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Abstract

We employ the concepts of local quantum uncertainty and geometric quantum discord based on the trace

norm to investigate the environmental effects on quantum correlations of two bipartite quantum systems. The

first one concerns a two-qubit system coupled with two independent bosonic reservoirs. We show that the trace

discord exhibits frozen phenomenon contrarily to local quantum uncertainty. The second scenario deals with a

two level system, initially prepared in a separable state, interacting with a quantized electromagnetic radiation.
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1 Introduction

Quantum information protocols exploit the quantum features of superposition and entanglement to achieve

quantum tasks that are not possible using the classical laws of physics and quantum information processors

offer significant advantages in the communication and processing of information [1]. Quantum teleportation

[2, 3], and quantum cryptography or quantum key distribution [4] constitute the most promising applications of

quantum information science. Characterizing quantum correlations in quantum systems is a challenging issue in

this field of research. Several measures of quantum correlations in bipartite and multipartite quantum systems

have been introduced in the literature [5, 6, 7, 8] . The concurrence and entanglement of formation are two

examples of quantitative measures of entanglement [9]. Another indicator of quantum correlations in bipartite

quantum systems is the quantum discord based on the von Neumann entropy. This measure was introduced

Ollivier and Zurek [10] and by Henderson and Vedral [11] and goes beyond entanglement and provides the proper

tool to investigate the quantum correlations in an arbitrary bipartite state even those which are separable. The

computability of quantum discord based on von Neumann entropy is in general a very complex task. Indeed,

it has been proven that computing entropic quantum discord is NP-complete [12] and only partial results were

obtained for some special two-qubit states. To overcome these difficulties, a geometric variant of quantum discord

has been proposed in several works by employing Schatten p-norms. The first geometric measure of quantum

discord was formulated in [13] by using the Hilbert-Schmidt norm (p = 2). Despite its ease of computability

[14, 15, 16, 17], the geometric discord is not a good quantum correlations indicator. In fact, the geometric

discord based on Hilbert-Schmidt distance can increase under local quantum operations on the unmeasured

qubit. This drawback is due to the lack of the contractivity property that any quantum correlations quantifier

should satisfy (see reference [18]). Now, it is well established that the trace norm ( Bures norm with p = 1)

is the only Schatten p-norm that one can use to deal with the geometric measure of quantum correlations [19]

(see also [20, 21]).

Recently, a new measure called local quantum uncertainty has been introduced to investigate the pairwise

quantum correlations of the discord type in multipartite systems. It has all the desirable properties that

every good quantum correlations quantifier should satisfy [22]. It is based on the notion of Skew information

introduced by Wigner to determine the uncertainty in the measurement of an observable [23]. The local

quantum uncertainty presents the advantage of being analytically computable for any qubit-qudit system [22].

It is interesting to stress that this new quantum correlation quantifier is deeply related to quantum Fisher

information [24, 25, 26] which is usually used in the context of quantum metrology [27].

In this paper, to quantify the degree of quantum correlations, we will use the local quantum uncertainty

and the trace quantum discord. In Section 2, we give the explicit expression of local quantum uncertainty in a

two-qubit X state. We give also the expression of the geometric discord based on the trace norm. In Section

3, we will investigate the dynamics of quantum correlations in a two-qubit X state coupled to two independent

reservoirs. Section 4 is devoted to the analysis of the creation of quantum correlations in a system of two 2-level

atoms, interacting with a quantized radiation field, initially prepared in a separable state. Concluding remarks

close this paper.
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2 Quantum correlations quantifiers: local quantum uncertainty and

trace distance

2.1 Local quantum uncertainty

The local quantum uncertainty is a reliable quantifier of quantum correlation in bipartite quantum systems.

This is essentially due to its easiness of computability and the fact that it enjoys all necessary properties of

being a good quantumness measure. It is zero for classically correlated states and invariant under local unitary

operations. We notice that for a two-qubit pure state, the local quantum uncertainty reduces to the linear

entropy of entanglement [22]. The local quantum uncertainty quantifies the minimal quantum uncertainty in

a quantum state due to a measurement of a local observable [22]. For a bipartite quantum state ρ, the local

quantum uncertainty is defined as

U(ρ) ≡ min
K1

I(ρ,K1 ⊗ I2), (1)

where K1 is some local observable on the qubit 1, I2 is the identity operator acting on the qubit 2 and

I(ρ,K1 ⊗ I2) = −1

2
Tr([

√
ρ,K1 ⊗ I2]

2) (2)

is the skew information which provides an analytical tool to quantify the information content in the state ρ with

respect to the observable K1. This quantity was introduced by Wigner and Yanase to quantify the uncertainty

in mixed states [23]. The statistical idea underlying skew information is the Fisher information which plays a

central role in the theory of statistical estimation and quantum metrology [24]. The local quantum uncertainty

is defined through a minimization procedure over the ensemble of all Hermitian operators acting on the qubit 1

[22]. For two qubit systems (12 -spin particles), the expression of the local quantum uncertainty is given by [22]

U(ρ) = 1−max{λ1, λ2, λ3}, (3)

where λ1, λ2 and λ3 are the eigenvalues of the 3× 3 matrix W whose matrix elements are defined by

ωij ≡ Tr{√ρ(σi ⊗ I2)
√
ρ(σj ⊗ I2)}, (4)

with i, j = 1, 2, 3.

The X states belong to an interesting family of two-qubit states that are used in several problems of quantum

information. In the computational basis {|00〉 , |01〉 , |10〉 , |11〉}, the X states are of the form

ρ =











ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44











. (5)

In the Fano-Bloch representation, the density matrix ρ can be written as follows:

ρ =
1

4

∑

α,β

Tαβσα ⊗ σβ , (6)

where Tαβ = Trρ (σα ⊗ σβ). For states of X type, the non vanishing matrix elements (4) are given by (see the

appendix 1)

w11 =
1

4

[

4
(

√

λ1 +
√

λ4

)(

√

λ2 +
√

λ3

)

+

(

T11
2 − T22

2
)

+
(

T12
2 − T21

2
)

+
(

T03
2 − T30

2
)

(√
λ1 +

√
λ4

) (√
λ2 +

√
λ3

)

]

, (7)
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w22 =
1

4

[

4
(

√

λ1 +
√

λ4

)(

√

λ2 +
√

λ3

)

+

(

T22
2 − T11

2
)

+
(

T21
2 − T12

2
)

+
(

T30
2 − T03

2
)

(√
λ1 +

√
λ4

) (√
λ2 +

√
λ3

)

]

, (8)

w33 =
1

2

[

(

√

λ1 +
√

λ4

)2

+
(

√

λ2 +
√

λ3

)2
]

+
1

8

[

(T30 + T03)
2 − (T11 − T22)

2 − (T12 + T21)
2

(√
λ1 +

√
λ4

)2

]

(9)

+
1

8

[

(T03 − T30)
2 − (T11 + T22)

2 − (T12 − T21)
2

(√
λ2 +

√
λ3

)2

]

, (10)

w12 = w21 =
1

2

T11T21 + T22T12
(√

λ1 +
√
λ4

) (√
λ2 +

√
λ3

) , (11)

w13 = w31 = w23 = w32 = 0. (12)

where λi(i = 1, 2, 3, 4) are the eigenvalues of the density matrix ρ.

2.2 Trace measure of geometric discord

The trace norm (or 1-norm) was employed as a reliable geometric quantifier of quantum discord [19]. The

expressions of trace distance quantum discord have been analytically derived for Bell-diagonal states [19, 28]

and for an arbitrary two-qubit X state [21]. The trace distance quantum discord for a two-qubit state ρ is

defined by

DT(ρ) =
1

2
min
χ∈Ω

||ρ− χ||1, (13)

where the trace distance is defined by ||ρ − χ||1 = Tr
√

(ρ− χ)†(ρ− χ). It measures the distance between the

state ρ and the classical-quantum state χ belonging to the set Ω of classical-quantum states. A generic state

χ ∈ Ω is of the form χ =
∑

k pk Πk,1 ⊗ ρk,2 where {pk} is a probability distribution, Πk,1 are the orthogonal

projector associated with the qubit 1 and ρk,2 is density matrix associated with the second qubit. The phase

factors
ρ14

|ρ14|
= eiθ14 and

ρ23

|ρ23|
= eiθ23 of the off diagonal elements can be removed using the local unitary

transformations

|0〉1 → exp

(−i

2
(θ14 + θ23)

)

|0〉1 |0〉2 → exp

(−i

2
(θ14 − θ23)

)

|0〉2 .

In this way, the anti-diagonal entries of the density matrix become positive and one gets

ρ → ρ̃ =











ρ11 0 0 |ρ14|
0 ρ22 |ρ23| 0

0 |ρ23| ρ33 0

|ρ14| 0 0 ρ44











,

which rewrites in the Fano-Bloch representation as

ρ̃ =
∑

αβ

Rαβσα ⊗ σβ ,

where the non vanishing matrix elements Rαβ are given by

R11 = 2(|ρ23|+ |ρ14|) R22 = 2(|ρ23| − |ρ14|) R33 = 1− 2(ρ22 + ρ33)

R03 = 2(ρ11 + ρ33)− 1 R30 = 2(ρ11 + ρ22)− 1.
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The trace distance quantum discord is invariant under local transformations and we have

DT (ρ) = DT (ρ̃) .

The minimization in the equation (13) has been worked out for a generic two qubit-qubit X state [21]. As

result, the trace distance quantum discord in the state ρ Eq. (5) takes the form

DT(ρ) =
1

2

√

R2
11R

2
max −R2

22R
2
min

R2
max −R2

min +R2
11 −R2

22

, (14)

where

R2
min = min{R2

11, R
2
33} with R2

max = max(R2
33, R

2
22 +R2

30).

The Bell diagonal states constitute a specific instance of two-qubit X states. In the Fano-Bloch representation,

they take the form

ρBD =
1

4
[I ⊗ I + ~c · (~σ ⊗ ~σ)],

with ~c = {c1, c2, c3} being a three-dimensional vector with elements satisfying 0 6 |ci| 6 1, and ~σ = {σ1, σ2, σ3}
denotes the standard Pauli matrices. The trace distance discord (14) reduces to [19]

DT(ρ
BD) = int{|c1|, |c2|, |c3|}, (15)

that is the intermediate value for the absolute values of the correlation factors c1, c2, and c3.

3 Local quantum uncertainty and trace discord of two qubits in

independent reservoirs

3.1 The density matrix

We consider a two-qubit system interacting with two independent reservoirs described by Ohmic-like spectral

densities [29, 30, 31, 32]. The whole system is described by the following Hamiltonian

H =

2
∑

j=1

[

vj

2
σj,3 +

∑

k

wj,kb
†
j,kbj,k +

∑

k

σj,3

(

gj,kb
†
j,k + g∗j,kbj,k

)

]

. (16)

The first term of this Hamiltonian describes the the two qubit (j = 1, 2) with vj denoting the energy difference

between the excited state |1〉j and the ground state |0〉j and σj,3 is the third Pauli matrix. The second term

describes two independent reservoirs where b†j,k and bj,k are respectively the bosonic creation and the annihilation

operators. They satisfy the usual bosonic commutation relations and wj,k denotes the frequency of the k-th

mode of the reservoir coupled to the qubit j. The last term in (16) expresses the interaction part between the

reservoir and the qubit. The coupling strength between the qubit j and the k-th mode is denoted by gj,k.

To simplify our purpose, we shall assume that the two qubits are initially prepared in the following Bell-diagonal

states

ρS (0) =
1

4

(

I ⊗ I +

3
∑

i=1

ciσi ⊗ σi

)

, (17)
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where the correlation parameters satisfy the conditions 0 ≤ |ci| ≤ 1. Without loss of generality, we assume that

|c1| ≥ |c2. The density matrix, in the computational basis {|00〉 , |01〉 , |10〉 , |11〉}, rewrites as

ρS(0) =
1

4











c+3 0 0 c−

0 c−3 c+ 0

0 c+ c−3 0

c− 0 0 c+3











. (18)

where c+3 = 1+c3, c
−
3 = 1−c3, c+ = c1+c2 and c− = c1−c2. The states of the reservoirs in thermal equilibrium

at the temperature T are given by

ρEj
=

1

ZEj

exp

(

−β
∑

k

wj,kb
†
j,kbj,k

)

, (19)

where ZEj is the partition function of the reservoir j(j = 1, 2). Initially, the density matrix of the whole system

reads as ρ (0) = ρS (0)⊗ ρE1 ⊗ ρE2 , and the evolved state is then given by

ρ(t) = exp (−iHt) ρ (0) exp (iHt) . (20)

The density matrix of the two-qubit system is then obtained by tracing out the environment degrees of freedom.

This gives

ρS(t) = TrE [exp (−iHt) ρ (0) exp (iHt)] . (21)

The matrix elements of ρS (t) are given by

〈ms| ρS (t) |nl〉 = Tr
[

π1
mn (t)π2

sl (t) ρ (0)
]

, (22)

with πj
ms (t) = exp (iHt) πj

ms exp (−iHt) is the Heisenberg operator of qubit j and πj
ms = |s〉j 〈m| where s

and m take the values 0 and 1.

It is simple to see that the for s = m, the operators πj
mm = 1

2 (1+(−1)mσ3) commute with the Hamiltonian

H and one has πj
mm(t) = πj

mm(0). For different values of s and m, the operators πj
ms are given by πj

ms(0) =

|s〉j〈m| = 1
2 (σ1 + i(−1)mσ2). Therefore to determine the operators πj

ms(t) for s 6= m, one has to solve the

following Heisenberg equations for the bosonic modes

i
dbj,k(t)

dt
= wj,kbj,k(t) + gj,kσj,3, (23)

and those associated with the two qubits are

i
dπj

ms(t)

dt
= (−1)

m+1

[

vj + 2
∑

k

(

gj,kb
†
j,k (t) + g∗j,kbj,k (t)

)

]

πj
ms (t) . (24)

From the later equations, one gets

πj
01(t) =

(

πj
10(t)

)†
= πj

01 exp

{

ivjt− 2
∑

k

(

aj,k (t) b
†
j,k − a∗j,k (t) bj,k

)

}

, (25)

where aj,k(t) = gj,k (1− exp (iwj,kt))/wj,k.
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In the Fano-Bloch representation, the matrix ρS(t) can be expressed as follows

ρS(t) =
1

4

[

I ⊗ I + T11σ1 ⊗ σ1 + T12σ1 ⊗ σ2 + T21σ2 ⊗ σ1 + T22σ2 ⊗ σ2 + T33σ3 ⊗ σ3

]

. (26)

The non-vanishing correlation parameters Tαβ , occurring in (26), are given by:

T11 = [c1 cos (v1t) cos (v2t) + c2 sin (v1t) sin (v2t)] e
−γ(t)

T12 = [c1 cos (v1t) sin (v2t)− c2 sin (v1t) cos (v2t)] e
−γ(t)

T21 = [c1 sin (v1t) cos (v2t)− c2 cos (v1t) sin (v2t)] e
−γ(t)

T22 = [c1 sin (v1t) sin (v2t) + c2 cos (v1t) cos (v2t)] e
−γ(t)

T33 = c3

(27)

where the time-dependent function γ(t) is defined by:

γ (t) =

2
∑

j=1

∑

k

4 |gj,k|
2
wj,k

−2 coth

(

βwj,k

2

)

[1− cos (wj,kt)] . (28)

In the continuum limit, the term
∑

k

4 |gj,k|2 is replaced by
∫

dwJj (w) δ (wj,k − w) and to simplify our purpose

we consider the situation where both reservoirs have the same spectral density J1 (w) = J2 (w) = J (w). In this

limiting case, γ (t) can be expressed as:

γ (t) = 2

∞
∫

0

dwJ (w)w−2 coth

(

βw

2

)

[1− cos (wt)]. (29)

The expression of the spectral density characterizing each reservoir is given by:

J (w) = λΩ1−swse−w/Ω, (30)

with Ω is the cutoff frequency and λ is a dimensionless coupling constant between the system and the environment

(the reservoirs). For s = 1, the reservoir is of ohmic type, for 0 < s < 1, the reservoir is sub-ohmic and for

s > 1, the reservoir is called super-ohmic.

3.2 Dynamics of Local quantum uncertainty of two qubits in independent reser-

voirs

In the computational basis, the density matrix (26) takes the following form

ρS(t) =
1

4











c+3 0 0 c−e−i(v2+v1)t−γ(t)

0 c−3 c+ei(v2−v1)t−γ(t) 0

0 c+e−i(v2−v1)t−γ(t) c−3 0

c−ei(v2+v1)t−γ(t) 0 0 c+3











. (31)

which is of two-qubit X type. It follows that the Local quantum uncertainty and trace discord can be easily

evaluated using the results reported hereinabove. To obtain the explicit expression of local quantum uncertainty,

one computes first the elements of the matrix W . From (7), one gats

w11 =
1

2

√

(

c+3 +

√

(c+3 )
2 − (c−)2e−2γ(t)

)(

c−3 +

√

(c−3 )
2 − (c+)2e−2γ(t)

)

+
1

2

(c−)
2e−2γ(t) cos(2v1t)

√

(

c+3 +
√

(c+3 )
2 − (c−)2e−2γ(t)

)(

c−3 +
√

(c−3 )
2 − (c+)2e−2γ(t)

)

. (32)
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Using the expression (8), one obtains

w22 =
1

2

(
√

(

c+3 +

√

(

c+3
)2 − (c−)

2
e−2γ(t)

)(

c−3 +

√

(

c−3
)2 − (c+)

2
e−2γ(t)

)

)

− 1

2













(c−)
2
e−2γ(t) cos (2v1t)

√

(

c+3 +

√

(

c+3
)2 − c−2e−2γ(t)

)(

c−3 +

√

(

c−3
)2 − (c+)

2
e−2γ(t)

)













(33)

The equation (9) gives

w33 =
1

4

(

2 +

√

(

c+3
)2 − (c−)

2
e−2γ(t) +

√

(

c−3
)2 − (c+)

2
e−2γ(t)

)

− (c−)
2
e−2γ(t)

4

(

c+3 +

√

(

c+3
)2 − (c−)

2
e−2γ(t)

) − (c+)
2
e−2γ(t)

4

(

c−3 +

√

(

c−3
)2 − (c+)

2
e−2γ(t)

) (34)

The non vanishing off-diagonal elements (11) write

w12 = w21 =
c−c+e

−2γ(t) cos (v1t) sin (v1t)
√

(

c+3 +

√

(

c+3
)2 − (c−)

2
e−2γ(t)

)(

c−3 +

√

(

c−3
)2 − (c+)

2
e−2γ(t)

)

. (35)

The eigenvalues of the matrix W are

λ1 =
1

2

[

(w11 + w22) +

√

(w11 + w22)
2 − 4 (w11w22 − w21w12)

]

, (36)

λ2 =
1

2

[

(w11 + w22)−
√

(w11 + w22)
2 − 4 (w11w22 − w21w12)

]

, (37)

λ3 = w33 (38)

We have assumed that |c2| ≤ |c1|. Thus, one has λ2 ≤ λ1 and subsequently the local quantum uncertainty is

given in term of

λmax = max(λ1, λ3). (39)

Therefore, one should consider two cases: λ1 ≤ λ3 and λ3 ≤ λ1. Hence, when λmax = λ1, the local quantum

uncertainty is given by the following expression

UA (ρS(t)) =
1

2

[

2−
√

(

c+3 +

√

(

c+3
)2 − (c−)

2
e−2γ(t)

)(

c−3 +

√

(

c−3
)2 − (c+)

2
e−2γ(t)

)

]

− c−c+e
−2γ(t)

2

√

(

c+3 +

√

(

c+3
)2 − (c−)

2
e−2γ(t)

)(

c−3 +

√

(

c−3
)2 − (c+)

2
e−2γ(t)

)

, (40)

and when λmax = λ3, one gets

UA (ρS(t)) =
1

4

[

2−
√

(

c+3
)2 − (c−)

2
e−2γ(t) −

√

(

c−3
)2 − (c+)

2
e−2γ(t)

]

+
(c−)

2
e−2γ(t)

4

[

c+3 +

√

(

c+3
)2 − (c−)

2
e−2γ(t)

] +
(c+)

2
e−2γ(t)

4

[

c−3 +

√

(

c−3
)2 − (c+)

2
e−2γ(t)

] . (41)
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3.3 Dynamics of trace quantum discord of two qubits in independent reservoirs

The non vanishing matrix correlations, in the Fano-Bloch representation, of the density matrix ρS(t) (31) are

gien by

R11 = c1e
−γ(t) R22 = c2e

−γ(t) R33 = c3

The trace quantum discord (14) takes the form

DT (ρS(t)) =
e−γ(t)

2

√

c21 max{c23, c22e−2γ(t)} − c22 min{c21e−2γ(t), c23}
max{c23, c22e−2γ(t)} −min{c21e−2γ(t), c23}+ (c21 − c22) e

−2γ(t)
. (42)

For |c3| ≥ |c2|e−γ(t) and |c3| ≥ |c1|e−γ(t), the trace distance discord is given by:

DT (ρS(t)) =
1

2
|c1|e−γ(t). (43)

For |c3| ≥ |c2|e−γ(t) and |c3| ≤ |c1|e−γ(t) one gets:

DT (ρS(t)) =
1

2
|c3|. (44)

In this situation, it is remarkable that the quantum correlations are unaffected by the noisy environment and

the geometric discord exhibits a freezing behavior. For |c3| ≤ |c2|e−γ(t) and |c3| ≥ |c1|e−γ(t) one hase

DT (ρS(t)) = 0,

reflecting the absence of quantum correlations. For |c3| ≤ |c2|e−γ(t) and |c3| ≤ |c1|e−γ(t), the trace distance

discord is simply given by

DT (ρS(t)) =
1

2
|c2|e−γ(t). (45)

1 2 3 4
t

0.05

0.10

0.15

0.20

0.25

0.30

DT(�)

1 2 3 4
t

0.05

0.10

0.15

LQU(ρ)

Fig 1: The local quantum uncertainty and trace distance discord for the sub-ohmic reservoirs with s = 0.5 ,

λ = 0.1, Ωβ = 1. c1 = 0.6, c2 = −0.3, c3 = 0.4 (green line). c1 = −0.5, c2 = 0, c3 = 0.3 (blue line).c1 = 0.5,

c2 = −0.3, c3 = 0.6 (red line).
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Fig 2: The local quantum uncertainty and trace distance discord for the ohmic reservoirs with s = 1 , λ = 0.1,

Ωβ = 1. c1 = 0.6, c2 = −0.3, c3 = 0.4 (green line). c1 = −0.5, c2 = 0, c3 = 0.3 (blue line).c1 = 0.5, c2 = −0.3,

c3 = 0.6 (red line).
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Fig 3: The local quantum uncertainty and trace distance discord for the super-ohmic with s = 1.5 , λ = 0.2,

T = 0. c1 = 0.6, c2 = −0.3, c3 = 0.4 (green line). c1 = −0.5, c2 = 0, c3 = 0.3 (blue line).c1 = 0.5, c2 = −0.3,

c3 = 0.6 (red line).

We begin by analyzing the behavior of local quantum uncertainty in three particular Bell states coupled to

environment of ohmic, sub-ohmic and super-ohmic type. As depicted in the figures 1, 2 and 3, the local quantum

uncertainty may exhibit a sudden change behavior for the states with (c1 = 0.6, c2 = −0.3, c3 = 0.4) and

(c1 = −0.5, c2 = 0, c3 = 0.3). This behavior is not observable for the state with (c1 = 0.5, c2 = −0.3, c3 = 0.6)

for which the local quantum uncertainty decays monotonically. This decrease becomes more pronounced when

passing from sub-ohmic to super-ohmic regime. This is essentially due to the strong nature of the environment

effect in the sub-ohmic regime. It must be noticed also that for the states with (c1 = 0.6, c2 = −0.3, c3 = 0.4)

and (c1 = −0.5, c2 = 0, c3 = 0.3), the local quantum uncertainty varies almost linearly before the sudden change

point. The interval of time, in which this variation is linear, depends on the nature of the system-environment

coupling. It is larger in the ohmic regime in comparison with the others regimes. Let us now analyze the

behavior of quantum correlations measured by trace norm. We notice first that the local quantum uncertainty

and trace discord exhibit similar behavior for the considered states, except the freezing behavior which occurs

before the sudden change of trace norm. We obtain a large and controllable freezing interval for states with

(c1 = 0.6, c2 = −0.3, c3 = 0.4) evolving in Markovian environment of super-ohmic type. This interval is reduced

10



by the decoherence effects in the case of ohmic and sub-ohmic regimes. This freezing phenomenon exhibited

by trace norm reflects that the quantum correlations in a given quantum state are not affected by the noise

generated by its surrounding environment. This is surprising and questionable phenomenon does not occur

when one consider local quantum uncertainty as quantifier of quantum discord. Indeed, as we have discussed

above, in the interval where the trace discord is constant, the local quantum uncertainty decreases linearly until

the point when the sudden change of the behavior happens.

4 Quantum correlations dynamics of two 2-level atoms interacting

with an electromagnetic field

In this section, we consider two identical atoms with ground states |gi〉 and excited states |ei〉 (i = 1, 2) which

are coupled with a quantized electromagnetic field [33, 34, 35, 36]. In the rotating-wave approximation, the

Hamiltonian can write

Ĥ = ~ω0S
z +

∑

~ks

ωkâ
†
~ks
â~ks − i~

∑

~ks

[

~µ.~g~ksS
+â~ks −H.c

]

, (46)

where â~ks and â
†
~ks

are respectively the annihilation and creation operators corresponding to the field mode ~ks

, which has wave vector ~k, frequency ωk and the index of polarization s. The coupling factor is given by

~g~ks (~ri) =

(

ωk

2ε0~V

)
1
2

~e
~ks
ei

~k.~ri

where V denotes the quantization volume and eks is the electric field polarization vector. This factor represents

the mode function of the three dimensional field, evaluated at the position ~ri of the ith atom. The quantity ~µ is

the transition dipole moment and ω0 is the transition frequency. The operators S± and Sz are the collective spin

operators defined by S± =
∑

i

S±
i and Sz =

∑

i

Sz
i with S+

i = |ei〉 〈gi|, S−
i = |gi〉 〈ei| and Sz

i = |ei〉 〈ei|− |gi〉 〈gi|.
To study the dynamics of this system, we shall employ the following master equation [34]:

∂ρ (τ)

∂t
= −iω0

2
∑

i=1

[Sz
i , ρ]− iΩ12

2
∑

i6=j

[

S+
i S−

j , ρ
]

− 1

2

2
∑

i,j=1

Γij

(

ρS+
i S−

j + S+
i S−

j ρ− 2S−
j ρS+

i

)

(47)

where Γii ≡ Γ (i = 1, 2) is the spontaneous emission rate induced by the direct coupling of the atom with

the radiation field, Γ12 = Γ21 denotes the collective damping and Ω12 is the dipole-dipole interaction potential.

They are given by [34, 35, 36]:

Γij =
3

2
Γ

{

[

1− (~µ.~rij)
2
] sin (k0rij)

k0rij
+
[

1− 3(~µ.~rij)
2
]

[

cos (k0rij)

(k0rij)
2 − sin (k0rij)

(k0rij)
3

]}

, (48)

and

Ωij =
3

4
Γ

{

−
[

1− (~µ.~rij)
2
] cos (k0rij)

k0rij
+
[

1− 3(~µ.~rij)
2
]

[

sin (k0rij)

(k0rij)
2 +

cos (k0rij)

(k0rij)
3

]}

. (49)

where rij = |rj − ri| is the distance between the atoms, and k0 = ω0

c
. We consider the situation where the

two qubits are initially prepared in their excited states |e1, e2〉. Using the master equation (47), the evolved
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two-qubit state writes in the computational basis as

ρ (τ) =











a (τ) 0 0 0

0 b (τ) c (τ) 0

0 c (τ) b (τ) 0

0 0 0 1− a (τ) − 2b (τ)











. (50)

where

a (τ) = e−2τ , (51)

b (τ) =
e−τ

(1− γ)

[(

1 + γ2
) (

cosh (γτ )− e−τ
)

− 2γ sinh (γτ)
]

, (52)

c (τ) =
e−τ

(1− γ)

[

2γ
(

cosh (γτ)− e−τ
)

−
(

1 + γ2
)

sinh (γτ )
]

, (53)

with τ = Γt and γ = Γ12/Γ.

The density matrix ρ (τ) rewrites, in Fano-Bloch representation, as

ρ (τ) =
1

4

∑

α,β

Tαβσα ⊗ σβ (54)

where the nonvanishing correlation matrix elements are given by

T11 = T22 = 2c (τ) T33 = 1− 4b (τ) T03 = T30 = 2 (a (τ) + b (τ))− 1, (55)

in term of the time dependent functions a(τ), b(τ) and c(τ) given respectively by (51), (52) and (53).

4.1 Dynamics of Local quantum uncertainty

To determine the local quantum uncertainty for the density matrix ρ(τ), one employs the results obtained in

section 2. Thus, the elements of the matrix W (4) are given by

w11 = w22 =
(

√

b (τ) + c (τ) +
√

b (τ)− c (τ)
)(

√

a (τ) +
√

1− a (τ)− 2b (τ)
)

, (56)

w33 = 1− 2b (τ) + 2

√

b(τ)
2 − c(τ)

2
, (57)

which can be rewritten also as

w11 = w22 =
e−τ

(1− γ2)

[

√

(1− γ2) e−τ +
√

4γ sinh (γτ) + 2 (1− γ2) sinh (τ)− 2 (1 + γ2) (cosh (γτ )− e−τ )
]

[

(1 + γ)
√
e−γτ − e−τ + (1− γ)

√
eγτ − e−τ

]

,

w33 = 1 +
2e−τ

(1− γ2)

[

2γ sinh (γτ )−
(

1 + γ2
) (

cosh (γτ)− e−τ
)

+
√

1 + e−2τ − 2e−τ cosh (γτ)
]

.

In the situation where the wo atoms are very close ( r12 → 0), we have Γ12 → Γ. This means that γ → 1 and

b (τ) = c (τ) = e−2ττ . In this case, the elements of the matrix W are simply given by

w11 = w22 =
√

2b (τ) a (τ) +
√

2b (τ) (1− a (τ)− 2b (τ)) (58)

w33 = 1− 2b (τ) (59)

which rewrite as

w11 = w22 =
√
2e−2ττ

[√
e−2τ +

√

1− e−2τ (1 + 2τ)
]

and w33 = 1− 2e−2ττ.
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4.2 Dynamics of geometric quantum discord

To determine the analytic expression of the trace distance discord of this system from the equation (14), it is

necessary to calculate the expressions of T 2
max and T 2

min by comparing T 2
33 with T 2

22 + T 2
30 and T 2

11 with T 2
33. It

is simple to check that the difference T 2
33 − T 2

22 − T 2
30 is negative and T 2

max = T 2
22 + T 2

30 . Therefore, to get the

trace discord, one has to treat separately the cases |T33| ≥ |T11| and |T11| ≥ |T33|. Using the equation (14) and

noticing that T11 = T22 (see Eq.(55)), one verifies that the trace discord, in both cases, writes

DT (ρ(τ)) =
1

2
|T11| = |c(τ)|, (60)

where c(τ) is given by (53).
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γ=0.6

γ=0.7

γ=0.9
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γ=0.6

γ=0.7

γ=0.9
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Fig 4: The trace distance discord DT (ρ) and local quantum uncertainty versus the parameter τ for the different

values of γ.
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γ=0.7

γ=0.9
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0.015
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0.025
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Fig 5: The variation of the Concurrence for the different values of γ.

4.3 Dynamics of Concurrence

The two atoms are initially prepared in the separable state |e1, e2〉. Besides the local quantum uncertainty and

trace quantum discord, we shall also consider the dynamics of the concurrence. This measure, introduced by

Wootters [23, 24] is given by

C = max {0, λ1 − λ2 − λ3 − λ4} , (61)

13



where λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the square roots of the eigenvalues of the matrix ρρ̃. The matrix ρ̃ that is obtained

by the ”spin-flipped” operation from the density matrix ρ as ρ̃ = (σy ⊗ σy) ρ
∗ (σy ⊗ σy). For the density matrix

(50), the corresponding eigenvalues are

{λ1 = λ2, λ3, λ4} =
{

√

a (τ) (1− a (τ)− 2b (τ)), |b (τ) − c (τ)| , |b (τ) + c (τ)|
}

, (62)

and the concurrence (61) writes

C (ρ) =















max {0,−2b (τ)} if λ1 =
√

a (τ) (1− a (τ)− 2b (τ)),

max
{

0,−2
(

c (τ) +
√

a (τ) (1− a (τ)− 2b (τ))
)}

if λ1 = |b (τ) − c (τ)| ,
max

{

0, 2
(

c (τ)−
√

a (τ) (1− a (τ) − 2b (τ))
)}

if λ1 = |b (τ) + c (τ)| ,
. (63)

The dynamics of local quantum uncertainty and trace quantum discord are plotted in the Figure 4. As depicted

in Fig. 4, the behavior of both the local quantum uncertainty and trace discord show a sudden birth of quantum

correlations. Recall that the initial two qubit state is separable and the dipole-dipole interaction between the

two atoms leads to the generation of non classical correlations. The generated quantum correlations survive over

a certain interval of time. After, the amount of quantum correlations decreases showing a degradation of the

generated non classical correlations caused by the environmental effects. It must be noticed that the amount of

quantum correlations is more important when the two atoms get close each other. The interaction between the

two atoms enhances the quantum correlations between the components of the system. Another important aspect

reported in Fig. 4 is the revival of quantum correlations. Indeed, as it can be seen from Fig. 4, local quantum

uncertainty and trace discord increase, reach a maximum and decrease to vanish after finite time interval. This

is followed by a revival of quantum correlations in the system. This revival can be explained by the transfer of

correlations from the total system including the environment to the two qubit system. Comparing the results

of Fig. 4 and Fig. 5, one notices that the sudden birth of concurrence is delayed in comparison with local

quantum uncertainty and trace quantum discord. This corroborates the fact that the concurrence as quantum

quantifier can not capture the total amount of quantum correlations existing in a mixed two-qubit system. It is

also important to stress that the concurrence does not exhibit the revival phenomena and can not capture the

quantum correlation revival.

We also considered the comparison between local quantum uncertainty, trace discord and concurrence for

different values of γ related to the distance separating the two atoms. The results reported in the figures 6, 7,

8, 9, 10 and 11 show that local quantum uncertainty and trace discord behave almost identically . These figures

show also that the concurrence is initially zero for a certain period of time. This means that the evolved states

stay separable in this interval but contain quantum correlations that are not captured by the concurrence. In

particular, we noticed that for γ → 1, the concurrence is zero. The system of the two atoms stays separable

but contains quantum correlations that are not captured by the concurrence.
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Fig 6: Local Quantum Uncertainty, trace Distance

Discord and concurrence for γ = 0.1.
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Fig 7: Local Quantum Uncertainty, trace Distance

Discord and concurrence for γ = 0.3.
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Fig 8: Local Quantum Uncertainty, trace Distance

Discord and concurrence for γ = 0.5.
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Fig 9: Local Quantum Uncertainty, trace Distance

Discord and concurrence for γ = 0.7.
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Fig 10: Local Quantum Uncertainty, trace

Distance Discord and concurrence for γ = 0.9.
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Fig 11: Local Quantum Uncertainty, trace

Distance Discord and concurrence for γ −→ 1.

5 Concluding Remarks

In this work, we considered the dynamics of quantum correlations in two specific bipartite quantum systems.

The first is a two-qubit system coupled to two independent bosonic reservoirs. The second concerns a two

2-level atoms interacting with the modes of a quantized radiation field. We used the local quantum uncertainty,

trace quantum discord and the concurrence to investigate the main features of the dynamics of the quantum
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correlations contained in the system submitted to the environmental effects. In this sense, we have derived

the analytical expression for local quantum uncertainty quantifying quantum correlations in two-qubit X states

coupled to two independent bosonic reservoirs. In analyzing the dynamics of this quantifier, we considered three

types of reservoirs :sub-Ohmic, Ohmic, and super-Ohmic. We also compared the local quantum uncertainty and

trace quantum discord. In particular, it has been shown that the local quantum uncertainty does not exhibit

the freezing phenomenon which is observed when one uses the trace norm as quantifier.

For a two 2-level atoms interacting with the bosonic modes of an electromagnetic field, we analyzed the dynamics

of quantum correlations for different configurations by varying the inter-atomic distance. In this case we have

utilized local quantum uncertainty, trace quantum discord and concurrence to analyze the main characteristics

of quantum correlations in this system initially prepared in a separable state. We have noticed that the

evolved system stays for a certain period of time separable (the concurrence is zero) contrarily to local quantum

uncertainty and trace quantum discord which are non vanishing. This corroborates the fact that local quantum

uncertainty and trace discord go beyond the Wootters concurrence and indicates the sudden birth of quantum

correlations. This is essentially due to the dipole-dipole interaction between the two atoms which creates

quantum correlations between the components of the system. A second remarkable feature is the revival

phenomenon which reflects the transfer of quantum correlations from the environment to the two qubit system.

Appendices

Appendix 1:

The eigenvalues corresponding to this matrix ρ (5) are given by

λ1 =
1

2
t1 +

1

2

√

t1
2 − 4d1, λ2 =

1

2
t2 +

1

2

√

t2
2 − 4d2 (64)

λ3 =
1

2
t2 −

1

2

√

t2
2 − 4d2, λ4 =

1

2
t1 −

1

2

√

t1
2 − 4d1 (65)

where

t1 = ρ11 + ρ44, d1 = ρ11ρ44 − ρ14ρ41, t2 = ρ22 + ρ33, d2 = ρ22ρ33 − ρ32ρ23. (66)

The square root of the density matrix ρ can be written in terms of the matrix elements ρ, in the computational

basis, as follows:

√
ρ =

















ρ11+
√
d1√

t1+2
√
d1

0 0 ρ14√
t1+2

√
d1

0 ρ22+
√
d2√

t2+2
√
d2

ρ23√
t2+2

√
d2

0

0 ρ32√
t2+2

√
d2

ρ33+
√
d2√

t2+2
√
d2

0

ρ41√
t1+2

√
d1

0 0 ρ44+
√
d1√

t1+2
√
d1

















. (67)

The eigenvalues
√
λ1,

√
λ2,

√
λ3 and

√
λ4 of the matrix

√
ρ can be rewritten as:

√

λ1 =
1

2

√

t1 + 2
√

d1 +
1

2

√

t1 − 2
√

d1 (68)

√

λ2 =
1

2

√

t2 + 2
√

d2 +
1

2

√

t2 − 2
√

d2 (69)

√

λ3 =
1

2

√

t2 + 2
√

d2 −
1

2

√

t2 − 2
√

d2 (70)
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√

λ4 =
1

2

√

t1 + 2
√

d1 −
1

2

√

t1 − 2
√

d1. (71)

The matrix
√
ρ is written in the Fano-Bloch representation as:

√
ρ =

1

4

∑

χ,δ

Rχδσχ ⊗ σδ, (72)

where χ, δ = 0, 1, 2, 3 and the Fano-Bloch parameters are defined by: Rχδ = Tr
(√

ρσχ ⊗ σδ

)

. The vanishing

correlation parameters Rχδ are given by:

R00 =

√

t1 + 2
√

d1 +

√

t2 + 2
√

d2 (73)

R03 =
1

2

T30 + T03
√

t1 + 2
√
d1

− 1

2

T30 − T03
√

t2 + 2
√
d2

(74)

R30 =
1

2

T30 + T03
√

t1 + 2
√
d1

+
1

2

T30 − T03
√

t2 + 2
√
d2

(75)

R11 =
1

2

T11 + T22
√

t2 + 2
√
d2

+
1

2

T11 − T22
√

t1 + 2
√
d1

(76)

R12 =
1

2

T12 − T21
√

t2 + 2
√
d2

+
1

2

T12 + T21
√

t1 + 2
√
d1

(77)

R12 =
1

2

T12 − T21
√

t2 + 2
√
d2

+
1

2

T12 + T21
√

t1 + 2
√
d1

(78)

R21 =
1

2

T12 + T21
√

t1 + 2
√
d1

− 1

2

T12 − T21
√

t2 + 2
√
d2

(79)

R22 =
1

2

T11 + T22
√

t2 + 2
√
d2

− 1

2

T11 − T22
√

t1 + 2
√
d1

(80)

R33 =

√

t1 + 2
√

d1 −
√

t2 + 2
√

d2. (81)

Appendix 2:

In this appendix, we give the expressions of the γ (t) function for sub-ohmic, ohmic and super-ohmic reservoirs

[29].

(i) Sub-Ohmic reservoirs:

The sub-Ohmic regime corresponds to the situation where 0 < s < 1. In this case, the function γ (t) reads as
[29]

γ (t) =
2λΓ (s)

s− 1

{

1−

(

1− Ω2t2
)
(1− s)/2 cos [(s− 1) arctan (Ωt)]

}

+
4λΓ (s)

s− 1

∞
∑

m=1

(1 +mΩβ)1−s
×











1−

[

1 +

(

Ωt

1 +mΩβ

)2
](1− s)/2

cos

[

(s− 1) arctan

(

Ωt

1 +mΩβ

)]











,

where Γ (s) denotes the Gamma function. To study the evolution of the local quantum uncertainty, one should

calculate the time derivative of the function γ (t) . It is given by

dγ (t)

dt
= 2λΓ (s) Ω

{

(

1 + Ω
2
t
2
)

−s/2
sin [s arctan (Ωt)] + 2

∞
∑

m=1

[

(1 + mΩβ)
2
+ Ω

2
t
2
]

−s/2

sin

[

s arctan

(

Ωt

1 + mΩβ

)]

}

(82)
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(ii) Ohmic reservoirs:

For reservoirs of Ohmic type (s = 1), the low-frequency behavior of the function J (ω) is linear in term of ω.

The equation (29) becomes [29]

γ (t) = λ

[

ln
(

1 + Ω2t2
)

+ 4 lnΓ

(

1 +
1

Ωβ

)

− 2 ln

∣

∣

∣

∣

Γ

(

1 +
1

Ωβ
+ i

t

β

)∣

∣

∣

∣

2
]

(83)

The time derivative of the function γ (t) is given by

dγ (t)

dt
= 2λΩ2t

[

1

1 + Ω2t2
+

∞
∑

m=1

2

(1 +mΩβ)
2
+Ω2t2

]

. (84)

(iii) Super-Ohmic reservoirs:

For super-Ohmic reservoirs (s > 1), the function γ (t) reads as [29]

γ (t) = 2λΓ (s− 1)
{

1−
(

1 + Ω2t2
)1−s/2

cos [(s− 1) arctan (Ωt)]
}

+ 4λΓ (s− 1)

∞
∑

m=1

(1 +mΩβ)
1−s







1−
[

1 +

(

Ωt

1 +mΩβ

)2
](1−s)/2

cos

[

(s− 1) arctan

(

Ωt

1 +mΩβ

)]







,

and the derivative of γ (t) with respect to time t is given by

dγ (t)

dt
= 2λΩΓ (s)

(

1 + Ω2t2
)−s/2

sin [s arctan (Ωt)]

+ 4λΩΓ (s)
∞
∑

m=1

[

(1 +mΩβ)2 +Ω2t2
]−s/2

sin

[

s arctan

(

Ωt

1 +mΩβ

)]

.

Due to the complicated expression of γ (t) and to simplify our numerical calculations, we have chosen the

situation where 1 < s ≤ 2 and the temperature equals zero. In this case case, the function γ (t) becomes

γ (t) = 2λΓ (s− 1)
{

1−
(

1 + Ω2t2
)(1−s)/2

cos [(s− 1) arctan (Ωt)]
}

. (85)
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