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Abstract

Can one considerably shorten a proof for a quantum problem by using a protocol with a constant num-
ber of unentangled provers? We consider a frustration-free variant of the QCMA-complete Ground State
Connectivity (GSCON) problem for a system of size n with a proof of superlinear-size. We show that we
can shorten this proof in QMA(2): there exists a two-copy, unentangled proof with length of order n, up
to logarithmic factors, while the completeness-soundness gap of the new protocol becomes a small inverse
polynomial in n.

1 Introduction: Unentangled Provers and Short Proofs

While entanglement is essential for quantum algorithms, unentanglement can also be an interesting resource. In
quantum complexity, such a guarantee about a purported proof can significantly improve the power of a verifier.
Blier and Tapp [3] discovered that two unentangled copies of a short witness of the type

1√
n

n∑
i=1

|i〉|ci〉, (1)

can be used to prove the existence of a solution for the NP-complete graph coloring problem. All one needs is
ci to be the color of the vertex i in the solution. Listing the color for each vertex would normally take space on
the order of n, while the two-copy, unentangled quantum proof takes space only 2 + log n, as we need 2 qubits
to encode the three possible colors. We (the verifier) can check this proof as follows. First, let us measure |i〉|ci〉
from one witness and |i′〉|ci′〉 from the other witness. Sometimes, we get results for neighboring vertices i, i′,
so we can check if ci 6= ci′ , verifying the validity of the coloring. However, we also need to thwart cheating
provers by a SWAP test [5] and a color-measuring test checking the consistency of the two copies of the witness
and well defined vertex colors, and a another to make sure the superposition contains info about all vertices.
Only when we are sure that the two witnesses are unentangled, these tests are sound, while an entangled state
could easily fool the SWAP test.

The new quantum proofs are exponentially shorter, so one might think we could use a quantum computer
to quickly find them (in BQP). However, there is no straightforward way for this, e.g. using variants of
Grover’s search, as one needs to keep the proofs unentangled. Therefore, this result does not imply anything
about the containment of NP in BQP. On the other hand, it is connected to interesting questions about the the
nonexistence of perfect disentanglers [1] or the strong-NP hardness of separability testing for density matrices
[12, 16, 10].

The main price we pay for shortening the proof in [3] is that the completeness-soundness gap is small –
the probability of detecting cheating provers and thus the gap is Ω(n−6). However, there are also independent
results that analyze the possible tradeoff between the proof length and the (completeness-soundness) gap. The
protocol of Aaronson et al. [1] looks at the balanced 2-out-of-4-SAT problem, relies on Dinur’s proof of the
PCP theorem [8], and produces constant soundness and perfect completeness, while using Õ (

√
n) unentangled
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copies of the proof. Also, instead of (1), it uses a phase encoding |ψ〉 = 1√
2n

∑
j(−1)cj |j〉 of the witness. Next,

Beigi [2] also has a protocol for 2 provers sendingO(log n) qubits, with gap Ω(n−3−ε). Meanwhile, the product
test of Harrow and Montanaro [13] applied to [1] has lead to a 2 prover protocol sending Õ(

√
n) qubits with a

constant gap. Investigating unentanglement further, Chen and Drucker [6] found a protocol for 2-out-of-4-SAT
using unentangled measurements with Õ(

√
n) provers sending O(log n) qubits. Next, Le Gall, Nakagawa and

Nishimura [9] gave an improved protocol for 3-SAT with only two log-size, unentangled quantum proofs and a
Ω(1/n polylog(n)) completeness-soundness gap. Chiesa and Forbes [7] provided a tighter soundness analysis
leading to Ω(n−2) completeness-soundness gap for [3] and a smooth trade-off between K provers and a gap
Ω(K2n−1) for [6]. A similar gap improvement for [3] was proved by Nishimura and Nakagawa in [17].

These results mainly concern short proofs of classical problems. Inspired by them, we choose to look
at a naturally quantum problem, Ground State Connectivity (GSCON), and ask whether we could rely on
unentanglement to make its proof shorter. This is indeed what we find, for a particular QCMA-complete variant
of GSCON. However, our result has two shortcomings. First, the shortening is significant only if the original
proof is superlinear. Second, the completeness-soundness gap becomes very small. It should thus serve as
a proof of principle that opens the door to other more effective unentanglement-based constructions of proof
systems for quantum problems.

We call for a general investigation of when and how much proofs for quantum complexity classes could be
shortened, when relying on unentanglement. Note that the relationship of the class QMA(2) to classes without
unenanglement is not fully understood yet. One of the things we know is that if the verifier could only perform
one-way LOCC measurements on a constant number of unentangled proofs, his power would diminish, in
particular QMALOCC

`(n) (2)c,s ⊆ QMAO(`2(n)ε−2),c,s+ε, as shown by Brandão, Christandl and Yard [4]. On the
other hand, adding the unentanglement requirement doesn’t allow one to freely shorten proofs of QMA. Unless
a subexponential-time quantum algorithm for 3-SAT exists, the size of a QMA witness cannot be shortened to
less than its squareroot in QMA(2) with a constant completeness-soundness gap, i.e. QMAn(2) 6⊆ QMAo(n2).

Let us now present our results. We start with a review of the GSCON problem in Section 2, and present a
high-level view of our protocol and state the main theorem in Section 3. In Section 4.1 we give the details of
the proof verification procedure, and prove our main result in Sections 4.2 (soundness), 4.3 (completeness) and
4.4 (gap lower bound).

2 The Ground space connectivity problem (GSCON)

Let us start with the definition of the QCMA-complete Ground State Connectivity (GSCON) problem [11]
about the possibility of traversal between two low-energy states for a local Hamiltonian, using local unitary
transformations, while remaining in a low-energy sector.

Definition 1 (The Ground State Connectivity (GSCCON) problem [11]). Ground state connectivity (GSCON)
with parameters H,n, k,R, η1, η2, η3, η4,∆,m,Uψ, Uφ is a promise problem defined as follows. Consider

1. a k-local Hamiltonian H =
∑R

i Hi acting on n qubits with R terms Hi ∈ Herm((C2)⊗k) satisfying
||Hi||∞ ≤ 1,

2. real numbers η1, η2, η3, η4,∆ ∈ R, and an integer m ≥ 0, such that η2 − η1 ≥ ∆ and η4 − η3 ≥ ∆,

3. descriptions of polynomial size quantum circuits Uψ and Uφ generating the starting and target states |ψ〉
and |φ〉 from the initial state |0〉⊗n, satisfying 〈ψ|H|ψ〉 ≤ η1 and 〈φ|H|φ〉 ≤ η1, respectively.

Decide, which of the two cases is true:

YES: There exists a sequence of 1 and 2 qubit1 unitaries {Ui}mi=1 such that

(a) intermediate states remain in low energy space, i.e. for all i ∈ [m] and intermediate states |ψi〉 :=
Ui . . . U2U1|ψ〉, one has 〈ψi|H|ψi〉 ≤ η1, and

(b) the final state is close to the target state, i.e. ‖Um . . . U1|ψ〉 − |φ〉‖2 ≤ η3.
1In general, this could be also l-local unitaries, we choose l = 2. This variant of the problem is still QCMA complete [11].
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NO: For all 1 and 2 qubit sequences of unitaries {Ui}mi=1, either

(a) some intermediate state has a high energy, i.e. there exists an i ∈ [m], for which the intermediate
state |ψi〉 := Ui . . . U2U1|ψ〉, obeys 〈ψi|H|ψi〉 ≥ η2, or

(b) the final state is far from the target state, i.e. ‖Um . . . U1|ψ〉 − |φ〉‖2 ≥ η4.

In this paper, we consider a specific version that we call frustration-free GSCON. It requires an at least
inverse-polynomial promise gap ∆ = Ω(1/poly(n)), and a positive semidefinite, frustration-free Hamiltonian,
with η1 = 0. We choose this for a technical reason, as we are presently unable to devise a strong enough
low-energy testing procedure for the witnesses. However, this variant of GSCON is still QCMA complete.

We know that in general, GSCON (deciding whether a low-energy state |ψ〉 can be transformed to a low-
energy state |φ〉 using a sequence of m = poly(n) (2-)local gates, while remaining a low-energy state) is a
QCMA complete problem. The frustration-free GSCON variant still belongs to QCMA, as the local transfor-
mations can be easily communicated classically, and their properties tested on a quantum computer. On the
other hand, it is QCMA1 hard, as it also has instances that can be constructed (as in [11]) for a Hamiltonian
related to the verification procedure for a QCMA1 proof – with perfect completeness. However, thanks to
QCMA = QCMA1 [14], this must also be QCMA hard. Therefore, frustration-free GSCON is also QCMA
complete.

We assume the circuits Uψ and Uφ are given in terms of 1 and 2-qubit unitary gates. All input parameters
are specified with rational entries, each using O(poly(n)) bits of precision. We expect the same for the gates
Ui that are chosen out of G = poly(n) possible gates (including the target qubit specification), encoded as bit
strings of length at most O(log n), with polynomial-precision entries.

The standard proof for GSCON is the list of unitary transformations that generate the low-energy states
traversing from |ψ〉 to |φ〉. In the next Section, we devise a different type of proof involving superpositions.

3 Shorter proofs for Ground State Connectivity relying on unentanglement.

3.1 A shorter proof: the sequence of states in superposition

The original proof has size m logG = O(m log(n)), as it holds the information about the m gates Ui applied
to the initial state (each Ui is a 1 or 2 qubit unitary gate chosen from a set of size G, including the target qubits
specification). We want to shorten it to

(logm)× (n+ logG) = O(n log n), (2)

at the cost of a smaller completeness-soundness gap, and asking for four unentangled proofs. Later in Corol-
lary 3 we show that only two unentangled proofs suffice.

Figure 1: A cycle of states |ψ1〉, . . . , |ψm+1〉, . . . , |ψ2m〉, connected via the unitaries U1, . . . , Um, U
†
m, . . . , U

†
1 .

We ask for two unentangled copies of the two-register (label and gate) state

|U〉 =
1√
2m

2m∑
i=1

|i〉|ui〉, (3)

encoding a cycle of local transformations as in Figure 1, with each ui a classical string decribing the gate Ui
(chosen from a gate set of size G = poly(n), including which qubits it acts on).
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We also ask for two unentangled copies of the two-register (label and data) state

|S〉 =
1√
2m

2m∑
i=1

|i〉|ψi〉, (4)

encoding a cyclical sequence of labeled low-energy states |ψi〉, illustrated in Figure 1. The sequence should
start with the initial state |1〉|ψ1〉 = |1〉|ψ〉 for |ψ〉 from the definition of GSCON, and obey Ui|ψi〉 = |ψi+1〉,
with U2m|ψ2m〉 = |ψ1〉 at the end. The first half of the sequence corresponds to the traversal from |ψ〉 to |φ〉
using the gates Ui. The second half should be its inverse, with Um+i = U †m+1−i, so that U2m . . . U1 = I.

Observe that such a state |S〉 is invariant under the action of the unitary

W =
2m∑
i=1

|i+ 1〉〈i| ⊗ Ui, (5)

where we identify |2m+ 1〉 ≡ |1〉 in the first register, and assume Um+i = U †m+1−i for i = 1, . . . ,m.

3.2 The main result

Our main, superlinear proof-shortening result for frustration-free GSCON is the following Theorem:

Theorem 2 (Shorter proofs for ff-GSCON in QMA(4)). Consider an instance of Frustration-free GSCON (ff-
GSCON) combining Definition 1 with the extra assumptions of a positive-semidefinite, frustration-free Hamil-
tonian acting on n qubits, with parameter η1 = 0 and an inverse-polynomial promise gap ∆. This promise
problem has a proof system in QMA(4), with four unentangled proofs of length O (n log n), and an inverse
polynomial2 completeness-soundness gap.

We present the protocol in Section 4.1 and analyze it in detail in Sections 4.2 and 4.3, proving Theorem 2.
Let us now show how to use this 4 unentangled witness protocol as a black box to build a procedure with only
2 witnesses, putting frustration-free GSCON into QMA(2) with shortened proofs.

Corollary 3. Ff-GSCON is in QMAO(n logn)(2) with an inverse polynomial completeness-soundness gap.

Proof. Our protocol from Section 4.1 uses 4 unentangled witnesses – two copies of the state |U〉 and two copies
of the state |S〉. We know how to use the QMA(k) to QMA(2) transformation [13] to place it in QMA(2) with
the same asymptotic witness length and altered completeness and soundness. The new QMA(2) protocol asks
for two identical witnesses – in our case two copies of the state |U〉 ⊗ |U ′〉 ⊗ |S〉 ⊗ |S′〉. The verifier performs
two tests with the same probability: a) The PRODUCT test, or the b) the original QMA(k) protocol on one of
the states. In [13], the authors showed the containment QMAw(k)c′,s′ ⊆ QMAkw(2)c′′,s′′ , with completeness
c′′ = 1+c′

2 , soundness s′′ = 1 − (1−s′)2
100 , and new witness size kw. However, for the resulting completeness-

soundness gap to be positive, there is a requirement on the original completeness and soundness, which our
QMA(4) protocol might not fulfill.

However, this is not a problem. The trick is to use the QMA(k) to QMA(2) conversion with variable
probabilities to run the tests a) and b). Let us label c′ the completeness and s′ the soundness of Test b), the
QMA(k) protocol, and denote p the probability to run Test a) and 1−p the probability to run Test b). Following
the proof of Lemma 5 [13], we find that the resulting QMA(2) protocol has completeness and soundness:

c′′ = p+ (1− p)c′, (6)

s′′ ≤ max
ε≤ 512

11
δP

{
p (1− δP) + (1− p) min{1, s′ +√ε}

}
, (7)

with ε a bound on how far the witness is from a product state, and δP ≥ 11
512ε the probability that the PRODUCT

test rejects it. The maximum in (7) is achieved for
√
ε = 1 − s′ =

√
512
11 δP. Therefore, s′′ ≤ 1 − pδP ≤

1− p(1− s′)2 11
512 . With this in hand, we realize that we can always tune p to create a protocol with a positive,

2This inverse polynomial is quite small, as shown in Section 4.4: c′ − s′ = Ω
(
∆13m−32G−10

)
, with ∆ from the definition of

GSCON and G the gate set size.
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inverse-polynomial completeness-soundness gap. For example, we can achieve c′′−s′′ ≥ 11
512p(1−s′)2− (1−

p)(1− c′) ≥ 1
50(c′ − s′)2, by choosing

p =
1− c′ + 1

50(c′ − s′)2

1− c′ + 11
512(1− s′)2

. (8)

Observe that 0 ≤ p ≤ 1, as c′ − s′ ≤ 1− s′.
Therefore, there exists a way to tune the probability p for running the PRODUCT test vs. the QMA(4)-based

composite procedure from Section 4.1, giving us a QMA(2) protocol for ff-GSCON, with shorter proofs of size
O(n log n), and a completeness-soundness gap inverse polynomial in n. �

4 Proof of Theorem 2.

The proof of Theorem 2 is spread over four Sections. We first describe the proof system in Section 4.1, show
its soundness in Section 4.2 and completeness in Section 4.3, and prove that the completeness-soundness gap
is an inverse polynomial in n in Section 4.4.

4.1 The verification procedure

Let us start the proof of Theorem 2 with the tests that we must run on the 4 unentangled proofs for GSCON.
Note that in Corollary 3 we have shown how to get away with only 2 unentangled witness states instead of
4, relying on an argument similar to the PRODUCT test of Harrow and Montanaro [13], while decreasing the
completeness-soundness gap (but still to an inverse polynomial in n.

The verifier asks the provers to provide two unentangled copies of the states |U〉 (3) and |S〉 (4), as described
in Section 3.1. From now on, let us call these |U〉, |U ′〉, |S〉, |S′〉. With probabilities

pi =
r−1
i∑
j r
−1
j

, i = 1, . . . , 8, (9)

where ri are listed in Figure 4.2, the verifier randomly chooses to do perform one of the following set of eight
tests, accepting if the test succeeds. We choose the threshold parameters ri and test probabilities pi in such
a way that in the NO case of the ff-GSCON instance, it must be true at least one of the tests rejects with
probability more than its ri, so the verifier accepts the proof with probability at most

s′ ≤ 1− ripi = 1− 1∑
j r
−1
j

, (10)

independent of i. On the other hand, in the YES case, we will show that this results in completeness c′ that is at
least an inverse polynomial in n above s′, as stated in Theorem 2. Here are the tests:

1. (SWAP U) Do a SWAP test on the unitary-encoding witnesses |U〉 and |U ′〉 and reject on failure. This test
checks basic consistency between the witnesses.

2. (UNIQUE) Measure the label and gate register of the states |U〉 and |U ′〉 in the computational basis. If
the labels don’t match, accept. On the other hand, if you obtain the same label from both copies, check if
the gate register measurement results match. Reject if they don’t. Also reject if the results do not encode
unitaries from the expected gate set. This test checks if the unitaries Ui are well defined.

3. (UNIFORM) Do a projective measurement on the gate register of the state |U〉 and accept if the result is
not the uniform superposition |ḡ〉 of all possible gate-encoding states. Proceed otherwise and measure the
label register. Reject if the result is not the uniform superposition |0̄〉. Together with SWAP and UNIQUE,
this test checks if the terms |i〉|ui〉 for various i are nearly uniformly present in |U〉.

4. (SWAP S) Do a SWAP test on the states |S〉 and |S′〉 (the state sequence-encoding witnesses) and reject
on failure. This test checks basic consistency between the witnesses.
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5. (SEQUENCE) First, apply the unitary W from (5) to |S〉 in a probabilistic fashion, consuming the state
|U〉 in the process. Second, compare W |S〉 and |S′〉 using a SWAP test, rejecting on failure. In detail,

(a) Combine |U〉 and |S〉, and apply the encoded unitaries (we assume the states |ui〉 are computational
basis states) from the gate register to the data register to form the state

∑
i

1√
2m
|i〉|ui〉

∑
j

1√
2m
|j〉Ui|ψj〉.

(b) Project the gate register onto the uniform superposition state |ḡ〉. Accept if the projection fails, and
proceed otherwise.

(c) At this point, we expect to work with the renormalized state
∑

i
1√
2m
|i〉|ḡ〉∑j

1√
2m
|j〉Ui|ψj〉.Drop

the gate-encoding register with the state |ḡ〉.
(d) Project onto identical label registers. Accept if the projection fails, and continue otherwise.

(e) At this point, we expect to work with the renormalized state
∑

i
1√
2m
|i〉|i〉Ui|ψi〉. Uncompute and

drop the second label register.

(f) Shift the label register by 1 in a cyclical fashion, with 2m becoming 1, to obtain the state |T ′〉.
(g) Do a SWAP test between |T ′〉 and |S′〉 and reject on failure. Note that for honest provers we expect
|T ′〉 = 1√

2m

∑
i |i+ 1〉Ui|ψi〉, identical to the state |S′〉.

This test checks if all states |i〉|ψi〉 in |S〉 have significant amplitudes, and whether |ψi+1〉 = Ui|ψi〉.

6. (START) Check if the sequence in |S〉 starts with the state |ψ〉 from the problem instance as follows:

(a) Measure the label register of |S〉. Accept if it is not 1, otherwise continue.

(b) If the label is 1, use another register to prepare |ψ〉, according to the problem instance.

(c) Perform a SWAP test between the data register of |S〉 and the prepared state. Reject on failure.

7. (END) Check if the sequence in |S〉 ends near the state |φ〉 from the problem instance as follows:

(a) Measure the label register of |S〉. Accept if it is not m+ 1, otherwise continue.

(b) In another register, prepare |φ〉, according to the problem instance.

(c) Perform a SWAP test between the data register of |S〉 and the prepared state. Reject on failure.

8. (LOW) Measure the label register of |S〉, and then the energy of its data register. Reject, if the energy is
higher than η2

2 with η2 from the definition of GSCON.

This test checks if the traversed sequence of states is made only from low-energy states. Note that a
weakness of this test makes us talk about ff-GSCON, i.e. a GSCON instance with η1 = 0, involving a
frustration-free, positive semidefinite Hamiltonian.

Choosing one of the tests at random gives us a reasonable assurance that the state |U〉 contains a nearly uni-
form superposition of the sequence of labeled, computational-basis encoded unitaries, applying these unitaries
to the state |S〉 doesn’t change it, the sequence of states in |S〉 contains each term |i〉|ψi〉 with a significant
amplitude, the initial and final states |ψ1〉 and |ψm+1〉 are what we asked for, and that the energy of each state
|ψi〉 is low enough.

We show the detailed soundness proof in Section 4.2, and continue with completeness in Section 4.3. Our
proof of soundness starts similarly to the one in [3]. In contrast to [3], we require much stronger guarantees
on the uniformity of the sequence |U〉. We are also asking for an encoding of 1- and 2- qubit gates instead of
3 colors for the graph coloring problem, so the dimension of the gate register has to be G = poly(n). Next,
we have a batch of tests: SWAP S and SEQUENCE, involving the sequence-encoding state |S〉. These are new
and specific for the shortened quantum proof of GSCON. Finally, the START, END, and LOW tests check the
boundary conditions and the low energy condition for the purported traversal of the low energy space of our
ff-GSCON Hamiltonian.

6



test rejection threshold ri required onwards from
1. SWAP U r1 = δ2

8 = 1
32G4m8t6

Lemma 4
2. UNIQUE r2 = cx2

4 = 1
4Gm6t4

Lemma 5
3. UNIFORM r3 = 1

5Gm4t2
Lemma 8

4. SWAP S r4 = z
4 = µ2

4m3 Lemma 9
5. SEQUENCE r5 = 1

8mG
z
4 = µ2

32Gm4 Lemma 11
6. START r6 =

(
1

2m − 6µ
)
h2

4 Lemma 12

7. END r7 =
(

1
2m − 6µ

) ( (η3+h)2

2 − (η3+h)4

8

)
Lemma 13

8. LOW r8 = η2
8Rm Lemma 15

Figure 2: The Lemmas in the soudness Section 4.2 assume that if we ran test i, it would pass with probability
at least 1 − ri. Here we list the rejection threshold ri for each of the 8 tests. We choose the probability to run
Test i as pi = r−1

i /
∑

j r
−1
j , so that piri = 1 − s′, where s′ is the final soundness parameter. The thresholds

ri are expressed using the parameters of the GSCON instance (m,R, η2, . . . , η4), as well as parameters set in
(14), (54), (60), and (61): δ = cx

2G , c = 1
Gm2t2

, x = 1
m2t

, z = µ2

m3 , t = 848Gm2

µ2
, h = min

{
η4−η3

4 , 1
6

√
η2
R

}
, and

µ = h2

144m(η3+h) .

4.2 Soundness analysis

Thanks to the promise of the ff-GSCON problem, in the NO case, the verifier receives a description of a
GSCON Hamiltonian H , for which there does not exist a sequence of 1- and 2- qubit unitaries {Ui}mi=1 with
m = poly(n), that would transform the low-energy state |ψ〉 to a state close to |φ〉, while staying in the low-
energy subspace.

Let us see what happens in the case of dishonest provers. Our goal is to find an upper bound on the
probability that the verifier accepts a proof from two malicious, but still unentangled provers. We will prove a
sequence of Lemmas that together imply that when the provers try to cheat, there is a high enough chance that
one of the tests from Section 4.1, chosen at random would detect this.

4.2.1 Verifying consistency and fullness of the sequence |U〉
Our first Test (SWAP U) is a SWAP test on the states |U〉 and |U ′〉. Because we know that these states come
from unentangled provers, they can be written as

|U〉 =
2m∑
i=1

αi|i〉
∑
j

βi,j |j〉, (11)

|U ′〉 =

2m∑
i=1

α′i|i〉
∑
j

β′i,j |j〉, (12)

where
∑

i |αi|2 = 1 and ∀i,∑j |βi,j |2 = 1, and the same holds for α′i and β′i,j .
We will start with showing that passing Test 1 (SWAP U) with high enough probability implies the distribu-

tion of outcomes when measuring the states |U〉 and |U ′〉 in the computational basis must be very similar.

Lemma 4 (Consistency of unitaries). Let |U〉 and |U ′〉 be as defined earlier. If there exists a k and an l such
that 3

∣∣|αkβk,l|2 − |α′kβ′k,l|2∣∣ ≥ δ, then Test 1 (SWAP U) will fail with probability at least r1 = δ2

8 .

Proof. This is Lemma 3.3 from [3], and we repeat the proof.
Let Pi,j = |αiβi,j |2 and Qi,j = |α′iβ′i,j |2 be the probability distributions when |U〉 and |U ′〉 are measured

in the computational basis. For any von Neumann measurement, the distances defined below are such that
3Note that there are squares in the expression, while [3], Lemma 3.3, has a typo, missing the squares.
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D(|U〉, |U ′〉) ≥ D(P,Q), where P and Q are the classical distributions of the measurement outcomes. Then,√
1− |〈U |U ′〉|2 def

= D(|U〉, |U ′〉) ≥ D(P,Q)
def
=

1

2

∑
ij

∣∣|αiβi,j |2 − |α′iβ′i,j |2∣∣
≥ 1

2

∣∣|αkβk,l|2 − |α′kβ′k,l|2∣∣ ≥ δ

2
,

assuming there exist k, l with
∣∣|αkβk,l|2−|α′kβ′k,l|2∣∣ ≥ δ. In that case, |〈U |U ′〉|2 ≤ 1− δ2

4 and Test 1 (SWAP U)

will fail with probability at least δ
2

8 . �

Therefore, if Test 1 would pass with probability at least 1− δ2

8 , thanks to Lemma 4, we get a guarantee on
the closeness of |U〉 and |U ′〉: ∣∣|αkβk,l|2 − |α′kβ′k,l|2∣∣ < δ. (13)

Let us call r1 = δ2

8 the rejection threshold for Test 1. We will choose the probability p1 to run Test 1 so that it
is tied to the final soundness parameter as s′ = 1 − p1r1. We set the parameter δ below in (14), and list r1 in
Figure 4.2.

Let us look at the second test, armed with the guarantee (13). We will prove that passing Test 2 (UNIQUE)
with high probability means nodes with a high enough probability of being observed encode a well-defined
unitary. In particular, there is one βi,ji that dominates, and the other βi,...’s are small.

Lemma 5 (Well defined unitaries). Assume that the quantum proof would fail Test 1 (SWAP U) with probability
below r1 = δ2

8 , and fail Test 2 (UNIQUE) with probability below r2 = cx2

4 (see also Figure 4.2). Then ∀i :
|αi|2 ≥ x, there exists a j such that |βi,j |2 ≥ 1− c, with

c =
1

Gm2t2
, x =

1

m2t
, δ =

cx

2G
=

1

2t3G2m4
, (14)

where G is the number of possible gates and t is a parameter to be chosen later in (54).

Proof. This is a more general version of Lemma 3.4 from [3], with stronger conditions and implications.
First note, that with the particular string ui we receive, we can easily test if it encodes some unitary Ui from

the expected gate set. We reject on failure.
Now suppose for the sake of contradiction that there exists an i with |αi|2 ≥ x, for which the largest of the

βi,j’s (without loss of generality, let it be βi,0) obeys |βi,0|2 < 1 − c. Let us then calculate the probability of
failing the UNIQUE test. It is surely bigger than

pfail
UNIQUE ≥ |αiβi,0|2

∑
j>0

∣∣α′iβ′i,j∣∣2 . (15)

Because of Lemma 4, we know that
∣∣α′iβ′i,j∣∣2 ≥ ∣∣α′iβ′i,j∣∣2 − δ. Therefore, we have

pfail
UNIQUE ≥ x|βi,0|2

(∑
j>0

∣∣α′iβ′i,j∣∣2 − (G− 1) δ

)
(16)

= x2|βi,0|2
(
1− |βi,0|2

)
− x (G− 1) δ|βi,0|2 (17)

≥ x2(1− c)c− x (G− 1) δ(1− c) (18)

≥ (1− c)x (cx− δG) . (19)

We set the parameters c, x, δ according to (14), with a large t chosen later in (54). This gives us a bound

pfail
UNIQUE ≥

(
1− 1

Gm2t2

)
cx2

2
≥ cx2

4
, (20)

proving the Lemma. �
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The rejection threshold r2 and the probability p2 to run Test 2 are listed in Figure 4.2, and chosen so that if
the combined probability of passing the UNIQUE test is at least s′, we get a guarantee on how well the U ’s are
defined in |U〉 from Lemma 5:

∀i, for which |αi|2 ≥ x, ∃!j such that |βi,j |2 ≥ 1− c, (21)

with c = (Gm2t2)−1 for t from (54).
Armed with (21), let us look at the third test. The next three Lemmas quantify what passing the tests up to

and including Test 3 (UNIFORM) with high probability implies: the state |U〉 contains a nearly uniform super-
position of states of the form |i〉|Ui〉. We start by showing that the probability to find a uniform superposition
in the gate (second) register of |U〉, when performing the first measurement of Test 3, is very well defined.

Lemma 6 (Projection onto the uniform superposition of gates). Assume the quantum proof would fail Test 1
(SWAP U) and Test 2 (UNIQUE) with probabilities below r1 and r2 from Figure 4.2. Then the probability of
measuring |ḡ〉 = FG|0〉 in the Fourier basis on the gate register is at least 1

G

(
1− 6

mt

)
for large enough m.

Moreover, for each i with |αi|2 ≥ x, the individual probability of this projection satisfies |pFGi − 1
G | ≤ 4

Gmt .

Proof. This Lemma is based on Lemma 3.5 from [3], and has much stronger conditions and implications.
Thanks to the assumption on the rejection probability for the previous tests, we can use Lemmas 4 and 5.
Assume that the first (label) register of the state |U〉 is measured. If the outcome is i, then the probability of

obtaining |ḡ〉 in the Fourier basis on the gate register is given by pFGi = 1
G

∣∣∑
j βi,j

∣∣2. For all i with |αi|2 ≥ x,
Lemma 5 applies, in which case we can assume w.l.o.g that |βi,0|2 > 1 − c and

∑
j 6=0 |βi,j |2 ≤ c. Using the

Cauchy-Schwarz inequality, we obtain

pFGi =
1

G

∣∣∣∣∑
j

βi,j

∣∣∣∣2 ≥ 1

G

∣∣∣∣∣ |βi,0| −
∣∣∣∣∑
j 6=0

βi,j

∣∣∣∣
∣∣∣∣∣
2

≥ 1

G

∣∣∣∣∣ |βi,0| −
√
G
∑
j 6=0

|βi,j |2
∣∣∣∣∣
2

≥ 1

G

∣∣∣√1− c−
√
Gc
∣∣∣2 ≥ 1

G

∣∣∣∣1− 1

m2Gt2
− 1

mt

∣∣∣∣2 ≥ 1

G

(
1− 4

mt

)
, (22)

for c = (Gm2t2)−1.
Note that in |U〉 (11), at least one |αi|2 ≥ x, or equivalently, at most 2m − 1 can obey |αi|2 < x so that

Lemma 5 doesn’t apply to them. Therefore, when projecting the gate register of the whole state |U〉 onto the
uniform superposition, the probability of obtaining 0 is at least

(1− (2m− 1)x)
1

G

(
1− 4

m

)
≥
(

1− 2

mt

)(
1− 4

mt

)
1

G
≥
(

1− 6

mt

)
1

G
. (23)

In addition to (22), we can also find an upper bound on the individual probabilities pFGi . For iwith |ai|2 ≥ x,
Lemma 3 applies, and one of the βi,j’s is necessarily large. The probability for a successful projection onto a
uniform superposition is then bounded from above by a situation where the β’s are as balanced as possible:

pFGi =
1

G

∣∣∣∣∑
j

βi,j

∣∣∣∣2 =
1

G

∣∣∣∣βi,0 +
∑
j>0

βi,j

∣∣∣∣2 ≤ 1

G

(
(1− c) + (G− 1)

√
1− (1− c)2

G− 1

)2

≤ 1

G

(
1 + 2

√
Gc
)2
≤ 1

G

(
1 +

4

mt

)
. (24)

This concludes the proof of Lemma 6. �

Thus, if Test 1 and Test 2 are likely to succeed, Part 1 of Test 3 (the Fourier projection on the gate register)
will succeed with probability at least 1

G

(
1− 6

mt

)
, allowing us to continue to the second step of Test 3. It

involves a measurement of the label register that detects slightly non-uniform states.
Let us look on the state |U〉 after the projection on the uniform superposition of gates. We can write this

projected and normalized state as
∑

i γi|i〉|ḡ〉. The following Lemma tells us that to successfully pass the
Fourier-basis projection onto the uniform superposition of states in the label register, the γi’s all have to be very
close to 1√

2m
in magnitude.
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Lemma 7 (A successful Fourier projection implies uniformity). Given a state |X〉 =
∑

i γi|i〉 such that there
exists an l with

∣∣|γl|2 − 1
2m

∣∣ > f
m , the probability of not getting |0〉 = F2m|0〉 when we measure |X〉 in the

Fourier basis is greater than f2

4m2 , for f > 0.

Proof. This is a stronger version of Lemma 3.6 from [3].
The probability of not getting |0̄〉 when measuring |X〉 depends on the overlap of these states. Let us call

P and Q the probability distributions for a computational basis measurement of |X〉 and F2m|0〉, respectively.
The probability of not getting |0̄〉 then obeys

1− |〈X|0〉|2 =
(
D(|X〉, |0〉)

)2 ≥ (D(P,Q))2 =
(

1
2

∑
i

∣∣Pr[γi]− 1
2m

∣∣)2 ≥ (1
2

∣∣|γl|2 − 1
2m

∣∣)2 > f2

4m2 .(25)

�

Lemma 7 allows us to prove a statement about the original coefficients αi in |U〉: passing Tests 1-3 with
high probability implies a valid encoding of all the required unitaries Ui for i = 1, . . . 2m, with nearly uniform
prefactors, as stated in the next Lemma.

Lemma 8 (A full sequence of unitaries). Assume that Test 1 (SWAP U) and Test2 (UNIQUE) fail with probability
below r1 and r2 from Figure 4.2. Assume that Test 3 (UNIFORM) fails with probability below r3 = 1

5Gm4t2
.

Then the coefficients αi in the state |U〉 obey
∣∣∣|αi|2 − 1

2m

∣∣∣ ≤ 13
2m2t

, for all i.

Note that the parameter t is still free. We will set it to be a large number later (54).

Proof. Thanks to Lemmas 4-7, we are now able to show a bound on the coefficients αi that is much tighter
than Lemma 3.7 in [3].

Thanks to the assumption on the rejection probabilities for the previous tests, we can use the previous
Lemmas. We also add the assumption that Test 3 rejects the proof with probability below 1

5Gm4t2
. This rejection

can happen only if the first Fourier projection on the gate register passes (this has probability at least 1
G

(
1− 6

mt

)
according to Lemma 6), and then the second Fourier projection on the label register fails. When we choose
f = 1

mt in Lemma 7 we see that the second Fourier basis projection either rejects with probability at least 1
4m4t2

,
or we get a guarantee that no |γl|2 is farther from 1

2m than f
m . The overall probability of detecting a cheater is

now thus either at least 1
G

(
1− 6

mt

)
1

4m4t2
≥ 1

5Gm4t2
, a contradiction on the assumption of the Lemma, or we

get the guarantee on |γl|2.
Let us then work with this guarantee and analyze what happens after the first successful projection onto

the uniform superposition |ḡ〉 in the gate register of |U〉, i.e. the first step of Test 3. For the significant αi’s
(|αi|2 ≥ x), Lemma 5 tells us that they encode a pretty well defined unitary, and Lemma 6 tells us that the
probability of getting a successful projection onto |ḡ〉 for each of these i’s is at most 4

Gtm far from 1
G . This

projection thus brings down the norm of this part of the state, but not to something smaller than

‖the large-αi part after the projection‖2 ≥ 1

G

(
1− 4

tm

) ∑
|αi|2≥x

|αi|2 . (26)

Next, we know there can’t be too much of the norm of the state |U〉 hiding in parts of the superposition with
small |αi|2 ≤ x. The state |U〉 is normalized, and there are at most 2m−1 such i’s, so the norm of that small-αi
part of the state is ∑

|αi|2<x

|αi|2 ≤ (2m− 1)x ≤ 2

tm
, (27)

for our choice of x = 1
m2t

in (14).
Even if the projection on the uniform superposition in the gate register kills this small-αi part, the overall

norm squared N2 of the whole state after the projection is at least

N2 ≥ 1

G

(
1− 4

tm

) ∑
|αi|2≥x

|αi|2 ≥
1

G

(
1− 4

tm

)(
1− 2

tm

)
≥ 1

G

(
1− 6

tm

)
, (28)
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using (27) and our choice (14).
Let us find a stronger lower bound for |αi|2 ≥ x. We obtain the γi’s by normalizing the state after the

projection. Using (28) and recalling the large-|αi|2 terms are multiplied by at most 1
G

(
1 + 4

tm

)
when projected,

we obtain

|γi|2 ≤
1
G

(
1 + 4

mt

)
1
G

(
1− 6

mt

) |αi|2 ≤ (1 +
11

mt

)
|αi|2 , (29)

for large enough m, t. Because we know from Lemma 7 that all |γi|2 must be close to 1
2m , those |αi|2 ≥ x

must obey

1

2m
(1− 2f) ≤ |γi|2 ≤

(
1 +

11

mt

)
|αi|2 . (30)

Choosing f = 1
mt in Lemma 7, we have

|αi|2 ≥
1

2m

(
1− 2

mt

1 + 11
mt

)
≥ 1

2m

(
1− 13

mt

)
. (31)

What about the small |αi|2 < x? Even if they do not decrease on projection, they get multiplied by at most
1
G

(
1 + 4

tm

)
≤ 2

G , which implies |γi|2 ≤ 2x
G . However, because x = 1

tm2 , such |γi|2 would be much smaller
than 1

2m , and thus easily detectable by Lemma 7. Therefore, small |αi|2 < x can not exist in the superposition
|U〉 without being detected by our tests with a reasonable probability.

Therefore, all |αi|2 are bounded from below by (31). Moreover, we can also find a limit on how big they
can be. To show this, we start with an upper bound on the norm of the whole state after the projection.

N2 = ‖the whole state after the projection‖2 ≤ 1

G

(
1 +

4

mt

) ∑
|αi|2≥x

|αi|2 =
1

G

(
1 +

4

mt

)
, (32)

as there are no small-αi coefficients. This implies for the γi’s that

|γi|2 ≥
1
G

(
1− 4

mt

)
1
G

(
1 + 4

mt

) |αi|2 ≥ (1− 8

mt

)
|αi|2 . (33)

Recalling the guarantee
∣∣|γi|2 − 1

2m

∣∣ ≤ f
m from Lemma 7 with f = 1

mt , we also obtain

1

2m
(1 + 2f) ≥ |γi|2 ≥

(
1− 8

mt

)
|αi|2 , (34)

which translates to an upper bound on |αi|2:

|αi|2 ≤
1

2m

(
1 + 2

mt

1− 8
mt

)
≤ 1

2m

(
1 +

13

mt

)
, (35)

for large enough m, t.
Putting together (31) and (35) finishes the proof. Note that all |αi|2 are thus large enough for Lemma 4, so

all of the 2m encoded unitaries must be “well defined”. �

Therefore, if we chose to run Tests 1-3 on |U〉 and |U ′〉, and each would be likely to pass, we have a
guarantee that the state |U〉 as well as the state |U ′〉 must have form very close to what we demand, i.e.

|U〉 =
1√
2m

2m∑
i=1

|i〉|ui〉+
1√
2m

2m∑
i=1

θi|i〉|θi〉, (36)

where ui are computational basis states that encode the gates Ui, the second (error) term is orthogonal to the
first one, and

|θi|2 ≤ 2

(
26

tm
+

1

Gm2t2

)
≤ 53

tm
, (37)

where the first term comes from |αi|2 possibly deviating from 1
2m , and the second term from the possible

imprecision in the definition of the unitaries (the error c in Lemma 5). This encoding of the unitaries is solid
enough to help us verify the state sequence is also proper, and thus prove the soundness of our verifier.
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4.2.2 Verifying consistency of the states |S〉
We will now show how to apply the Ui’s to the state |S〉, in order to test if it is a proper cyclical sequence
connected by 1 and 2 qubit gates. It requires a guarantee on the consistency of the |S〉 states, and a procedure
for the probabilistic application of the Ui’s.

Let us quantify what the SWAP S test (Test 4) implies for the similarity of two witness states |S〉 and |S′〉.

Lemma 9 (State consistency). Let |S〉 and |S′〉 be two-register, normalized quantum states

|S〉 =
m∑
i=1

ai|i〉|ψi〉, |S′〉 =
m∑
i=1

a′i|i〉|ψ′i〉, (38)

and label |∆S〉 = |S〉− |S′〉 =
∑

i |i〉|δi〉, with |δi〉 = ai|ψi〉−a′i|ψ′i〉. If there exists a k such that 〈δk|δk〉 ≥ z,
the SWAP S test (Test 4) on the states |S〉 and |S′〉 will fail with probability at least r4 = z

4 .

Proof. Without loss of generality, we can assume the phase of |S′〉 is such that 〈S|S′〉 ∈ R, as |S〉 and |S′〉
come from two unentangled provers. This lets us write

〈S|S′〉 = 1− 1

2
〈∆S |∆S〉 = 1− 1

2

∑
i

〈δi|δi〉 ≤ 1− 1

2
〈δk|δk〉 ≤ 1− z

2
, (39)

instead of having to deal with absolute values or real/imaginary parts. This translates to |〈S|S′〉|2 ≤ (1− z
2)2 ≤

1− z
2 and the probability to fail Test 4 (the SWAP S test) 1

2

(
1− |〈S|S′〉|2

)
≥ z

4 . �

We will later choose z to be a small number (54). Similarly to the previous tests, we will demand that
combined with the probability p4 to run Test 4, the probability to detect a cheating Merlin is at least 1 − s′ =
p4r4, or we get the guarantee that for all i, 〈δi|δi〉 < z, with z chosen in Lemma 11 (54).

Could we continue with something similar to the UNIFORM test? The size of the state space for the |ψi〉’s is
too large, and we don’t know enough about the states to ensure a reasonable chance of success for the projection
onto a uniform superposition. Instead, we will use the state |U〉 to probabilistically apply the unitary W (5)
to the state |S〉 and compare it with |S′〉. This SEQUENCE test (Test 5) checks whether |S〉 and |S′〉 contain a
balanced enough superposition corresponding to a cyclical sequence of states connected by the 1- and 2- local
gates Ui.

Let us look at the probabilistic procedure described in detail in the definition of Test 5. We apply the gates
from |U〉 to |S〉, project onto an uniform superposition in the gate register, drop it, project onto identical label
registers, uncompute and drop one of them, and shift the remaining label up by one. This should prepare

|T 〉 =
1√
2m

∑
i

|i+ 1〉Ui|ψi〉, (40)

which we want to SWAP test with the state |S′〉. However, we need to deal with dishonest Merlins. We know
that if the previous tests pass with high enough probability, the unitaries are pretty uniformly encoded, and
pretty well defined. Let us now prove a series of Lemmas: if further tests are very likely to pass, the projections
in the cycle consistency test will succeed with reasonable probability, the state |T ′〉 we get in reality is close to
the expected state |T 〉 (40), and the final SWAP test in Test 5 (SEQUENCE) is strong enough to guarantee proper
form of the cyclical sequence, connected by 1- and 2- qubit gates.

Lemma 10 (Probabilistic gate application). Let us assume all previous tests (SWAP U, UNIQUE, UNIFORM,
SWAP S) would fail with respective probabilities below r1, . . . , r4, as listed in Figure 4.2. Consider the above
procedure that starts with |U〉|S〉, applies the gates from |U〉 to |S〉, projects onto the uniform superposition
in the gate register, and projects onto identical labels. The joint probability of success for the projections is at
least 1

8mG . Moreover, after dropping the extra registers and shifting the label register, the resulting state |T ′〉
is close to the state |Ta〉 =

∑
i ai|i + 1〉Ui|ψi〉, with the coefficients ξj in |T ′〉 − |Ta〉 =

∑
j ξjaj |j + 1〉|ξj〉

obeying |ξj |2 ≤ 848G
tm .

Note that the parameter t is still free, we set it later in (54).
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Proof. Assuming the previously discussed tests would pass with high enough probability allows us to use the
previous Lemmas. In particular, the state |U〉 must obey (36) and (37).

Let us follow the procedure for Test 5 from Section 4.1. We apply the gates encoded in |U〉 to the second
register state of the state |S〉 and obtain

1√
2m

2m∑
i=1

|i〉|ui〉
∑
j

aj |j〉Ui|ψj〉+
1√
2m

2m∑
i=1

θi|i〉|θi〉
∑
j

aj |j〉Θi|ψj〉, (41)

where Ui are the gates described by the computational basis states |ui〉, and the prefactor in the error term obeys
|θi|2 ≤ 53

tm .
Note that we here assume perfect application of the gates Ui. This is possible, if they come from a specific

universal gate set under our control. The GSCON problem remains QCMA complete also under this assumption
(as QCMA verification circuits can come from a specific universal gate set). On the other hand, what if we only
have access to a smaller universal gate set? We would then have to decompose the Ui’s into this set (on the
fly), and would get a small error along the way. However, this error can be controlled to whatever inverse
polynomial in n we require, so we do not need to consider it here.

Let us now apply the projection of the gate-register onto the uniform-superposition |ḡ〉, and renormalize the
state. We know that for basis states |ui〉, we have 〈ḡ|ui〉 = 1/

√
G, while the second (error) term will increase

in importance the most if we assume 〈ḡ|zi〉 = 1 and 〈ψj |Θ†iUi|ψj〉 = −1. The norm squared of the state after
this projection is at least

N2
ḡ ≥ 2m

1

2m

(
1√
G
− θmax

)2

=
1

G

(
1− θmax

√
G
)2
, (42)

which then translates into a normalized state

1√
2m

2m∑
i=1

|i〉
∑
j

aj |j〉Ui|ψj〉+
1√
2m

2m∑
i=1

νi|i〉|νi〉, (43)

where |νi|2 ≤ 4G|θmax|2 ≤ 212G
tm , after dropping the gate register, which is in the state |ḡ〉. We also note that

the probability of a successful projection is not smaller than 1
2G .

Next, we can perform a projection onto identical labels i = j. For a fixed j, the probability of this happening
is 1

2m in the first part of the state, and |νj |
2

2m in the second part of the state. Even if the two parts of the state were
not orthogonal for a fixed j, we have a guarantee that the probability of a proper projection is (for each j)∣∣∣∣pi=j − 1

2m

∣∣∣∣ ≤ 4|νmax|2
2m

, (44)

i.e. the norm squared is guaranteed to be within 4|νmax|2
2m of 1

2m . After normalization, this translates to a new
state

2m∑
j=1

aj |j〉|j〉Uj |ψj〉+

2m∑
j=1

ξjaj |j〉|j〉|ξj〉, (45)

with |ξj |2 ≤ 4|νmax|2 ≤ 16G|θmax|2 ≤ 848G
tm . Let us note that the probability of this successful projection is

surely not smaller than 1
4m . Overall, the probability of passing both projections successfuly is surely no smaller

than 1
8Gm .

Uncomputing and dropping one of the label registers is then simple. We also shift the remaining label
register up by one. All in all, with probability at least 1

8mG , the procedure described above results in the state

2m∑
j=1

aj |j + 1〉Uj |ψj〉+

2m∑
j=1

ξjaj |j + 1〉|ξj〉, (46)

with normalized states |ξj〉, and a guarantee |ξj |2 ≤ 848G
tm , as claimed in the Lemma. �
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Therefore, when Tests 1-5 are likely to pass (as described in the conditions of the previous Lemmas), the
state |U〉|S〉 after a succesful transformation, projection, label dropping and shift can be written as

|T ′〉 =
∑
j

aj |j + 1〉 (Uj |ψj〉+ ξj |ξj〉) , (47)

with a guarantee |ξj |2 ≤ 848G
tm on the error terms. With this in mind, we can turn to the last step in Test 5:

the SWAP test between |T ′〉 and |S′〉. The goal of the next Lemma is to show that if this SWAP is likely to
pass, the states |S〉 and |S′〉 must encode a reasonably uniform superposition of states – the whole sequence of
low-energy states connected by the gates Ui.

Note that we don’t (need to) verify that the sequence of unitaries Ui actually computes and uncomputes
the transformation from |ψ1〉 to |ψm+1〉. We only check if the whole sequence is cyclically invariant under the
transformation (5), i.e. that |ψj+1〉 = Uj |ψj〉 and that U2m . . . U1 = I.

Lemma 11. Assume the previous tests (SWAP U, UNIQUE, UNIFORM, SWAP S) would fail with respective
probabilities below r1, . . . , r4, listed in Figure 4.2, with t = 848Gm2

µ2
and z = µ2

m3 . If the SEQUENCE test rejects

the proof with probability below r5 = µ2

32Gm4 , for a small µ to be set later (61), we claim that the original state
|S〉 obeys

|aj |2 ≥
1

2m
− 6µ, and ‖|ψj+1〉 − UjUj−1 . . . U2U1|ψ1〉‖2 ≤

6jµ

m
. (48)

Thus also,

‖|ψm+1〉 − Um . . . U1|ψ1〉‖2 ≤ 6µ. (49)

Note that we choose t, z here, but tie them to another parameter, µ, which we later in (61) choose as
a function of the GSCON problem instance parameters (see Definition 1). In particular, we set it so that
6µ ≤ h ≤ η4−η3

4 .

Proof. We assume the previous tests would fail with probabilities below the ri’s listed in Figure 4.2, so the
previous Lemmas apply. We also assume the SEQUENCE test rejects the proof with probability below r5 =
µ2

32Gm4 . Thanks to Lemma 10, we know the probabilistic preparation of |T ′〉 from |S〉 and |U〉 according to the
description in the SEQUENCE test succeeds with probability at least 1

8mG . Therefore, the subsequent SWAP test
between |T ′〉 nd |S′〉 must not reject with probability above µ2

4m3 . Let us unravel what it implies for the state
|S〉.

Recall that |S′〉 =
∑

j a
′
j |j〉|ψ′j〉. Lemma 9 with a parameter z about a SWAP test between |S〉 and |S′〉, says

that the norm squared of |δj+1〉 = aj+1|ψj+1〉 − a′j+1|ψ′j+1〉 is below z. Similarly, we can apply the procedure
from Lemma 9 to a SWAP test between |T ′〉 and |S′〉. Recalling the previous result (47), we can write

|T ′〉 − |S′〉 =
∑
j

|j + 1〉
(
ajUj |ψj〉+ ajξj |ξj〉 − a′j+1|ψ′j+1〉︸ ︷︷ ︸

|yj〉

)
. (50)

Thus, if the SWAP test between |T ′〉 and |S′〉 succeeds with probability at least 1 − z
4 , then for any j, we have

〈yj |yj〉 ≤ z.
Let us combine these facts and use the triangle inequality to derive:

‖ajUj |ψj〉 − aj+1|ψj+1〉‖2 ≤ ‖|yj〉‖2 + ‖ajξj |ξj〉‖2 +
∥∥a′j+1|ψ′j+1〉 − aj+1|ψj+1〉

∥∥
2
≤ 2
√
z +
√
κj , (51)

where κj = |ajξj |2 ≤ 848G
tm |aj |2. Note that the left side is the smallest for real positive aj , a′j and Uj |ψj〉 =

|ψj+1〉, which can be rewritten as ||aj | − |aj+1|| ≤ ‖ajUj |ψj〉 − aj+1|ψj+1〉‖2. Therefore, when we take into

account what we know about ξj , we obtain ||aj | − |aj+1|| ≤ 2
√
z+

√
848G
tm |aj |. Now, at least one of the |aj |’s

has to be at least 1√
2m

, as
∑2m

j=1 |aj |2 = 1. Let us see how small could some other |aj | be, as it must be tied to
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the neighboring ones by what we proved above. In m steps away from the specific large ak, all of the aj have
to obey (w.l.o.g. assuming positive |aj | and dropping the absolute values)

aj+1 ≥ aj
(

1−
√

848G

tm

)
− 2
√
z. (52)

Doing this m times and assuming a large m, labeling v = 1−
√

848G/tm, we get

aj+m ≥ ajvm − 2
√
z
(
1 + v + v2 + · · ·+ vm−1

)
≥ aj

(
1−

√
848Gm

t

)
− 2m

√
z. (53)

We now choose a small enough z and a large enough t:

z =
µ2

m3
, t =

848G

mz
=

848Gm2

µ2
. (54)

parametrized by a new free parameter µ, which we later (61) choose according to the parameters η2, η3, η4 from

the GSCON problem instance. For small µ, we have
√

848Gm
t = µ√

m
, and 2m

√
z = 2µ√

m
. When we use it in

(53), together with |aj | ≥ 1√
2m

, we obtain |aj+m| ≥ 1√
2m

(1− 6mµ). This implies what we wanted to prove
for all i:

|ai|2 ≥
1

2m
(1− 12mµ) =

1

2m
− 6µ, (55)

i.e. all the coefficients ai have to be very close to 1
2m (for small µ), and thus significant.

We can now prove that the state |S〉 is made from a sequence of states close to |ψj+1〉 = Uj . . . U1|ψ1〉.
Combining (51) with (55), and using the triangle inequality j times, we get

‖Uj . . . U1|ψ1〉 − |ψj+1〉‖2 ≤ j
√

2m

1− 12mµ

(
2
√
z + max

j

√
κj

)
≤ 3j

√
2mz

1− 12mµ
≤ 6jµ

m
, (56)

where the upper bound on κj and z comes from (54), and we assume 12mµ� 1. For j = m, this also means
the last claim of this Lemma holds: ‖Um . . . U1|ψ1〉 − |ψm+1〉‖2 ≤ 6µ. �

The guarantee (55) for the state |S〉 means we have probability at least 1
2m − 6µ to measure any i, when

measuring the label register. Thus, we can obtain any |ψi〉 with reasonable probability, and use it to check if
the whole sequence in |S〉 is properly initialized and finalized (for i = 1 and i = m + 1, with the START and
END test), or to verify that each state in it has a low energy (with the LOW test). We will do this in the following
Sections.

4.2.3 Initial state and final state tests

The role of tests 6 (START) and 7 (END) is to check if the sequence |S〉 (and |S′〉) is actually relevant to the
problem – that it connects to the two states we want to traverse between in the ground space of the GSCON
problem Hamiltonian.

First, we have the START test. Thanks to Lemma 11, we know there is a probability at least 1
2m − 6µ

to measure i = 1 in the label (first) register of |S〉, giving us |ψ1〉 in the data (second) register. When we
successfully SWAP it with the initial state |ψ〉 from the GSCON instance, we get a guarantee on their closeness.
The END test works analogously, for the i = m + 1 case, comparing |ψm+1〉 with |φ〉. However, note that we
put much more emphasis on the START test, as we can rely on perfect completeness for collaborating Merlins,
while the END test has some probability of false rejections even for good proofs, thanks to the η3 limitation
from the problem instance.

We illustrate the following argument in Figure 3. The second claim of Lemma 11 guarantees that |ψm+1〉
is close to Um . . . U1|ψ1〉. This, in turn, is close to Um . . . U1|ψ〉, because |ψ1〉 is close to |ψ〉. Thus, when
we measure i = m + 1 in the label register of |S〉 and obtain |ψm+1〉 in the data register, we can SWAP test it
with the final state |φ〉 from the GSCON instance. Again, a high success rate implies closeness of these states.
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|ψm+1

Um . . . U1|ψ1

Um . . . U1|ψUj . . . U1|ψ

Uj . . . U1|ψ1|ψ1

|ψ

|φ|ψj+1

h

h h

η3 + 3h

< η4

6μ

Corollary 14

Lemma 13

Lemma 12

Lemma 11

6μ

Lemma 11

Figure 3: Our goal is to understand the relationship of the state |ψ〉, its unitary transformations, and |φ〉. How-
ever, the states that we work with are the |ψj〉’s. Passing tests 1-7 with high probability gives us upper bounds
on the distance between the states (the black lines). The dashed line is an implication about the maximum
distance of |φ〉 and Um . . . U1|ψ〉, as h ≤ 1

4(η4−η3) (60) and 6µ ≤ h (61). Note also that the distance between
|ψj+1〉 and Uj . . . U1|ψ〉 for all j is not larger than 2h ≤ 1

3

√
η2/r (60), which will be required for Corollary 16.

Combining these results implies that Um . . . U1|ψ〉 is strictly closer than η4 to the final GSCON state |φ〉. Let
us prove this.

Our goal is to set test 6 (START) up so that if it fails with probability below p6r6 = 1 − s′, we get a very
good guarantee on the closeness of |ψ1〉 and |ψ〉. We then set test 7 (END) up so that if it fails with probability
below p7r7 = 1 − s′, we get a strong guarantee on the closeness of |ψm+1〉 and |φ〉. Combined with the
result on the closeness of |ψm+1〉 and Um . . . U1|ψ1〉, we will thus arrive at a bound on the closeness of |φ〉 and
Um . . . U1|ψ〉, required to invoke the promise of the GSCON instance.

On the other hand, in the completeness case, good proofs are rejected with probability at most 1 − c′ =
p7
2m

(
η23
2 −

η43
8

)
, and we need to make sure that c′ is at least an inverse-polynomial inm larger than the soundness

bound s′, leaving open a completeness-soundness gap.
Before we turn to the tests in more detail, let us look at the SWAP test one last time to discuss a technical

issue – freedom of phase. A SWAP test on |a〉 and |b〉 passes with the same probability as a SWAP test on |a〉
and |b′〉 = eiω|b〉 for some phase eiω. There exists a phase eiωsuch that 〈a|b′〉 is real and nonnegative. Thus,
the rejection probability of the SWAP test is

1− |〈a|b〉|2
2

=
1− |〈a|b′〉|2

2
=

1−
(

1− 1
2 ‖|a〉 − |b′〉‖

2
2

)2

2
=
w2

2
− w4

8
, (57)

where w = ‖|a〉 − |b′〉‖2, as for real and nonnegative 〈a|b′〉 we can write ‖|a〉 − |b′〉‖22 = 2 − 2Re(〈a|b′〉) =
2 − 2|〈a|b′〉| = w. Note that the maximum value of w is

√
2, when we look at two orthogonal states. We also

know that (57) is a growing function of w for 0 ≤ w ≤
√

2, as the derivative of (57) is w
(

1− w2

2

)
.

Let us consider test 6 (START). When the previous tests pass with high enough probability, in the NO case,
the probability to measure i = 1 in the label register of |S〉 is at least 1

2m − 6µ. We then perform a SWAP test
between |ψ1〉 and |ψ〉. For ‖|ψ1〉 − |ψ〉‖2 = w (w.l.o.g. assuming real and nonnegative 〈ψ1|ψ〉), this test fails
with probability w2

2 − w4

8 . The provers’ best shot at tricking the verifier is to maximize w, while keeping the
overall probability of test failure below what is asked for in the test. Formally:

Lemma 12 (START test soundness). Assume the previous tests would fail with respective probabilities below
r1, . . . , r5 from Figure 4.2. If test 6 (START) would fail with probability below r6 =

(
1

2m − 6µ
)
h2

4 for some
h ≤
√

2, then the states |ψ1〉 and |ψ〉 are close, i.e. there exists a phase eiωψ such that
∥∥|ψ1〉 − eiωψ |ψ〉

∥∥
2
< h.
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Proof. As the previous tests would pass with high enough probability, Lemma 11 guarantees that the probability
of measuring i = 1 in the label register is at least 1

2m −6µ. Let us calculate the failure probability of the START

test, using the SWAP test rejection probability (57):(
1

2m
− 6µ

)(
w2

2
− w4

8

)
≥
(

1

2m
− 6µ

)
w2

4
, (58)

because w2

2 − w4

8 ≥ w2

4 for w ≤
√

2. Thus, there must exist a ωψ such that∥∥|ψ1〉 − eiωψ |ψ〉
∥∥

2
= w < h, (59)

in order that the failure probability remains below r6 =
(

1
2m − 6µ

)
h2

4 , which we assumed in the Lemma. �

Lemma 13 (END test soundness). Assume tests 1-6 would fail with respective probabilities below r1, . . . , r6

listed in Figure 4.2. If test 7 (END) would reject with probability below r7 =
(

1
2m − 6µ

) ( (η3+h)2

2 − (η3+h)4

8

)
,

such that η3 + h ≤
√

2, then there exists a phase eiωφ such that
∥∥|ψm+1〉 − eiωφ |φ〉

∥∥
2
< η3 + h.

Proof. As the previous tests pass with high enough probability, Lemma 11 guarantees that the probability of
measuring i = m+ 1 in the label register is at least 1

2m − 6µ. We observe that if there did not exist a phase ωφ
such that

∥∥|ψm+1〉 − eiωφ |φ〉
∥∥

2
= w < η3 + h, the rejection probability of the SWAP test (57) between |ψm+1〉

and |φ〉 would be w2

2 − w4

8 ≥
(η3+h)2

2 − (η3+h)4

8 , as this is a growing function of w for 0 ≤ w ≤
√

2. Thus, the
rejection probability of the END test would be at least r7, a contradiction. Therefore, the claim is true. �

We will choose h as the minimum of two values calculated from the GSCON instance parameters, recalling
that ∆ ≤ min {η4 − η3, η2}:

h = min

{
η4 − η3

4
,
1

6

√
η2

R

}
= min

{
∆

4
,
1

6

√
∆

R

}
. (60)

The first value implies η3 + h < η4 ≤
√

2 required for Lemma 13 and Corollary 14. The second value is
required later in Corollary 16. We then choose

µ =
h2

144m(η3 + h)
, (61)

so that 6µ ≤ h (required for Figure 4.2 and Corollary 14), µ < 1
36m (required in the proof of Lemma 15), as

well as for a gap result (required in the completeness Section 4.3). Let us we define a parameter γ by(
1

2m
− 6µ

)(
(η3 + h)2

2
− (η3 + h)4

8

)
=

1

2m

(
η2

3

2
− η4

3

8

)
+ γ. (62)

We can now prove that

γ =

(
1

2m
− 6µ

)(
(η3 + h)2

2
− (η3 + h)4

8

)
− 1

2m

(
η2

3

2
− η4

3

8

)
(63)

=
1

2m

(
(η3 + h)2 − η2

3

2
− (η3 + h)4 − η4

3

8
− 12µm

(
(η3 + h)2

2
− (η3 + h)4

8

))
(64)

≥ 1

2m

(
h(2η3 + h)

2

h

4

(
2
√

2− h
)
− 6µm(η3 + h)2

)
(65)

≥ h2(η3 + h)

16m

(√
2− 48µm(η3 + h)

h2

)
≥ h2(η3 + h)

16m
, (66)

labeling a = η3 + h and b = η3 and utilizing a2 − b2 − 1
4(a4 − b4) = (a − b)(a + b)

(
1− a2+b2

4

)
, which is

not larger than 1
4(a− b)(a+ b)h

(
2
√

2− h
)
, when we realize that a ≤

√
2 and b ≤

√
2− h.

With this in hand, we can show that if the Tests 1-7 pass with high enough probability, the state |S〉 contains
enough information about the state sequence Uj . . . U1|ψ〉, with Uj’s from the state |U〉. In other words, the
states Um . . . U1|ψ〉 and |φ〉 must be close up to a phase.
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Corollary 14 (GSCON final state condition). Assume tests 1-7 would fail with respective probabilities below
r1, . . . , r7, given in Figure 4.2. Then there is a phase eiωφ such that

∥∥Um . . . U1|ψ〉 − eiωφ |φ〉
∥∥

2
< η3 + 3h <

η4.

Proof. To show this, we combine the previous results, as illustrated in Figure 3, and recall that h ≤ η4−η3
4 (60).

1. |ψj+1〉 is close to Uj . . . U1|ψ1〉, thanks to Lemma 11 about the SEQUENCE test.

2. |ψ1〉 is close to |ψ〉, thanks to Lemma 12 about the START test.

3. |ψm+1〉 is close to |φ〉, thanks to Lemma 13 about the END test.

Combining the previous two results, we realize that |ψm+1〉 has high overlap with Um . . . U1|ψ〉. In detail, the
triangle inequality tells us that without loss of generality, we can choose the phases of the vectors so that the
overlaps are real and nonnegative, and∥∥Um . . . U1|ψ〉 − eiωφ |φ〉

∥∥
2
≤ ‖Um . . . U1|ψ1〉 − |ψm+1〉‖2
+ ‖Um . . . U1|ψ〉 − Um . . . U1|ψ1〉‖2 + ‖|ψm+1〉 − |φ〉‖2
< 6µ+ h+ (η3 + h) ≤ η3 + 3h < η4, (67)

as guaranteed by the results 1-3 described above and our choice of µ (61). �

Therefore, we now either have one of the tests 1-7 rejecting with probability at least ri, resulting in overall
acceptance at most s′ = 1 − piri, or a guarantee that the state |S〉 is very close to a sequence of states |j〉|ψj〉
with |ψj〉 = Uj . . . U1|ψ〉 and |ψm+1〉 = |φ〉. However, in the NO case this is impossible – so the last test LOW

should reject the proof. We show this in the next Section.

4.2.4 Low energy testing

We run the final test 8 (LOW) with probability p8. We will show that if it would pass with probability ≥ s′,
it would mean the states in the sequence Uj . . . U1|ψ〉 have energy strictly below η2. However, thanks to the
promise of the GSCON problem, in the NO case there doesn’t exist a sequence of states Uj . . . U1|ψ〉 ending
< η4 close to |φ〉, with all states with energy strictly below η2. This will mean that either the final test rejects
with probability at least r8, or one of the previous tests must reject with probability at least its ri (see Figure 4.2).

We have chosen to analyze the frustration-free variant of GSCON, with positive semidefinite Hamiltonians
and η1 = 0, i.e. exactly traversing a frustration-free ground space, because we want to avoid a technical4 issue.
Since we only have one (two) copies of the witness, it is difficult to perform a precise enough low-energy test,
which would not disturb the completeness of the procedure.

In practice, we measure the label register of |S〉, obtaining a label i. Thanks to (48), we know the probability
of measuring any is not too small. We then measure the energy of the state |ψi〉, and reject or accept depending
on the result. With the guarantees collected so far, we now have a sequence of states Uj . . . U1|ψ〉 that ends
strictly closer than η4 to |φ〉 (67). Therefore, if we would test the energy of the states Uj . . . U1|ψ〉, at least one
state in the sequence must have energy above η2. Now, because the states Uj . . . U1|ψ〉 are close to the states
|ψj+1〉, testing whether the energy of the |ψj+1〉’s is low allows us to test if the energy of the Uj . . . U1|ψ〉’s is
low enough. In detail,

Lemma 15 (Low energy testing, frustration-free case). Assume tests 1-7 would fail with respective probabilities
below r1, . . . , r7, listed in Figure 4.2. If the final test (LOW) fails with probability below r8 = η2

8Rm , with R the
number of terms in the Hamiltonian of the ff-GSCON instance, then the energy of each state |ψi〉 must be below
η2
2 .

4 Our proof would also go through for a very small η1, or could be avoided with more copies of the proof. However, we haven’t
found a good enough way of perfoming a single measurement of energy for non-frustration-free Hamiltonians, that would with high
enough probability tell if an energy of a single copy of a state (a superposition of eigenstates with various energies) is below or above
thresholds that could be very close together.
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Proof. Assuming that tests 1-7 pass with the probabilities denoted in Figure 4.2, Lemma 11 guarantees that the
probability of measuring any i in the label register of state |S〉 is at least 1

2m − 6µ. When we measure the label
register of the state |S〉, we obtain some value i and a state |ψi〉 in the data register. Using a measurement circuit
[15, p.142-143] for a local Hamiltonian, we can now measure the energy of |ψi〉 for our GSCON Hamiltonian
H made from r positive semidefinite terms with norm at most 1. We will reject if this circuit outputs 0, which
happens with probability 1

R〈ψi|H|ψi〉.
Now, assume the energy of a state |ψi〉 was above η2

2 , the rejection probability for the energy measurement
circuit would be above η2

2R . The rejection probability of the LOW test would thus be above(
1

2m
− 6µ

)
η2

2R
>

η2

8Rm
, (68)

as µ < 1
24m thanks to (61). However, this (68) disagrees with the assumption of the Lemma. Therefore, the

energy of each |ψi〉 must not be above η2
2 . �

We can now finally show that if test 8 passes with high probability, the energy of each state Uj . . . U1|ψ〉
must be low enough.

Corollary 16 (Low energy requirement for GSCON). Assume tests 1-8 would fail with respective probabilities
below r1, . . . , r8, listed in Figure 4.2. Then the energy of each state Uj . . . U1|ψ〉 is strictly below η2.

Proof. We already know (68). Thanks to Lemma 11 about the SEQUENCE test and Lemma 12 about the START

test, we also know that

∆ψj+1
=
∥∥|∆ψj+1

〉
∥∥

2
≤ 2h, (69)

when we label |∆ψj+1
〉 = Uj . . . U1|ψ〉 − |ψj+1〉. Therefore, if Lemma 15 says the energy of |ψj+1〉 is at most

η2
2 , the energy of the state Uj . . . U1|ψ〉 is

〈ψ|U †j . . . U
†
1HUj . . . U1|ψ〉 = 〈ψj+1|H|ψj+1〉+ 〈∆ψj+1

|H|ψj+1〉+ 〈ψj+1|H|∆ψj+1
〉+ 〈∆ψj+1

|H|∆ψj+1
〉

≤ η2

2

(
1 + 2∆ψj+1

)
+ ‖H‖∆2

ψj+1
≤ η2

2

(
1 + 2∆ψj+1

)
+R∆2

ψj+1
. (70)

Recall that we chose h (60) so that ∆ψj+1
≤ 2h ≤ 1

3

√
η2
R , which means 2∆ψj+1

≤ 2
3 and R∆2

ψj+1
≤ η2

9 . The

energy of each Uj . . . U1|ψ〉 is thus upper bounded by 17
18η2 < η2. This is strictly below η2, as we wanted to

show. �

Let us now combine the results we have proven so far. The argument from Lemma 4 to Corollary 16
collectively says that if the tests pass with high enough probability, we get guarantees about the sequence
Uj . . . U1|ψ〉. However, all those guarantees are irreconcilable with the NO case of the GSCON problem –
there must be at least one state Uj . . . U1|ψ〉 with energy at least η2, if the sequence starts at |ψ〉 and ends
near enough |φ〉. Therefore, at least one of the tests must fail with probability at least the respective rejection
threshold ri listed in Figure 4.2. There, we also set the probabilities p1, . . . , p8 for running the tests, so that
when we combine them with the desired thresholds for rejection ri, we get piri = 1 − s′ for some s′. This is
easily achievable for the following set of pi’s:

pi =
r−1
i∑
j r
−1
j

, (71)

which obey
∑

i pi = 1, with each pi at least an inverse polynomial in m. Thus, in the NO case, the probability

to pass the tests for cheating provers is at most s′ = 1−
(∑

j r
−1
j

)−1
(10).

This concludes the soundness part of Theorem 2. It remains to show completeness – the acceptance proba-
bility of the protocol in the YES case must be at least c′, which needs to be at least an inverse polynomial in n
above s′.
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4.3 Completeness

Let us run through how well the tests can run in the YES case, with honest provers following the protocol, and
show a high probability of acceptance if the provers behave honestly.

The states |U〉 and |U ′〉 are identical, and contain computational-basis encoded unitary gates Ui. The first
test, SWAP U, and the second test, UNIQUE, thus pass perfectly.

Let us look at the third test, UNIFORM on a state |U〉 with a proper form. The probability to pass the gate-
register projection is exactly 1

G . When this passes, the probability to pass the label-register projection is exactly
1. Therefore, this test also passes perfectly for honest provers.

We can turn to the tests for the |S〉 states. As before, Test 4 (SWAP S) passes perfectly. What about Test 5
(SEQUENCE)? The probabilistic procedure that applies the gates in |U〉 to the state |S〉 works with probability
at least 1

2m . After the shift in the label register, the comparison with the state |S′〉 passes perfectly. Altogether,
Test 5 passes perfectly again.

The sixth test, START, passes perfectly on a proper witness that has |ψ1〉 = |ψ〉.
The seventh test, END, involves i = m + 1, where we have a problem instance promise that there exists a

state |ψ〉 for which |ψm+1〉 = Um . . . U1|ψ1〉 = Um . . . U1|ψ〉 is at most η3 far from |φ〉. Therefore, when we
check this with a SWAP test, there is a chance at most 1

2m

(
η23
2 −

η43
8

)
to reject a good witness.

Finally, we chose to look at ff-GSCON instances with η1 = 0, with a frustration-free, positive semidefinite
Hamiltonian, all the states |ψj〉 have energy exactly zero for all of the Hamiltonian’s terms, so the final test,
LOW, passes perfectly. If we did not choose this variant of GSCON, the ambiguity in the low-energy test-
ing in the YES case could reduce the completeness unfavorably. We leave as an open question, whether this
requirement can be removed or not.

Altogether, the probability to pass the whole procedure for honest, unentangled provers is at least

c′ ≥ 1− p7

2m

(
η2

3

2
− η4

3

8

)
, (72)

thanks to the freedom of the final state |ψm+1〉 to be a little bit away from the expected final state |φ〉 in test 7.

4.4 The completeness-soundness gap is an inverse polynomial

Let us now compare the completeness bound from Section 4.3 with the probability of acceptance in the NO
case from Section 4.2. We choose the respective test-running probabilities p1, . . . , p8 according to (9) so that
piri = 1 − s′, where ri is the desired maximum rejection probability for a given test, listed in Figure 4.2. It
means the maximum acceptance probability in the NO case is s′. Thanks to p7r7 = 1 − s′ and recalling (66),
the completeness-soundness gap for our four-unentangled-state protocol thus obeys

c′ − s′ ≥ 1− p7

(
η2

3

2
− η4

3

8

)
− (1− p7r7) = p7γ ≥

p7h
2(η3 + h)

16m
. (73)

It is at least an inverse polynomial in m and thus n. This concludes the proof of Theorem 2.
For those wishing to see what a terrible inverse polynomial it is, let us make an estimate. First, we need

a lower bound on p7 = r−1
7 /

∑
j r
−1
j . Looking at Figure 4.2, we see that the prohibitively dominating term

in
∑

j r
−1
j is r−1

1 , and we can upper bound it by O
(
m32G10∆−12

)
, where ∆ is an upper bound on h in

(60), coming from the GSCON parameters. On the other hand, we can estimate r−1
7 to be roughly m∆−2.

Plugging these estimates into (73), we conclude that a lower bound on the final completeness-soundness gap is
in Ω(∆13m−32G−10).

Acknowledgements

DN’s research has received funding from the People Programme (Marie Curie Actions) EU’s 7th Framework
Programme under REA grant agreement No. 609427. This research has been further co-funded by the Slovak
Academy of Sciences. LC and DN were also supported by the Slovak Research and Development Agency grant
QETWORK APVV-14-0878. MS thanks the Alexander-von-Humboldt Foundation for support.

20



References

[1] Scott Aaronson, Salman Beigi, Andrew Drucker, Bill Fefferman, and Peter Shor. The power of unentan-
glement. Theory of Computing, 5(1):1–42, 2009.

[2] Salman Beigi. NP vs QMAlog(2). Quantum Information & Computation, 10(1&2):2, 2010.

[3] Hugue Blier and Alain Tapp. A Quantum Characterization Of NP. computational complexity, 21(3):499–
510, Sep 2012.

[4] F. G. S. L. Brandão, M. Christandl, and J. Yard. Faithful Squashed Entanglement. Communications in
Mathematical Physics, 306:805–830, September 2011.

[5] Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf. Quantum fingerprinting. Phys. Rev.
Lett., 87:167902, Sep 2001.

[6] J. Chen and A. Drucker. Short Multi-Prover Quantum Proofs for SAT without Entangled Measurements.
ArXiv e-print: 1011.0716, November 2010.

[7] Alessandro Chiesa and Michael A. Forbes. Improved Soundness for QMA with Multiple Provers. Chicago
Journal of Theoretical Computer Science, 2013(1), January 2013.

[8] Irit Dinur. The PCP Theorem by Gap Amplification. J. ACM, 54(3), June 2007.

[9] François Le Gall, Shota Nakagawa, and Harumichi Nishimura. On qma protocols with two short quantum
proofs. Quantum Info. Comput., 12(7-8):589–600, July 2012.

[10] Sevag Gharibian. Strong NP-hardness of the Quantum Separability Problem. Quantum Info. Comput.,
10(3&4):343–360, March 2010.

[11] Sevag Gharibian and Jamie Sikora. Ground State Connectivity of Local Hamiltonians. In Automata,
Languages, and Programming: 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,
2015, Proceedings, Part I, pages 617–628, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[12] Leonid Gurvits. Classical Deterministic Complexity of Edmonds’ Problem and Quantum Entanglement.
In Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC ’03, pages
10–19, New York, NY, USA, 2003. ACM.

[13] A. W. Harrow and A. Montanaro. An efficient test for product states with applications to quantum merlin-
arthur games. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 633–
642, Oct 2010.

[14] Stephen P. Jordan, Hirotada Kobayashi, Daniel Nagaj, and Harumichi Nishimura. Achieving perfect
completeness in classical-witness quantum merlin-arthur proof systems. Quantum Info. Comput., 12(5-
6):461–471, May 2012.

[15] A.Y. Kitaev, A. Shen, and M.N. Vyalyi. Classical and Quantum Computation. Graduate studies in
mathematics. American Mathematical Society, 2002.

[16] Y.-K. Liu. The Complexity of the Consistency and N-representability Problems for Quantum States. PhD
thesis, University of California, San Diego, 2007.

[17] Shota Nakagawa, Harumichi Nishimura. On the Soundness of the Blier-Tapp QMA Protocol. In 23rd
Quantum Information Technology Symposium (QIT23) (In Japanese), pages pp. 132–135. [online: http:
//www.math.cm.is.nagoya-u.ac.jp/~hnishimura/NN10.pdf], 2010.

21

http://www.math.cm.is.nagoya-u.ac.jp/~hnishimura/NN10.pdf
http://www.math.cm.is.nagoya-u.ac.jp/~hnishimura/NN10.pdf

	1 Introduction: Unentangled Provers and Short Proofs
	2 The Ground space connectivity problem (GSCON)
	3 Shorter proofs for Ground State Connectivity relying on unentanglement.
	3.1 A shorter proof: the sequence of states in superposition
	3.2 The main result

	4 Proof of Theorem ??.
	4.1 The verification procedure
	4.2 Soundness analysis
	4.2.1 Verifying consistency and fullness of the sequence "026A30C U "526930B 
	4.2.2 Verifying consistency of the states "026A30C S "526930B 
	4.2.3 Initial state and final state tests
	4.2.4 Low energy testing

	4.3 Completeness
	4.4 The completeness-soundness gap is an inverse polynomial


