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Abstract Recently, the method that using an entanglement as a resource to distinguish

orthogonal product states by local operations and classical communication (LOCC) has

brought into focus. Zhang et al. presented protocols which use an entanglement to distin-

guish some classes of orthogonal product states in Cm ⊗ Cn [30]. In this paper, we mainly

study the local distinguishability of multipartite product states. For the class of locally

indistinguishable multipartite product states constructed by Wang et al. in [19], we present

a protocol that distinguishes perfectly these quantum states by LOCC using an entangled

state as a resource for implementing quantum measurements.
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1 Introduction

In quantum information theory, the relationship between quantum nonlocality and quantum

entanglement has received considerable attention in the last several decades due to their

deep connections [1–3]. However, Bennett et al. found nine states without entanglement

in C3 ⊗ C3, which cannot be distinguished perfectly by local operations and classical com-

munication (LOCC) [4]. This latter interesting phenomenon is called “nonlocality without

entanglement”, i.e., the local indistinguishability of mutually orthogonal product states by

LOCC, and it has since attracted much attention [5–21]. These developments provided a

better understanding of nonlocality without entanglement.

In 2008, using an entanglement, Cohen perfectly distinguished certain classes of unex-

tendible product bases (UPB) by LOCC in Cm ⊗ Cn [22]. His method using entanglement

as a resource to distinguish the quantum states showed that entanglement is a valuable re-

source for quantum information. This is parallel to well-known theoretical applications of

entanglement such as in quantum information processing, quantum cryptography [23, 24],

quantum teleportation [25,26], and quantum secure direct communication [27–29]. It is thus
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interesting to ask what entanglement resources are necessary and sufficient for distinguishing

indistinguishable quantum states with LOCC.

In 2016, Zhang et al. have shown that a C2⊗C2 maximally entangled states is sufficient

to perfectly distinguish certain classes by LOCC in Cm⊗Cn [30] and have raised the question

for a multipartite system. We believe that any class of locally indistinguishable orthogonal

product states can be perfectly distinguished by LOCC with enough entanglements as re-

sources. On the other hand, Bandyopadhyay et al. have proved that there is no entangled

state as a universal resource for local state discrimination in multipartite systems [31]. This

result says that distinguishability of multipartite orthogonal product states has to be dealt

individually according to the system.

The phenomenon of “nonlocality without entanglement” in multipartite quantum systems

has also been studied in [9,18,19,21]. Niset et al. constructed a set of locally indistinguishable

multipartite orthogonal product bases in Cd1⊗Cd2⊗· · ·⊗Cdn−1⊗Cdn(di ≥ n−1) [9]. Xu et al.

constructed two different classes of locally indistinguishable multipartite orthogonal product

states in any multipartite quantum system [18]. In addition, Wang et al. constructed a set

of LOCC indistinguishable multipartite orthogonal product states by using a set of locally

indistinguishable bipartite orthogonal product states [19]. Recently, Zhang et al. [21] gave

a general construction of locally indistinguishable multipartite orthogonal product states.

It is interesting to see how to use entanglement as a resource to distinguish multipartite

orthogonal product states by LOCC.

In this paper, we consider the set of LOCC indistinguishable multipartite product states

constructed in [19] and show that they can be indeed distinguished by LOCC with entan-

glement as a resource. It is shown by separating the problem into the cases of even and

odd partite states, and each case is solved by considering the lower rank cases. For the

even case, the local distinguishability of a class of orthogonal product states is considered in

the bipartite system. For the odd case, this is dealt with by first establishing the result in

tripartite systems.

2 Local distinguishability of multipartite product states

Let {|i〉}di=1 be the standard orthonormal basis in Cd. A pure state |ψ〉 of Cd ⊗ Cd′(d′ > d)

is said to be maximally entangled if for any orthogonal basis |iA〉 of the subsystem A,

there exists an orthogonal basis |iB〉 of the subsystem B such that |ψ〉 can be written as

|ψ〉 = 1√
d

d
∑

i=1

|iAiB〉 [32].
In the following, we shall study local distinguishability of multipartite product states in

even-partite and odd-partite cases respectively.
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2.1 Local distinguishability for even-partite case

In this subsection, we first consider local distinguishability of orthogonal product states in

a bipartite system. We claim that any class of locally indistinguishable orthogonal product

states can be perfectly distinguished by LOCC with enough entanglements as resources.

In Cm ⊗ Cn(4 ≤ m ≤ n), the following 2n − 1 orthogonal product states are LOCC

indistinguishable [19].

|α± β〉 = 1√
2
(|α〉 ± |β〉), 0 ≤ α ≤ β,

|φ1〉 = (|1〉A + |2〉A + · · ·+ |m〉A)(|1〉B + |2〉B + · · ·+ |n〉B),
|φi〉 = |i〉A|1− i〉B, i = 2, 3, . . . , m,

|φm+1〉 = |1−m〉A|2〉B,
|φm+j−1〉 = |1− (j − 1)〉A|j〉B, j = 3, 4, . . . , m,

|φm+l−1〉 = |1− 2〉A|l〉B, l = m+ 1, m+ 2, . . . , n,

|φm+n〉 = |m〉A|3− (m+ 1)〉B,
|φn+s〉 = |m− 1〉A|s− (s+ 1)〉B,
|φn+t〉 = |m〉A|t− (t+ 1)〉B,

s = m+ 2k − 1, t = m+ 2k, k = 1, 2, . . . , ⌊n−m

2
⌋.

(1)

Using the method presented by Cohen [22], we first need to add two ancillary systems a

and b by sharing an entangle state |ψ〉ab. Now the system a and the system A are both held

by Alice, the system b and the system B are both held by Bob, i.e., Alice and Bob control

aA system and bB system respectively. Then, Bob measures {Bi} and performs one of the

projectors on bB. The result is denoted by an operation B1(|ωi〉AB ⊗ |ψ〉ab), where |ωi〉AB is

the considered state. Finally, Alice and Bob can proceed from here to distinguish the states

using only LOCC.

Theorem 1 In Cm ⊗ Cn(4 ≤ m ≤ n), a Cn ⊗ Cn maximally entangled state is sufficient to

perfectly distinguish the 2n− 1 orthogonal product states (1) by LOCC.

Proof: Let |ψ〉ab be a C
n ⊗ C

n maximally entangled state,

|ψ〉ab =
1√
n

n
∑

i=1

|ii〉ab.

Alice and Bob share |ψ〉ab, and then Bob performs the projector B1 =
∑n

i=1 |ii〉bB〈ii| on bB.

From |ϕi〉 = B1(|φi〉AB ⊗ |ψ〉ab), we have
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|ϕ1〉 = (|1〉A + |2〉A + · · ·+ |m〉A)(|1〉B|11〉ab + |2〉B|22〉ab + · · ·+ |n〉B|nn〉ab),
|ϕi〉 = |i〉A(|1〉B|11〉ab − |i〉B|ii〉ab), i = 2, 3, . . . , m,

|ϕm+1〉 = |1−m〉A|2〉B|22〉ab,
|ϕm+j−1〉 = |1− (j − 1)〉A|j〉B|jj〉ab, j = 3, 4, . . . , m,

|ϕm+l−1〉 = |1− 2〉A|l〉B|ll〉ab, l = m+ 1, m+ 2, . . . , n,

|ϕm+n〉 = |m〉A(|3〉B|33〉ab − |m+ 1〉B|(m+ 1)(m+ 1)〉ab),
|ϕn+s〉 = |m− 1〉A(|s〉B|ss〉ab − |s+ 1〉B|(s+ 1)(s+ 1)〉ab),
|ϕn+t〉 = |m〉A(|t〉B|tt〉ab − |t+ 1〉B|(t+ 1)(t+ 1)〉ab),

s = m+ 2k − 1, t = m+ 2k, k = 1, 2, . . . , ⌊n−m

2
⌋.

(2)

To distinguish these states using LOCC, Alice makes a projective measurement with

2n−2 outcomes. Considering the outcome Ai−1 = |1〉a〈1|⊗ |i〉A〈i|+ |i〉a〈i|⊗ |i〉A〈i|, it leaves
|ϕi〉 invariant and transforms |ϕ1i〉 to |i〉A(|1〉B|11〉ab + |i〉B|ii〉ab) for i = 2, 3, . . . , m. Since

|ϕi〉 and |ϕ1i〉 are two mutually orthogonal states, Bob can easily distinguish the two states

using the projector B(i−1)1,(i−1)2 = |1〉b〈1| ⊗ |1〉B〈1| ± |i〉b〈i| ⊗ |i〉B〈i| for i = 2, 3, . . . , m.

Take the outcome Am = |2〉a〈2| ⊗ |1 − m〉A〈1 − m|, the only remaining possibility is

|ϕm+1〉, which has thus been successfully identified. In the same way, Alice can identify

|ϕm+j−1〉 and |ϕm+l−1〉 by projector Am+j−2 = |j〉a〈j| ⊗ |1 − (j − 1)〉A〈1 − (j − 1)| and
Am+l−2 = |l〉a〈l| ⊗ |1− 2〉A〈1− 2| (j = 3, 4, . . . , m, l = m+ 1, m+ 2, . . . , n) respectively.

For the outcome Am+n−1 = |3〉a〈3| ⊗ |m〉A〈m|+ |(m+ 1)〉a〈(m+ 1)| ⊗ |m〉A〈m|, it leaves
|ϕm+n〉 invariant and transforms |ϕ1m+n

〉 to |m〉A(|3〉B|33〉ab + |m+ 1〉B|(m+ 1)(m+ 1)〉ab).
Bob can easily identify the two states, since any two orthogonal states can be distinguished.

In the same way, |ϕn+s〉 and |ϕm+t〉 can be distinguished for s = m+2k−1 and t = m+2k,

where k = 1, 2, . . . , ⌊n−m
2

⌋.
Therefore, we have succeeded in distinguishing the states (1) by LOCC using a C

n ⊗C
n

maximally entangled state as a resource.

Example 1 In C
4 ⊗ C

5, a C
5 ⊗ C

5 maximally entangled state is sufficient to perfectly

distinguish the following 9 LOCC indistinguishable states by LOCC.

|α± β〉 = 1√
2
(|α〉 ± |β〉), 0 ≤ α ≤ β,

|φ1〉 = (|1〉A + |2〉A + · · ·+ |4〉A)(|1〉B + |2〉B + · · ·+ |5〉B),
|φ2〉 = |2〉A|1− 2〉B, |φ3〉 = |3〉A|1− 3〉B,
|φ4〉 = |4〉A|1− 4〉B, |φ5〉 = |1− 4〉A|2〉B,
|φ6〉 = |1− 2〉A|3〉B, |φ7〉 = |1− 3〉A|4〉B,
|φ8〉 = |1− 2〉A|5〉B, |φ9〉 = |4〉A|3− 5〉B.

(3)
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These states can be described more specifically by a box-diagram (Fig. 1), where all

states are shown except |φ1〉, as the latter would have covered the whole picture.

In fact, it follows from the proof of Theorem 1 that one uses the states

|ψ〉ab =
1√
5
(|11〉ab + |22〉ab + |33〉ab + |44〉ab + |55〉ab),

B1 = |11〉bB〈11|+ |22〉bB〈22|+ |33〉bB〈33|+ |44〉bB〈44|+ |55〉bB〈55|

to perform B1(|φi〉AB ⊗ |ψ〉ab) and the results are the following states

|ϕ1〉 = (|1〉A + |2〉A + |3〉A + |4〉A)(|1〉B|11〉ab + |2〉B|22〉ab + |3〉B|33〉ab + |4〉B|44〉ab
+ |5〉B|55〉ab),

|ϕ2〉 = |2〉A(|1〉B|11〉ab − |2〉B|22〉ab),
|ϕ3〉 = |3〉A(|1〉B|11〉ab − |3〉B|33〉ab),
|ϕ4〉 = |4〉A(|1〉B|11〉ab − |4〉B|44〉ab),
|ϕ5〉 = |1− 4〉A|2〉B|22〉ab,
|ϕ6〉 = |1− 2〉A|3〉B|33〉ab,
|ϕ7〉 = |1− 3〉A|4〉B|44〉ab,
|ϕ8〉 = |1− 2〉A|5〉B|55〉ab,
|ϕ9〉 = |4〉A(|3〉B|33〉ab − |5〉B|55〉ab),

(4)

These states are depicted on Fig. 2, where the stopper state |ϕ1〉 is not shown due to

the same reason as above.

As an example, the state |φ2〉 is obtained as follows.

|ϕ2〉 = B(|φ2〉AB ⊗ |ψ〉ab)
= (|11〉bB〈11|+ · · ·+ |55〉bB〈55|)(|2〉A|1− 2〉B(|11〉ab + |22〉ab + · · ·+ |55〉ab))
= (|11〉bB〈11|+ · · ·+ |55〉bB〈55|)(|2〉A(|111〉abB + |221〉abB + · · ·+ |551〉abB)
− |2〉A(|112〉abB + |222〉abB + · · ·+ |552〉abB))

= |2〉A(|1〉B|11〉ab − |2〉B|22〉ab)

(5)

Next we can distinguish the states easily as follows. Alice makes an eight-outcome projec-

tive measurement, and one begins by considering the first outcome, A1 = |1〉a〈1| ⊗ |2〉A〈2|+
|2〉a〈2|⊗|2〉A〈2|. This leaves the state |ϕ2〉 invariant and transforms |ϕ1〉 to |2〉A(|1〉B|11〉ab+
|2〉B|22〉ab). Then Bob uses the projectors B11,12 = |1〉b〈1|⊗ |1〉B〈1|± |2〉b〈2|⊗ |2〉B〈2|, which
can be easily identified to be |ϕ1〉 and |ϕ2〉 respectively. In the same way, for outcomes

A2 = |1〉a〈1| ⊗ |3〉A〈3| + |3〉a〈3| ⊗ |3〉A〈3| and A3 = |1〉a〈1| ⊗ |4〉A〈4| + |4〉a〈4| ⊗ |4〉A〈4|,
Bob can identify |ϕ3,4〉 by projectors B21,22 = |1〉b〈1| ⊗ |1〉B〈1| ± |3〉b〈3| ⊗ |3〉B〈3| and

B31,32 = |1〉b〈1| ⊗ |1〉B〈1| ± |4〉b〈4| ⊗ |4〉B〈4|, respectively.
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the method which was presented by Cohen [22].

= ( · · · )( · · ·

(1)

where the state mean 〉 − | . Actually, we can also describe these states more specific

through diagram in Fig.1.

2

3

3

4

4

5 5

6

7 7

8 9

9

|1〉 |2〉 |3〉 |4〉

|1〉

|2〉

|3〉

|4〉

|5〉

A

B

Fig.1

Example 1. An MES(Maximally entangled state) is sufficient to perfectly distinguish the

above 9 orthogonal product states in using only LOCC.

Proof: First of all, Alice and Bob share a maximally entangled state

ab 11 ab 22 ab 33 ab 44 ab 55 ab

Then, Bob perform a measurement

11 bB 11 22 bB 22 33 bB 33 44 bB 44 55 bB 55

Figure 1: The Tiles product

states on a C4 ⊗ C5 system.

Nonlocality of orthogonal product basis quantum states

Mao-Sheng Li,Yan-Ling Wang,Zhu-Jun Zheng
Department of Mathematics,

South China University of Technology,

Guangzhou 510640,China

We solved the unextendible maximally entangled basis (UMEB) problem in ),the
results turn out to be that there always exist a UMEB.In addition,there might be two sets of UMEB
with different numbers.The main difficult is to prove the unextendibility of the set of states.We give
an explicit construction of UMEB by considering the Schmidt number of the complementary space
of the states we construct.

I. INTRODUCTION

2 3 4

1 2 3 4

1

A

|11〉ab

25 52

|22〉ab

6 3 93B

|33〉ab

7 7 44

|44〉ab

8 95

|55〉ab

Fig.2

II. LOCAL INDISTINGUISHABILITY OF

ORTHOGONAL PRODUCT BASIS QUANTUM

STATES IN

In this section, we construct the orthogonal product
basis quantum states in the high-dimensional quantum
systems and prove these states are indistinguishable by
LOCC.
In the quantum system of , we get 33(12
3) orthogonal product basis quantum states from the

structure of Fig.1:

Now,we prove the local indistinguishability of these
quantum states.

Theorem In ,the 33 states cannot be exactly
distinguished by LOOC.

Proof: Since these states are symmetrical, we know
that if the states cannot be distinguished with Alice going
first, then the states cannot be distinguished with Bob

ng first either. Thus, we only need to prove that the
states cannot be distinguished by LOCC with Alice going
first.

Suppose is a measurement of the form under
the basis {| , . . . , 〉}

11 11 · · · 11

11 11 · · · 11

11 11 · · · 11

We have 7 states

〉|

If {| 〉}33
=1

are LOCC distinguishable, we must have
= 0 for

In particularly, for the above 7 states, we have 0 =
〉〈 ij

where , or . Clearly, 〉 6= 0,
so we have ij = 0 for

Consider,

= ( 〉 | = ( 〉− | in 2 states
by {| 〉} the four states could not written in the form

〉| 〉| with for
we deduce that 11 22

Similarly, if we consider

= ( 〉 | = ( 〉 − | we get 22

33

Hence, diag a, a, . . . , a) = aI which is a
trivial measurement.

Figure 2: The Tiles product states

when Alice and Bob share a C5 ⊗
C5 MES and implementing quan-

tum measurements.

Consider the outcome A4 = |2〉a〈2| ⊗ |1 − 4〉A〈1 − 4|, the only remaining possibility

is |ϕ5〉, which has thus been successfully identified. In the same way, Alice can identify

|ϕ6,7,8〉 by three projectors A5 = |3〉a〈3| ⊗ |1 − 2〉A〈1 − 2|, A6 = |4〉a〈4| ⊗ |1 − 3〉A〈1 − 3|,
A7 = |5〉a〈5| ⊗ |1− 2〉A〈1− 2|, respectively.

For the last outcome A8 = |3〉a〈3| ⊗ |4〉A〈4| + |5〉a〈5| ⊗ |4〉A〈4|, it leaves |ϕ9〉 invariant

and transforms |ϕ1〉 to |4〉A(|3〉B|33〉ab + |5〉B|55〉ab). Since |ϕ1〉 and |ϕ9〉 are two mutually

orthogonal states, Bob can easily distinguish them by using the projectors B81,82 = |3〉b〈3| ⊗
|3〉B〈3| ± |5〉b〈5| ⊗ |5〉B〈5|.

Thus the 9 quantum states (3) have been perfectly distinguished using solely LOCC with

a C5 ⊗ C5 maximally entangled state.

Next we consider local distinguishability of orthogonal product states for the general

even-partite case. Surprisingly, a set of locally indistinguishable multipartite product states

can be constructed by using a set of locally indistinguishable bipartite orthogonal product

states. Recall that Wang et al. [19] have constructed 2(n2 + n4 + · · ·+ n2k − k) + 1 LOCC

indistinguishable orthogonal product states in Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cn2k−1 ⊗ Cn2k (4 ≤ n1 ≤
n2 ≤ · · · ≤ n2k−1 ≤ n2k, k ≥ 2).
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The set is given explicitly by

S1 = {|φi1〉1|11〉2 · · · |11〉k
∣

∣ i1 = 1, 2, . . . , 2n2 − 2},
S2 = {|111〉1|φi2〉2|11〉3 · · · |11〉k

∣

∣ i2 = 1, 2, . . . , 2n4 − 2},
...

Sk = {|111〉1 · · · |11〉k−1|φik〉k
∣

∣ ik = 1, 2, . . . , 2n2k − 2}.

Here the stopper state |φ〉 = |φ1〉|φ2〉 . . . |φk〉, where |φs〉 is the stopper state of the

bipartite system Cn2s−1 ⊗ Cn2s (s = 1, 2, . . . , k).

Theorem 2. In Cn1 ⊗Cn2 ⊗ · · ·⊗Cn2k−1 ⊗Cn2k , it is sufficient to perfectly distinguish the

set S of orthogonal product states by LOCC using entanglement as a resource.

Proof: The set S of the 2(n2+n4+· · ·+n2k−k)+1 multipartite product states consists of the

sets Si (i = 1, 2, . . . , k) and a stopper state. If the states in each set Si can be distinguished,

then all the states in S can be distinguished successfully.

Let H = Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cn2k−1 ⊗ Cn2k(4 ≤ n1 ≤ n2 ≤ · · · ≤ n2k−1 ≤ n2k). Suppose

that each spatially separated observer Oi (i = 1, 2, . . . , 2k) controls a subsystem of H.

For example, Alice controls the subsystem HA and Bob controls the subsystem HB in the

bipartite system HA ⊗HB. We call the observers O2s−1 and O2s the s-th Alice and the s-th

Bob respectively. Here we can see that H consists of k local subsystems Cn2s−1 ⊗ Cn2s, s =

1, 2, . . . , k. Let |ψ〉 = ⊗k
s=1|ψ〉s be an entangle state in H, where |ψ〉s is a Cn2s ⊗ Cn2s

maximally entangled state for s = 1, 2, . . . , k. The parties share the entangle state |ψ〉. That
is, the s-th Alice and the s-th Bob share the maximally entangled state |ψ〉s.

We denote the states |ψis〉 = |φis〉1|11〉2 · · · |11〉k (is = 1, 2, . . . , 2n2s − 2) and |ψ2n2s−1〉 =
|φ〉. Because of the particularity of multipartite product states, the local distinguishability

of the bipartite states |φis〉 (is = 1, 2, . . . , 2n2s − 2) and |φs〉 is corresponding to the local

distinguishability of the multipartite states |ψis〉 (is = 1, 2, . . . , 2n2s − 1). By Theorem 1,

since the s-th Alice and the s-th Bob share the maximally entangled state |ψ〉s, the bipartite
states |φis〉, is = 1, 2, . . . , 2n2s − 2 and |φs〉 can be distinguished with LOCC. Thus, the

multipartite states |ψis〉, is = 1, 2, . . . , 2n2s − 1, also can be distinguished with LOCC.

Therefore, the 2(n2 + n4 + · · · + n2k − k) + 1 indistinguishable quantum states can be

LOCC distinguished using the maximally entangled state |ψ〉 as a resource.

2.2 Local distinguishability for odd-partite case

In this subsection, we study local distinguishability of orthogonal product states for odd-

partite systems. We use a concrete example to illustrate the idea, and then present the

general method for the tripartite system. Based on tripartite systems, we then establish the

general result for local distinguishability in any odd multipartite system.
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In C
4 ⊗ C

5 ⊗ C
6, Wang. et al. [19] have given 17 LOCC indistinguishable orthogonal

product states as follows

|φ1〉 = |1 + 2 + 3 + 4〉C |1 + 2 + 3 + 4 + 5〉B|1 + 2 + 3 + 4 + 5 + 6〉A,
|φ2〉 = |4〉C|2〉B|1− 2〉A, |φ10〉 = |4〉C |5〉B|3− 6〉A,
|φ3〉 = |4〉C|3〉B|1− 3〉A, |φ11〉 = |4〉C |1− 2〉B|6〉A,
|φ4〉 = |4〉C|4〉B|1− 4〉A, |φ12〉 = |3〉C |1− 2〉B|6〉A,
|φ5〉 = |4〉C|5〉B|1− 5〉A, |φ13〉 = |2〉C |1− 2〉B|6〉A,
|φ6〉 = |4〉C|1− 5〉B|2〉A, |φ14〉 = |1〉C |1− 2〉B|6〉A,
|φ7〉 = |4〉C|1− 2〉B|3〉A, |φ15〉 = |1− 2〉C|4〉B|6〉A,
|φ8〉 = |4〉C|1− 3〉B|4〉A, |φ16〉 = |2− 3〉C|5〉B|6〉A,
|φ9〉 = |4〉C|1− 4〉B|5〉A, |φ17〉 = |3− 4〉C|4〉B|6〉A.

(6)

The LOCC indistinguishability of the 17 states is derived from the fact that no party can

go first, i.e., Alice and Bob cannot apply any nontrivial measurements, and the third party

Charlie can only apply the trivial measurement. By introducing a maximally entangled

state shared by Alice and Bob, Alice use projectors such that the three parties can perform

measurements to distinguish the results by LOCC. The procedure is carried in two steps.

First Alice and Bob share the C6 ⊗ C6 maximally entangled state

|ψ〉ab = |11〉ab + |22〉ab + |33〉ab + |44〉ab + |55〉ab + |66〉ab.

Then Alice performs the projector

A1 = |11〉aA〈11|+ |22〉aA〈22|+ |33〉aA〈33|+ |44〉aA〈44|+ |55〉aA〈55|+ |66〉aA〈66|

to get the following states:

|φ′
1〉 = |1 + 2 + 3 + 4〉C |1 + 2 + 3 + 4 + 5〉B

6
∑

i=1

|iii〉Aab,

|φ′
2〉 = |4〉C|2〉B(|111〉Aab − |222〉Aab),

|φ′
3〉 = |4〉C|3〉B(|111〉Aab − |333〉Aab),

|φ′
4〉 = |4〉C|4〉B(|111〉Aab − |444〉Aab),

|φ′
5〉 = |4〉C|5〉B(|111〉Aab − |555〉Aab),

|φ′
6〉 = |4〉C|1− 5〉B|222〉Aab,

|φ′
7〉 = |4〉C|1− 2〉B|333〉Aab,

|φ′
8〉 = |4〉C|1− 3〉B|444〉Aab,

|φ′
9〉 = |4〉C|1− 4〉B|555〉Aab,

|φ′
10〉 = |4〉C |5〉B(|333〉Aab + |666〉Aab),

|φ′
i〉 = |φi〉|66〉ab, i = 11, 12, . . . , 17.

(7)
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Then Bob makes a 11-outcome projective measurement. For outcomes B1 = |2〉b〈2| ⊗
|1 − 5〉B〈1 − 5|, B2 = |3〉b〈3| ⊗ |1 − 2〉B〈1 − 2|, B3 = |4〉b〈4| ⊗ |1 − 3〉B〈1 − 3| and B4 =

|5〉b〈5| ⊗ |1− 4〉B〈1− 4|, the states |φ′
6〉, |φ′

7〉, |φ′
8〉 and |φ′

9〉 can be identified directly.

For the outcome Bi+3 = |1〉b〈1| ⊗ |i〉B〈i| + |i〉b〈i| ⊗ |i〉B〈i|, i = 2, 3, 4, 5, it leaves |φ′
i〉

invariant and transforms |φ′
1i
〉 to |1+2+3+4〉C|i〉B(|111〉Aab+ |iii〉Aab) (i = 2, 3, 4, 5). Alice

can easily identify these states, since any two orthogonal states can be distinguished.

For the outcome B9 = |6〉b〈6| ⊗ |1− 2〉B〈1− 2|, it leaves |φ′
i〉 (i = 11, 12, 13, 14) invariant.

Then, Charles can identify these states by four projectors C9i = |i〉C〈i|, i = 1, 2, 3, 4.

For the outcome B10 = |3〉b〈3|⊗|6〉B〈6|+|6〉b〈6|⊗|5〉B〈5|, it leaves |φ′
10〉, |φ′

16〉 invariant and
transforms |φ′

1〉 to |1+2+3+4〉C|5〉B(|333〉Aab+ |666〉Aab). Then, Charles uses the projector

C10,1 = |2 − 3〉C〈2 − 3| to identify |φ′
16〉. When Charles uses the projector C10,2 = |4〉C〈4|,

it leaves |φ′
10〉 invariant and transforms |φ′

1〉 to |4〉C|5〉B(|333〉Aab + |666〉Aab). Alice also can

distinguish them, since they are two orthogonal states in Alice’s Hilbert space.

For the last outcome B11 = |6〉b〈6|⊗|4〉B〈4|, it leaves |φ′
15〉, |φ′

17〉 invariant and transforms

|φ′
1〉 to |1+2+3+4〉C |4〉B|666〉Aab. Then, Charles can distinguish these states by the projectors

C11,1 = |1−2〉C〈1−2|, C11,2 = |1+2〉C〈1+2|, C11,3 = |3−4〉C〈3−4|, and C11,4 = |3+4〉C〈3+4|.
Therefore, we have succeeded in distinguishing the states (6) by LOCC using entangle-

ment as a resource.

In the space Cn1 ⊗ Cn2 ⊗ Cn3 (4 ≤ n1 ≤ n2 ≤ n3), there exist 2(n1 + n3)− 3 orthogonal

product states which are LOCC indistinguishable [19] and collectively denoted by G.
The set G can be divided into three parts: G={|φ〉} ∪ T ∪ R. The state |φ〉 = |1 + 2 +

· · ·+ n1〉C |1 + 2 + · · ·+ n2〉B|1 + 2 + · · ·+ n3〉A. The subset T consists of |φi〉 = |n1〉 ⊗ |ψi〉,
i = 2, 3, . . . , 2n3− 1, where {|ψi〉} is the set of the states constructed in Cn2 ⊗Cn3 using [19,

Theorem 1] (except the stopper state).

To describe the subset R, we consider three cases: (a) n2 < n3 and n3 − n2 is odd; (b)

n2 < n3 and n3 − n2 is even; (c) n2 = n3. Let {|i′〉}n2

i′=1 be another base in the second

factor (Bob’s). By relabeling, one can such that i′ = i for all i′ in case (a); (n2 − 1)′ = n2,

n′
2 = n2 − 1, i′ = i for the other i′ in case (b); and for case (c), 2′ = n2 − 1, (n2 − 1)′ = 2,

i′ = i for the other i′. Let R = H ∪ V , here H = {|i〉|1′ − 2′〉|n3〉
∣

∣ 1 ≤ i ≤ n1}, and
V = {|i− (i+ 1)〉|(n2 − δ(n1−i))

′〉|n3〉
∣

∣1 ≤ i ≤ n1 − 1}, where δi = 1
2
(1 + (−1)i).

Theorem 3. Over the space Cn1 ⊗ Cn2 ⊗ Cn3 (4 ≤ n1 ≤ n2 ≤ n3), it is sufficient to

perfectly distinguish the set G of the orthogonal product states by LOCC using a maximally

entangled state.

Proof: We only consider the case (a) to show the idea, as the other cases can be dealt with

similarly. We assume the first, second and third system belong to Charles, Bob, and Alice

respectively. Similar to the previous example of the tripartite system, Alice and Bob share

9



the C
n3 ⊗ C

n3 maximally entangled state

|ψ〉ab = |11〉ab + |22〉ab + · · ·+ |n3n3〉ab.

And then Alice performs a projector

A1 = |11〉aA〈11|+ |22〉aA〈22|+ · · ·+ |n3n3〉aA〈n3n3|.

The parties can proceed from here to distinguish the states using LOCC. As the proof of

Theorem 1, Alice and Bob can distinguish the states in the set T except the state |n1〉C ⊗
|n2〉B ⊗|3− (n2+1)〉A and the state |n1〉C ⊗|1−2〉B⊗|n3〉A(∈ R). In addition, the states in

the set R can be distinguished by Bob and Charles. Finally, the last state |n1〉C ⊗ |n2〉B ⊗
|3− (n2 + 1)〉A also can be distinguished by the three parties with LOCC.

Therefore, for a general tripartite system, using a C
n3 ⊗ C

n3 maximally entangled state

is sufficient to perfectly distinguish the set G of orthogonal product states by LOCC.

We now generalize the method to the general odd partite quantum systems. It is known

[19] that there are 2(n1+n3+ · · ·+n2k+1− k)+ 1 LOCC indistinguishable product states in

the space Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cn2k ⊗ Cn2k+1 (4 ≤ n1 ≤ n2 ≤ · · · ≤ n2k+1). They are explicitly

given as follows.

Let |ψi1〉1 (i1 = 1, 2, . . . , 2(n1 + n3) − 4) be the product states (except the stopper

state) constructed in [19, Theorem 3] for the general tripartite system. The correspond-

ing systems are assigned to 1st Charles, Bob and Alice-system respectively. Let |ψis〉s,
is = 1, 2, . . . , 2n2s+1 − 2 be the product states (except the stopper state) given in [19, The-

orem 1] for the general bipartite system. The corresponding systems are designated as the

s-th Alice and s-th Bob system for each integer 2 ≤ s ≤ k.

The set S ′ of product states in a multipartite quantum system is then the union of a

stopper state |ψ〉 and the following sets.

S ′
1 = {|ψi1〉1|11〉2 · · · |11〉k

∣

∣ i1 = 1, 2, . . . , 2(n1 + n3)− 4},
S ′

2 = {|111〉1|ψi2〉2|11〉3 · · · |11〉k
∣

∣ i2 = 1, 2, . . . , 2(n5)− 2},
...

S ′
k = {|111〉1 · · · |11〉k−1|ψik〉k

∣

∣ ik = 1, 2, . . . , 2(n2k+1)− 2},
where |ψ〉 = |ψ1〉|ψ2〉 . . . |ψ2k+1〉 and |ψi〉 = |1〉+ |2〉+ · · ·+ |ni〉 for 2 ≤ i ≤ 2k + 1.

As the general odd partite quantum systems are composed of the tripartite subsystem

and even-partite subsystem, the local distinguishability for odd-partite case is transformed

into those for the tripartite system and even-partite system. Let |ψ〉 = ⊗k
s=1|ψ〉s be an

entangled state in Cn1 ⊗Cn2 ⊗· · ·⊗Cn2k ⊗Cn2k+1 , where |ψ〉s is a Cn2s+1 ⊗Cn2s+1 maximally

entangled state for s = 1, 2, . . . , k. It follows from Theorem 2 and Theorem 3 that if the

parties share the entangled state |ψ〉 we have the following result.

Theorem 4. Over the space Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cn2k ⊗ Cn2k+1, it is sufficient to perfectly

distinguish the set S ′ of the orthogonal product states by LOCC using entanglement as a

resource.
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3 Conclusions

Recently, much attention has been given to the problem of distinguishing bipartite orthogonal

product states by LOCC with entanglement. In this paper, we have studied the case of

multipartite systems and show that entanglement can also be used as a resource to locally

distinguish the sets of multipartite product states. We have demonstrated how to come up

with the entangled state to distinguish the sets of multipartite product states in both the

even and odd partite systems. Our results provided are expected to help us understand the

distinguishability of multipartite product states by LOCC.
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