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Two-qubit Bell-diagonal states can be depicted as a tetrahedron in three dimensions. We inves-
tigate the geometric structure of quantum resources, including coherence and quantum discord, in
the tetrahedron. The ordering of different resources measures is a common problem in resource the-
ories, and which measure should be chosen to investigate the structure of resources is still an open
question. We consider the geometric structure of quantum resources which is not affected by the
choice of measure. Our work provides a complete structure of coherence and quantum discord for
Bell-diagonal states. The pictorial approach also indicates how to explore the structure of resources
even when we don’t have consistent measure of a concrete quantum resource.
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I. INTRODUCTION

Quantum correlations including entanglement, discord
and coherence have been widely studied over the last
three decades. In the early days of quantum information
theory, entanglement [1] was regarded as a basic resource
that can achieves many tasks which are impossible within
the framework of classical physics, such as quantum key
distribution [2], teleportation [3], and superdense coding
[4]. However, entanglement does not capture all quan-
tum characteristic since some separable states still con-
tain quantum resources, i.e., they are not entirely classi-
cal [5]. And later another type quantum resource beyond
entanglement called quantum discord [6], which has been
proven to be an important quantum resource in quantum-
information processing tasks [7–12], was proposed. Re-
cently, quantum coherence, which marks the departure
of quantum theory from classical physics, is considered
to be a equally important resource in quantum physic.
The resource theory of coherence has been widely stud-
ied [13–17] since the quantification of coherence[13].

Two-qubit Bell-diagonal states, depicted as a tetrahe-
dron in three dimensions, are significant for understand-
ing states with more complex structure. Resource theo-
ries for Bell-diagonal states have attracted many atten-
tions in recently years [18–20]. The geometric structures
of entanglement and discord for Bell-diagonal states have
been depicted by the level surface of concurrence and
quantum discord nonanalytic [21, 22]. The purpose of
this paper is to investigate the structure of coherence and
quantum discord for Bell-diagonal states in the tetrahe-
dron explicitly.

Based on the rigorous framework of coherence pro-
posed by Baumgratz et al. [13], several reasonable mea-
sures [23–26] have been put forward. In this paper,
we first consider two well-known coherence measures,
namely, the l1 norm of coherence and relative entropy of
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coherence, which are simple and useful tools to uncover
various characteristics of quantum coherence [27–30]. We
show that the relative entropy of coherence and l1 norm
of coherence do not give the same ordering for all Bell-
diagonal states. Which measure should be used to quan-
tify the coherence of Bell-diagonal states is a puzzling
problem. To avoid this problem, we divide the tetrahe-
dron into countless rays which are the trajectory of Bell
diagonal states under incoherent quantum channels, and
the coherence of the states in those rays are not frozen.
Monotonicity of coherence insures that the states limited
in any one of those rays have the same ordering for all
coherence measures. Moreover, quantum discord[5] and
geometric quantum discord[31] give the same ordering for
the states limited in any one ray towards the center of
tetrahedron.

We indicate the complete structures of coherence and
quantum discord, respectively, which are identical for
different measures of coherence and quantum discord.
Moreover, we analyse the properties of level surface of
coherence and discord in Bell-diagonal states. The ex-
plicit structure of quantum resources can be used as the
guidance for studying the behavior of resources under
quantum channels, such as the frozen of resources [19],
sudden death [8] and sudden transition [20].

This paper is arranged as follows. In Sec. II, we inves-
tigate the ordering of coherence for Bell-diagonal states.
In Sec. III, we consider the evolution of states under
incoherent quantum channels and obtain the structure
of coherence in three-parameter space. In Sec. IV, we
research the structure of discord for Bell-diagonal states
by means of the ordering-preserving states. Finally, we
summarize our results in Sec. V.

II. THE ORDERING OF COHERENCE FOR
BELL DIAGONAL STATES

The Bell-diagonal states of two qubits with a compu-
tational base {|00〉, |01〉, |10〉, |11〉}, have the form [18, 32]
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Figure 1. Two-qubit Bell-diagonal states described by param-
eters c1, c2, c3 can be depicted as a tetrahedron T . The blue
octahedron O in tetrahedron, specified by |c1|+ |c2|+ |c3| 6 1,
is the set of separable Bell-diagonal states. There are four
entangled regions outside O, in each of entangled region the
biggest eigenvalue λab is the one associated with the Bell state
at the vertex. Zero discord states lie on the axes and incoher-
ent states lie on c3 axis.

ρAB =
1

4
(I ⊗ I +

3∑
j=1

cjσj ⊗ σj) =
∑
ab

λab|βab〉〈βab|, (1)

with the corresponding density matrix of ρAB to be

ρAB =
1

4

 1 + c3 0 0 c1 − c2
0 1− c3 c1 + c2 0
0 c1 + c2 1− c3 0

c1 − c2 0 0 1 + c3

 , (2)

where I is the identity operator on the subsystem and
the matrices σj are the Pauli spin matrices and cj are
real numbers. The eigenstates of ρAB are the four Bell
states [22]

|βab〉 ≡ (|0, b〉+ (−1)a|1, 1⊕ b〉)/
√

2 (3)

with eigenvalues

λab =
1

4
[1 + (−1)ac1 − (−1)a+bc2 + (−1)bc3], (4)

where a ∈ {0, 1}, b ∈ {0, 1}. The real numbers cj are
limited in a tetrahedron T , as showed in Fig. 1.

For two measures of coherence CA(ρ) and CB(ρ), if the
following condition

CA(ρ1) ≤ (≥)CA(ρ2)⇔ CB(ρ1) ≤ (≥)CB(ρ2), (5)

is satisfied for any arbitrary states ρ1 and ρ2, those two
measures give the same ordering, otherwise they do not.
The following method can be used to judge whether the
two measures of coherence give the same ordering or not.

Step 1: To find two states satisfying the following con-
dition:

CA(ρ1) = CA(ρ2) < CB(ρ1) = CB(ρ2). (6)

The existence of such states signifies that the two mea-
sures do not give the same ordering. Otherwise, to carry
out step 2.

Step 2: Sort the concerned states by the measure CA(ρ)
as an ascending sequence. Then, calculate another mea-
sure CB(ρ) orderly and get the sequence {CB(ρ)}. If
{CB(ρ)} is also an ascending sequence, it can be declared
that the two measures give the same ordering for those
states, otherwise, the two measures do not imply the
same ordering. What’s more, for continuous states, the
sequence {CB(ρ)} has no extreme point (or the extreme
point is starting point or endpoint) and its monotone
increasing imply that the two measures give the same
ordering.

In Ref. [13], a strict framework of coherence has been
proposed to quantify suitable coherence measure, where
the elative entropy of coherence and the l1 norm of co-
herence were put forward. They have been identified as
general and easy-calculating measures.

The relative entropy of coherence is defined [13]

Cre(ρ) = min
δεI

S(ρ‖δ) = S(ρdiag)− S(ρ), (7)

where ρdiag comes from ρ by dropping off-diagonal el-
ements, S(ρ‖δ) = Tr(ρ log ρ − ρ log δ) is the quantum
relative entropy[33] and S(ρ) = −Tr(ρ log ρ) is the von
Neumann entropy. The l1 norm of coherence is defined
[13]

Cl1(ρ) = min
δεI
|ρ− δ|l1 =

∑
i 6=j

|ρij |, (8)

where ρij are entries of ρ.
For two-qubit Bell-diagonal states, the relative entropy

of coherence is given by

Cre = −H(λab)−
2∑
j=1

(1 + (−1)jc3)

2
log2

(1 + (−1)jc3)

4
,

(9)

where H(λab) = −
∑
ab λa,b log2 λab, while the l1 norm of

coherence is given by

Cl1 =
1

2
|c1 − c2|+

1

2
|c1 + c2|. (10)

The results of above equation is summarized in Tab. I.
By using the step 1 of the method mentioned in Sec.

II, the solution of Cl1 tells that Cl1 and Cre do not give
the same ordering for the states limited in the lines which
are parallel to one of the axes. We show the step 2 by
Fig. 2, in which we can clearly find that Cl1 and Cre do
not give the same ordering for all Bell-diagonal states.
One can find either the states for which the ordering is
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Table I. The solution of Cl1 for Bell-diagonal states in four
different regions.

region
c1 − c2 ≥ 0 c1 − c2 ≥ 0 c1 − c2 ≤ 0 c1 − c2 ≤ 0

c1 + c2 ≥ 0 c1 + c2 ≤ 0 c1 + c2 ≥ 0 c1 + c2 ≤ 0

Cl1 c1 −c2 c2 −c1

 

Figure 2. The coherence of Bell-diagonal states sorted by Cl1
as a ascending sequence. The red points represent l1 norm
of coherence Cl1 for two-qubit Bell-diagonal states, the blue
points represent relative entropy of coherence Cre, and n is
correspond to a state with nth place in comparing the value
of Cl1 . While Cl1 becomes bigger and bigger but Cre is not
monotone increasing.

violated or preserved. For simplicity, we consider the
ordering of coherence for the states limited in the cross
section c3 = 0. Cre and Cl1 is a monotone decreasing for
the states limited to c1 and c2 axes towards the origin of
coordinates. The sets of ray states limited in region c2 6=
0, c3 = 0 can be parameterized as c2 = mc1 (m ∈ R),
Then, the relative entropy of coherence is given by

Cre =
1

4
[(1− c1 −mc1) log2(1− c1 −mc1)

+(1− c1 +mc1) log2(1− c1 +mc1)

+(1 + c1 −mc1) log2(1 + c1 −mc1)

+(1 + c1 +mc1) log2(1 + c1 +mc1)]. (11)

The first derivative of Cre is

dCre
dc1

=
1

4
[(−1−m) log2(1− c1 −mc1)

+(−1 +m) log2(1− c1 +mc1)

+(1−m) log2(1 + c1 −mc1)

+(1 +m) log2(1 + c1 +mc1)], (12)

and the second derivative of Cre is

d2Cre
d2c1

=
1

4 ln 2
[

(−1−m)2

1− c1 −mc1
+

(−1 +m)2

1− c1 +mc1

+
(1−m)2

1 + c1 −mc1
+

(1 +m)2

1 + c1 +mc1
]. (13)

It is easy to verify that dCre
dc1
|c1=0= 0 and d2Cre

d2c1
> 0. Thus

the extremum of Cre is Cre = 0 if and only if c1 = 0. It
means that Cre and Cl1 give the same ordering for the
states limited in any one ray from the edge states to the
center of tetrahedron. This can be also verified by the
counterplot in Fig. 3.

Figure 3. The left and right graph are the counterplot of Cre
and Cl1 respectively. Those counterplot have no overlap and
monotone increasing as one moves outward.

III. THE STRUCTURE OF COHERENCE FOR
BELL DIAGONAL STATES

The ordering of coherence measures for Bell-diagonal
states do not preserved, but the relative entropy of co-
herence and l1 norm of coherence show that coherence
of different measures may have an identical structure.
In this section, we consider the structure of coherence
which is not affected by the choice of coherence mea-
sure. Monotonicity of coherence means that coherence
does not increase through incoherent quantum channels.
The trajectory of time evolution under incoherent quan-
tum channels for Bell diagonal states must go through the
level surface of coherence unidirectionally and the coher-
ence is monotone decreasing along the trajectory. The
states limited in those trajectory have the same ordering
for all coherence measures, and, thus, we investigate the
structure of coherence in terms of incoherent quantum
channels.

It is worth-noting that the states limited in c3 axis are
incoherent states, and the states at vertices (Bell states)
are maximally coherent states. For the other states, we
investigate the structure of coherence by using the fact
that incoherent quantum channel do not increase coher-
ence. Incoherent quantum channels can be character-
ized by a set of Kraus operators {Kj}, whose action on
the state ρ of the system can be described as Λ(ρ) =∑
j KjρK

†
j , which satisfy the constrains

∑
j K
†
jKj = I
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and KjIK†j ⊂ I for all j, where I is the set of inco-
herent states. We consider countless sets of states for
which all coherence measure give the same ordering, and
Bell-diagonal states in tetrahedron consist of those sets of
states. We find that depolarizing channel and phase flip
channel can be used to explore the structure of coherence.
It is easy to verify that the above two quantum channels
are both incoherent, and those two quantum channels act
on Bell-diagonal states have no freezing phenomenon.

A. The evolution of states under depolarizing
channel

The depolarizing channel has the elements

K0 =
√

1− 3qI, K1 =

√
q

4
σ1,

K2 =

√
q

4
σ2, K3 =

√
q

4
σ3. (14)

where the parameter q(t) = 1 − e−γt is the strength of
the noise and σ1 is the Pauli matrix. We put depolariz-
ing channel on subsystem A, the time evolution of Bell-
diagonal states can be expressed as

c1(t) = (1− q

2
)c1(0) (15)

c2(t) = (1− q

2
)c2(0) (16)

c3(t) = (1− q

2
)c3(0) (17)

The depolarizing channel on subsystem A achieves the
states transformation toward the center of tetrahedron.
The monotonicity of coherence ensures that all coher-
ence measures give the same ordering and the coherence
is monotone decreasing (except the incoherent states lim-
ited in c3 axis) for the states limited in any ray from the
surface of tetrahedron to the center of tetrahedron.

B. The evolution of states under phase flip channel

The phase flip channel destroys the information con-
tained in the phase relations without an exchange of en-
ergy. The phase flip channel has operation elements

K20 =
√

1− q(t)/2I,
K21 =

√
q(t)/2σ3, (18)

where σ3 is the Pauli matrix. We put phase flip channel
on system A and system B respectively, the time evolu-
tion of Bell-diagonal states can be expressed as

c1(t) = c1(0)e−2γt,

c2(t) = c2(0)e−2γt,

c3(t) ≡ c3(0). (19)

The trajectory of the states under phase flip channel
are straight line perpendicular to c3 axis. The trajectory

implies that the coherence is monotone decreasing, while
the states close to c3 axis.

IV. THE STRUCTURE OF DISCORD FOR
BELL DIAGONAL STATES

We will consider the states limited to any ray from
the surface to the center of tetrahedron to explore the
structure of discord. In this section, we focus on quantum
discord and geometric quantum discord.

The quantum mutual information of system A and B
is given by

I(A : B) = S(A) + S(B)− S(AB). (20)

And the classical mutual information is given in the fol-
lowing form [34]

Jcl(A|B) = S(B)− S(B|A), (21)

where S(B|A) =
∑
a paS(B|a) is the conditional entropy

[33]. If we have a set of positive-operator valued mea-
sures (POVM) with elements Ea = M†aMa and classical
outcome a on subsystem A, we can introduce classical
correlations of the states ρAB in analogy to Eq. (21)

J (B|{Ea}) = S(B)− S(B|{Ea}). (22)

The quantum discord[5] of a state ρAB under a measure-
ment {Ea} is defined as the difference between total cor-
relations, as given by the quantum mutual information
Eq. (21), and the classical correlations (22)

D(B|A) ≡ min
Ea

{I(A : B)− J (B|{Ea})}, (23)

where D(B|A) is minimized over all measurements.
The geometric quantum discord based Hilbert-Schmidt

distance to the states after measure is defined as [31]

DG = min
χεC
‖ρ− χ‖2 = min

χεC
tr[(ρ− χ)2], (24)

where C is the set of classical-quantum states.
For two-qubit Bell-diagonal states, the quantum dis-

cord is given by [35]

D(ρAB) = −H(λab)−
2∑
j=1

(1 + (−1)jc)

2
log2

(1 + (−1)jc)

4
,

(25)

where c = max{|c1|, |c2|, |c3|}. And the geometric quan-
tum discord is given by [31]

DG(ρAB) =
1

4
(c21 + c22 + c23 − c2). (26)

We discuss the Bell-diagonal states in three cases to
investigate the structure of quantum discord. For the
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easy of expression, we define the states limited to any
one ray toward the center of tetrahedron as any one set
of ray states.

Case 1: Any one set of ray states limited in coordinate
axis.

It is easy to verify that D(ρAB) = DG(ρAB) = 0 for the
sets of ray states limited in coordinate axis. As for this
case quantum discord and quantum geometric discord are
unified.

Case 2: Any one set of ray states limited in region
c2 6= 0, c3 = 0.

Any set of ray states limited in region c2 6= 0, c3 =
0, can be parameterized as c1 = mc2, then geometric
quantum discord (26) is

DG(ρAB) =


1
4c

2
2 c = c1

1
4m

2c22 c = c2
1
4 (m2 + 1)c22 c = c3.

(27)

It is obvious that geometric quantum discord and quan-
tum discord are both monotone decreasing for any set of
states toward to the center of tetrahedron in this case.
This can be directly verified by the contourplot in Fig.
4.

Figure 4. The left and right graph are the counterplot of
quantum discord and geometric quantum discord respectively.
Those counterplot also have no overlap and monotone increas-
ing as one moves outward.

Case 3: The rest generic sets of ray states limited in
Bell-diagonal states.

The rays limited in {ci 6= 0, i = 1, 2, 3} are parameter-
ized as c1 = ac3, c2 = bc3, a ∈ R, b ∈ R, as a set of ray
states, then geometric quantum discord (26) is

DG(ρAB) =


1
4 (b2 + 1)c22 c = c1
1
4 (a2 + 1)c23 c = c2
1
4 (a2 + b2)c23 c = c3.

(28)

The result shows that geometric quantum discord is
monotone decreasing for any one set of ray states. It
is easy to verify that quantum discord is also monotone
decreasing for any one set of ray states. In Fig 5, we plot
the level surface of quantum discord and geometric quan-
tum discord. Combining with Fig. 4, one can see that
any one ray towards the center of tetrahedron go through
the level surface of discord and the discord is monotone
decreasing for any set of ray states.

Figure 5. The left and right graph are the level surface of
D = 0.03 and DG = 0.03 respectively.

V. CONCLUSION

We propose a scenario to judge whether the two mea-
sures of coherence give the same ordering or not. Using
our scenario we verify that two coherence measures, the
relative entropy of coherence and l1 norm of coherence,
do not give the same ordering for all Bell-diagonal states.

Considering the monotonicity of coherence, we show
that all coherence measures give the same ordering for
any one set of ray states and for the states limited in
any one line which is perpendicular to c3 axis. Notably,
geometric quantum discord and quantum discord give the
same ordering for any one set of ray states.

We picture the structure of coherence and quantum
discord for Bell-diagonal states as follows. The coherence
is zero for the states limited in c3 axis. As the states close
to the center of tetrahedron and c3 axis, the coherence is
monotone decreasing asymptotically. The level surface of
coherence have no overlap, and can not through c3 axis.
The discord is zero for the states limited in three axes.
As the states close to the center of tetrahedron and three
axes, the discord is monotone decreasing asymptotically.
The level surface of coherence have no overlap, and can
not through three axes.

Our work provides a complete and unified structure of
coherence and quantum discord with different measures
for Bell-diagonal states. The behavior of quantum re-
sources under quantum channel has been widely studied
for past few years. The pictorial structure of coherence
and discord tells us the behavior of resources along the
trajectory directly. The trajectory of time evolution of
quantum states, which only depends on initial states and
quantum channel, is visualized to understand the behav-
ior of quantum resources. We will deeply study the be-
havior of resources by the guidance of our results in the
future.
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