.2)

(ii).

I ′
p(1) = − 1

N
(HN − 1 + Q(p)) , (5.3)

where Ip(α) is given by (3.3).

Proof. (i). From the Fourier transform of the Dirac delta function δ,

δ

(
1 −

N

∑
j=1

λj

)
=

1

2π

∫ ∞

−∞
exp

(
it

(
1 −

N

∑
j=1

λj

))
dt, (5.4)

and the definition of Gamma function,

(
N

∑
j=1

pjλj

)α

=
1

Γ(−α)

∫ ∞

0
s−α−1 exp

(
−s

(
N

∑
j=1

pjλj

))
ds, (5.5)

10



we have

Ip(α) = Γ(N)
∫ ∞

0
· · ·

∫ ∞

0

(
N

∑
j=1

pjλj

)α

δ

(
1 −

N

∑
j=1

λj

)
N

∏
k=1

dλk (5.6)

=
Γ(N)

2πΓ(−α)

∫ ∞

0

ds

sα+1

∫ ∞

−∞
dt · eit

[∫ ∞

0
· · ·

∫ ∞

0

N

∏
k=1

dλk∇1∇2

]
, (5.7)

where ∇1 = exp
(
−s
(

∑
N
j=1 pjλj

))
and ∇2 = exp

(
−it ∑

N
j=1 λj

)
. Substituting f (x) = e−axH(x),

where H(x) = 1(0,∞) is the Heaviside step function and a > 0, into the following formula,

f̂ (ω) =
1√
2π

∫ ∞

−∞
f (x)e−iωxdx, (5.8)

we obtain that
∫ ∞

0
e−axe−iωxdx =

∫ ∞

−∞
e−axH(x)e−iωxdx =

1

iω + a
. (5.9)

Therefore

∫ ∞

0
· · ·

∫ ∞

0

N

∏
k=1

dλk exp

(
−s

(
N

∑
j=1

pjλj

))
exp

(
−it

N

∑
j=1

λj

)

=
N

∏
j=1

∫ ∞

0
dλje

−spjλj e−itλj =
1

∏
N
j=1(it + spj)

. (5.10)

It follows that

Ip(α) =
Γ(N)

2πΓ(−α)

∫ ∞

0

ds

sα+1

{∫ ∞

−∞

eit

∏
N
j=1(it + spj)

dt

}
. (5.11)

By using complex integral techniques in Lemma 5.1, we get

∫ ∞

−∞

eit

∏
N
j=1(it + spj)

dt =
2π

sN−1

N

∑
j=1

e−spj

∏i 6=j(pi − pj)
, (5.12)

which gives rise to

Ip(α) =
Γ(N)

Γ(−α)

∫ ∞

0

ds

sα+N

N

∑
j=1

e−spj

∏i 6=j(pi − pj)
(5.13)

=
Γ(N)

Γ(−α)

N

∑
j=1

1

∏i 6=j(pi − pj)

∫ ∞

0
s−α−Ne−spjds (5.14)

=
Γ(N)Γ(1 − α − N)

Γ(−α)

N

∑
j=1

pα+N−1
j

∏i 6=j(pi − pj)
. (5.15)

(ii). From the property of the Gamma function:

Γ(1 − z)Γ(z) =
π

sin(πz)
, (5.16)
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we have

Γ(1 − α − N) =
π

Γ(α + N) sin(απ + Nπ)
(5.17)

and

Γ(−α) =
π

Γ(α + 1) sin(απ + π)
. (5.18)

Therefore Ip(α) can be rewritten as

Ip(α) =
Γ(N)Γ(α + 1)

Γ(α + N)

sin(απ + Nπ)

sin(απ + π)

N

∑
j=1

pα+N−1
j

∏i 6=j(pi − pj)
(5.19)

= (−1)N−1 Γ(N)Γ(α + 1)

Γ(α + N)

N

∑
j=1

pα+N−1
j

∏i 6=j(pi − pj)
, (5.20)

which gives rise to

Ip(α) =
Γ(N)Γ(α + 1)

Γ(α + N)

N

∑
j=1

pα+N−1
j

∏i 6=j(pj − pi)
. (5.21)

Taking the derivative of Ip(α) with respect to α, we get

I ′
p(α) = Γ(N)

d

dα

Γ(α + 1)

Γ(α + N)

N

∑
j=1

pα+N−1
j

∏i 6=j(pj − pi)

+
Γ(N)Γ(α + 1)

Γ(α + N)

N

∑
j=1

pα+N−1
j ln pj

∏i 6=j(pj − pi)
. (5.22)

This implies that, for α = 1,

I ′
p(1) =

1

N
(ψ(2)− ψ(1 + N))

N

∑
j=1

pN
j

∏i 6=j(pj − pi)
+

1

N

N

∑
j=1

pN
j ln pj

∏i 6=j(pj − pi)
, (5.23)

where ψ(2) = 1 − γ, ψ(1 + N) = HN − γ, where γ ≃ 0.57721.

We compute the following summation in (5.23),

F(p1, . . . , pN) :=
N

∑
j=1

pN
j

∏i 6=j(pj − pi)
. (5.24)

Since it is a rational symmetric function, homogeneous of degree one, with all singularities re-

movable, it must be a multiple of ∑
N
j=1 pj. That is, F(tp1, . . . , tpN) = tF(p1, . . . , pN) for any real

number t, and F(pσ(1), . . . , pσ(N)) = F(p1, . . . , pN) for all permutations σ ∈ SN . This means that

F(p1, . . . , pN) ∝
N

∑
j=1

pj. (5.25)
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Without loss of generality, assume that F(p1, . . . , pN) = C ·∑
N
j=1 pj for some constant C. By setting

(p1, . . . , pN) = (1, 0, . . . , 0), we get C = 1. That is,

N

∑
j=1

pN
j

∏i 6=j(pj − pi)
=

N

∑
j=1

pj = 1. (5.26)

Therefore, from (2.4), (5.23) gives rise to

−N · I ′
p(1) = (ψ(1 + N)− ψ(2))

N

∑
j=1

pN
j

∏i 6=j(pj − pi)
−

N

∑
j=1

pN
j ln pj

∏i 6=j(pj − pi)
(5.27)

= HN − 1 + Q(p). (5.28)

Hence I ′
p(1) = − 1

N (HN − 1 + Q(p)).

Appendix B: Proof of Q(BT) 6 H(B)

To prove the relation Q(BT) 6 H(B), we prove that following relation first:

Γ(N)
∫

Hλ(B)δ

(
1 −

N

∑
i=1

λi

)
N

∏
j=1

dλj =
1

N

(
N

∑
i=1

H(βi)

)
. (5.29)

Proof. Since H(Bλ)− H(λ) 6 Hλ(B) = ∑
N
j=1 λjH(β j), it follows that

Γ(N)
∫

Hλ(B)δ

(
1 −

N

∑
i=1

λi

)
N

∏
j=1

dλj (5.30)

= Γ(N)
∫ ( N

∑
i=1

λiH(βi)

)
δ

(
1 −

N

∑
i=1

λi

)
N

∏
j=1

dλj (5.31)

= Γ(N)
N

∑
i=1

H(βi)
∫

λiδ

(
1 −

N

∑
i=1

λi

)
N

∏
j=1

dλj (5.32)

=

(
N

∑
i=1

H(βi)

)
Γ(N)

∫
λ1δ

(
1 −

N

∑
i=1

λi

)
N

∏
j=1

dλj. (5.33)

Denote

f (t) = Γ(N)
∫

λ1δ

(
t −

N

∑
i=1

λi

)
N

∏
j=1

dλj. (5.34)

Performing Laplace transform (t → s) of f , we obtain

f̃ (s) =
∫ ∞

0
f (t)e−stdt = Γ(N)

∫ N

∏
j=1

dλj

(
λ1

∫ ∞

0
δ

(
t −

N

∑
i=1

λi

)
e−stdt

)
. (5.35)
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That is,

f̃ (s) = Γ(N)
∫ N

∏
j=1

dλj

(
λ1

∫ ∞

0
δ

(
t −

N

∑
i=1

λi

)
e−stdt

)
(5.36)

= Γ(N)
∫ N

∏
j=1

dλjλ1e−s ∑
N
i=1 λi (5.37)

= Γ(N)
∫

λ1e−sλ1dλ1 ×
∫

e−sλ2dλ2 × · · · ×
∫

e−sλN dλN (5.38)

= Γ(N)s−N−1
∫ ∞

0
xe−xdx =

Γ(N)

sN+1
. (5.39)

Thus f (t) = 1
N tN . Therefore

Γ(N)
∫

Hλ(B)δ

(
1 −

N

∑
i=1

λi

)
N

∏
j=1

dλj =
1

N

(
N

∑
i=1

H(βi)

)
. (5.40)

We have done.

As a by-product of the formula (5.29), we have Q(BT) 6 H(B).
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