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Abstract

In 2013, Farid and Vasiliev [arXiv:quant-ph/1310.4922] for the first
time proposed a way to construct a protocol for the realisation of “Clas-
sical to Quantum” one-way hash function, a derivative of the Quantum
one-way function as defined by Gottesman and Chuang [Technical Report
arXiv:quant-ph/0105032] and used it for constructing quantum digital sig-
natures. We, on the other hand, for the first time, propose the idea of a
different kind of one-way function, which is “quantum-classical” in nature,
that is, it takes an n-qubit quantum state of a definite kind as its input
and produces a classical output. We formally define such a one-way func-
tion and propose a way to construct and realise it. The proposed one-way
function turns out to be very useful in authenticating a quantum state
in any quantum money scheme and so we can construct many different
quantum money schemes based on such a one-way function. Later in the
paper, we also give explicit constructions of some interesting quantum
money schemes like quantum bitcoins and quantum currency schemes,
solely based on the proposed one-way function. The security of such
schemes can be explained on the basis of the security of the underlying
one-way functions.
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1 Introduction

The concept of one-way functions (OWF) is at the core of theoretical foundations
of Cryptology. The one-way functions have served as a very useful primitive
in many cryptographic protocols. In the post-quantum era, extensive work
has been done in quantum one-way functions [1, 2] as well. Those one-way
functions are “classical-quantum” in nature i.e., they take classical bit strings
as the input and produce quantum states as the output, satisfying the one-
way property of a one-way function. Hence, many information-theoretically
secured digital signatures scheme [2, 10, 8] have been devised based on the one-
wayness property of these functions. Although, those one-way functions are
very effective in authenticating classical bit strings but they fail to authenticate
quantum states. For authentication of quantum states, we need a different kind
of one-way function which shall be quantum-classical in nature. In our paper,
we conceive the idea of such a one-way function which takes a quantum state
(of a particular kind) as its input and produces a classical string, with the help
of which quantum states can be authenticated multiple times.

The biggest difficulty or challenge in realising such a one-way function is
that any quantum transformation of quantum states can be represented by a
unitary transformation and hence are linear and invertible. It is not possible
to implement a non-linear function by quantum gates. Therefore, with the
knowledge of the output state U |ψ〉 of any quantum operation U , one can trace
back to the original input quantum state |ψ〉. Hence, any function developed
through these operations will become invertible, provided the complete output
state is revealed. Instead, if we don’t reveal the whole output state U |ψ〉,
but reveal only partial information about the output state and use this partial
information to construct our classical image of the function for the state |ψ〉,
then the procedure might not be invertible. This is the central idea behind the
construction of the proposed one-way function, which we shall formalise later
in this paper.

2 OWF Protocol

First, we introduce a few relevant notations and definitions and then describe
how our OWF can be evaluated and verified.

2.1 Notations and Definitions

Let C denote the computational basis consisting of two elements |0〉 and |1〉; and
let H denote the Hadamard basis consisting of two elements |+〉 = 1√

2
(|0〉+ |1〉)

and |−〉 = 1√
2
(|0〉 − |1〉).

Let Bn (n > 1) be the orthonormal basis of n-qubit GHZ states whose
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elements are denoted as

|y1, y2, . . . , yn〉 =
1√
2

(|y1〉1 ⊗ |y2〉2 ⊗ . . .⊗ |yn〉n

+ |y1〉1 ⊗ |y2〉2 ⊗ . . .⊗ |yn〉n),

where yi ∈ {0, 1} ∀i = 1, 2, . . . , n and y denotes one’s complement of y in
binary base. The subscript outside the Ket notation denotes the position of the
qubit.

We say, the size of any GHZ state in Bn is n. Let G be the set of all GHZ
states with size less than equal to n1.

Next, we will define a special kind of quantum states, (termed as GCH
states) that we will be mostly concerned with. Let |g〉 ∈ G, |c〉 ∈ C, |h〉 ∈ H.
The state |g〉 ⊗ |c〉 ⊗ |h〉 is called a GCH state. More formally,

Definition 1. An n-qubit quantum state, which can be written as a tensor
product of either elements of Hadamard basis (H) or of computational basis (C)
or of GHZ states (G), up to some rearrangement of the indices of the qubits, is
called a GCH state and it is denoted by

∣∣ψ(n)
〉
GCH

. We say that the basis of
a particular qubit of a GCH state is H or C or G, if the quantum state of that
qubit is an element of H or C or is entangled in a GHZ state (G).

Definition 2. A pair of qubits, say the kth and lth qubits, is said to be compat-
ible for CNOT gate operation such that the lth qubit is used as the control
qubit and the kth as the target qubit, iff it is exactly one of the following cases.

1. Both the qubits are in C or H or are entangled in a GHZ state (of G).

2. The lth and the kth qubits are in H and C or C and H or G and C or C
and G or G and H respectively.

Definition 3. A parallel combination of CNOT gates on compatible pairs of
qubits of a GCH state is known as OWF gate operation.

Definition 4. A sequence of OWF gate operations applied in series, is called
a OWF unitary operation.

For an n-qubit state, the quantum state of the qubits at each position or
index keeps on changing with the gate operations but the positions remain fixed.
Now we will define some properties for these positions, that would be useful in
describing our protocol.

Definition 5. After a OWF unitary operation on an n-qubit quantum GCH
state, the kth position is said to be saturated (otherwise, it is called unsat-
urated) if the qubit in the kth position has been used (either as a target or a
control qubit) in at least one of the CNOT operations of the OWF unitary
operation.

1The set G depends upon n and should be written as G(n). Since we would be using G(n)
for a fixed n throughout the paper, we simply refer to the set as G.
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Now we will define some of the properties of pairs of positions in a GCH
state with respect to OWF unitary operation. Note that here pairs mean
unordered pairs.

Definition 6. After a OWF unitary operation on an n-qubit quantum GCH
state, a pair of positions (k, l) in that GCH state is called CNOT-once, if there
was at most one CNOT operation on the qubits at this pair of positions either
with the kth qubit as the control qubit and the lth qubit as the target qubit or
vice versa.

Definition 7. In a OWF unitary operation on a GCH state, a CNOT-
flipped operation (abbreviated as CF) on a pair of CNOT-once positions
(k, l) in a GCH state is a CNOT operation on the qubits at these positions
such that, if there was no CNOT operation with the kth and the lth qubits as
inputs, then anyone of them can be the target qubits, and if previously there was
a CNOT operation with the kth and the lth qubit as the target and control qubits,
then the target and control qubits would be the lth and the kth qubit respectively.

Note that, we have only considered CNOT-once positions and hence pre-
viously there could have been at most one CNOT operation on the qubits at
those positions.

Next, we define a special kind of OWF gate operation that will termi-
nate a OWF unitary operation. The OWF termination involves n

2 CNOT
operations, and is applicable only on even-sized GCH state having only even-
sized GHZ states along with some additional properties. Hence, if there are odd
number of qubits in C, then the number of qubits in H is also odd.

Definition 8. The OWF termination is a special kind of OWF gate oper-
ation, acting on an n-qubit GCH state (n is even) having only even-sized GHZ
states (and some other properties, stated below), that terminates a OWF uni-
tary operation, after which some of the qubits are chosen as marked qubits.
The CNOT operations on compatible pairs of positions are chosen in the follow-
ing way.

1. For each of the GHZ state (having even size), which is an element of Bm,
group the positions of the qubits in the GHZ state in pairs and apply a CF
operation on each of the pairs of positions. If m = 2, mark the position
(index) of the qubits that were used as the control qubits in these CNOT
gate operations; else mark the positions of the qubits that were used as the
target qubits.

2. If there are odd number of qubits in C, choose two qubits, one from C and
other one from H, and apply a CF operation at the positions of these
qubits. After this step, each of the remaining number of qubits in C or H
would be even.

3. For the remaining qubits, group the positions of the qubits in C in pairs,
and on each pair of positions apply a CF operation. Mark the position
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(index) of the qubits used as the target qubit in these CNOT gates. Do the
same for the qubits in H, with a slight change that instead of marking the
position of the target qubits mark the position of the control qubits.

The GCH state must satisfy that any such pairs of positions chosen as
stated in points 1. 2. and 3. of the above definition (for CF operations) are
CNOT-once. Otherwise, the CF operations do not make sense. This is an
important property that the GCH state must satisfy in order to undergo OWF
termination.

Definition 9. The quantum to classical one-way function F is an algo-
rithm that maps an n-qubit quantum GCH state (for any n) to an l-bit classical
string.

Hence,

F :
{∣∣∣ψ(n)

〉
GCH

}
→ {0, 1}l,

where
∣∣ψ(n)

〉
GCH

is as defined in Definition 1.

Now we will define negligible functions and success probability of an ad-
versary. By an adversary, we mean an algorithm to execute forgery against a
protocol and by an efficient adversary, we refer to those algorithms that run
in polynomial time. Henceforth, all adversaries referred in this paper will be
considered as efficient adversaries.

Definition 10. A function f(x) is said to be negligible, if for every polynomial
function P (x),

∃N ∈ N such that ∀n > N, f(n) <
1

P (n)
.

Definition 11. For the OWF protocol with public parameters P (defined in the
OWF evaluation section), for any arbitrary input state |ψ〉 in the domain S,
and an efficient adversary A, we define the success probability of forgery
for A as

Succ(A) = Pr (F |ψ〉 = F |φ〉 | A(P ) = |φ〉) ,

where A(P ) denotes the output of the adversary with public parameters as
inputs.

In various cryptographic models and schemes, the classical one-way function
is used for data authentication because of their one-wayness. In this paper also,
we will be chiefly concerned about the use of the proposed quantum one-way
function for data authentication. At this point, we should note a significant and
fundamental difference between quantum and classical data. In the classical
setting, given classical data, we can always figure out the classical state of the
data; but given an unknown quantum data, it is not possible to determine its
actual quantum state, with 100% certainty.

In the authentication of classical data, in order to verify whether a given
data A is the same as B (whose image F(B) under a given classical one-way
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function F is evaluated and known publicly), we evaluate F(A) and compare the
two. Hence, in classical setting, verification through one-way function involves
separate evaluation of the one-way function on the data bit strings A and B
followed by comparison. On the other hand, in the quantum setting, we need
not know the actual quantum state of data A and hence cannot repeat the
evaluation algorithm on A in the verification process.

For this reason, for the proposed quantum one-way function, we have in-
cluded two algorithms, one for function evaluation and the other for verification.

2.2 OWF Evaluation

The OWF evaluation algorithm may be summed up in the following steps.

1. For an input n-qubit GCH state |ψ〉, a OWF unitary operation is
constructed with k many OWF gate operations, X1, X2, . . . , Xk, in the
following manner.

Let |φj〉 = Xj(Xj−1 . . . (X2(X1 |ψ〉)) . . .)

∀j = 1, 2, . . . k.

(a) The OWF gate operations are chosen such that after the first
(k − 2) gate operations, all possible pairs of positions in the GCH
state are CNOT-once [Theorem 3 of section III A ensures that such
choices are possible].

(b) The value of k is chosen sufficiently large so that each of the n po-
sitions has been saturated after the first (k − 2) OWF gate oper-
ations [Lemma 2 of section III A shows that we can do so without
violating the previous property].

(c) For the (k − 1)th gate, the CNOT gates are chosen in the following
way.

For each of the GHZ state with odd number of qubits, choose any
two qubits in the GHZ state and apply a CF operation on their
positions. This makes sense as these pair of positions were CNOT-
once. After this operation, there will be even number of qubits in
each of the GHZ states.

(d) The final gate or the kth gate is a OWF termination operation, in-
volving n

2 CNOT operations after which at least (n
2 − 1) qubits are

marked. Note that the pairs of positions chosen during OWF ter-
mination are different from the the pairs of positions used in CF
operations used in the (k − 1)th gate. Hence the pairs of posi-
tions chosen during OWF termination were CNOT-once. From the
set of marked qubits, (n

2 − 1) qubits are randomly chosen, say, the
m1

th,m2
th, . . . ,m(n

2−1)
th qubits. The total combined quantum state

|α〉m1,m2,...,m(n
2

−1)
is noted down as a classical information Cl and
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the position (in our case m1,m2, . . . ,m(n
2−1)) of the chosen marked

qubits are noted down as the measurement position of the OWF
unitary operation Ul. The projective POVM’s [7] for each index i
of the measurement position (for measuring the ith qubit of that in-
dex non-destructively), be termed as measurement basis. Hence,
for all but one CNOT operations of Xk, one of its output qubit is
marked and its quantum state is recorded in Cl. Let the description
of the sequence of gates and the measurement positions and measure-
ment basis in each of the OWF unitary operations Ul be denoted
by Fl and we define Fl |ψ〉 = Cl.

2. The first two steps (1) and (2) are iterated n-times with different sets of
sequential quantum gates, where the lth iteration corresponds to the OWF
unitary operation Ul. Each of the Ul operations are independent of one
another. Let C = (C1‖C2 . . . ‖Cn).

3. Then the one-way function (F) can be described as

F = (F1‖F2| · · · ‖Fn)

and we define the image F |φ〉 as the concatenation of the classical mea-
sured value of the combined quantum state in each of the Ul’s. Hence, in
the above algorithm for the input state |ψ〉,

F |ψ〉 = (C1‖C2 . . . ‖Cn) = C.

The one-way function description F and the image C constitute the public
parameters of the OWF protocol for |ψ〉.

In the diagram below, we illustrate the action of the OWF evaluation procedure
on a 4-qubit GCH state (|00〉 ⊗ |1〉 ⊗ |+〉). The 4 OWF unitary operations
U1,U2,U3,U4 yield the 4 chosen quantum states, the classical measured value
of which C1,C2,C3,C4 together construct the image of the one-way function. In
the OWF evaluation algorithm, for each OWF unitary operation, after the
OWF termination involving exactly n

2 gate operations, depending upon the
initial choice of the first (k−2) OWF gate operations, there can be two possible
cases: either n

2 qubits are marked or (n
2 − 1) qubits are marked. Among the

marked qubits, exactly (n
2 − 1) are randomly chosen such that their positions

are declared to be the measurement positions. This is crucial in order to make
sure that the adversary who does not know the input state cannot distinguish
between the two cases. Hence, for each OWF unitary operation, there will
be exactly 1 out of n

2 CNOT operations in the OWF termination, none of
whose output qubits will be a part of the qubits in the measurement positions. In
Fig. 1, for each Ul, there is exactly one such unmeasured CNOT gate. Although,
the use of such unmeasured CNOT gates in OWF evaluation is vital for security
aspects, it is also true that these gates are not required in OWF verification and
hence their details can be removed from the one-way function description.
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Figure 1: Instance of OWF evaluation algorithm

2.3 OWF Image Verification

After receiving a quantum state |φ〉 and the description of the one-way function
F (i.e., the description of the n quantum operations U1, U2, . . . , Un, including
their measurement positions and measurement basis) and the one-way function
value C, an user runs the following verification algorithm.

• At first, for each of the OWF unitary operations Ul, the user applies
sequentially the quantum gates on the quantum state and then measures
the particular qubits in the measurement positions with the help of the
measurement basis and records the measured value as C ′.

• After that the input state is restored by inverting the gates in the reverse
order.

• Then the user compares whether

C = C ′

and accepts if the equality holds, and rejects otherwise.

3 Correctness and Complexity Analysis

In this section, first we are going to argue about the correctness of our algorithm.
Then we will analyze the space and time complexities of our algorithm and we
shall show that it is possible to implement our algorithm in reasonable amount
of resources.

3.1 Proof of correctness

Firstly, note that the chosen one-way function for an input GCH state is well
defined. As the operations Ul’s are unitary, for a definite input GCH state |ψ〉
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and the chosen one-way function F , the quantum state Cl in the measurement
position is unique for every l and hence the classical image C, under the chosen
one-way function is unique. Thus the one-way function F is well defined. Also,
by the same logic, it is clear that the original input state |ψ〉 will always pass
the OWF image verification algorithm.

In the OWF evaluation algorithm, at each step, there are choices that we
have to make under some specified conditions. We will now show that we shall
never run out of choices while executing the algorithm. Note that in each of
the OWF unitary operations Ul’s, the (k − 1)

th
and the kth gates are also

parallel actions of CNOT operations on compatible pair of qubits. Hence in
order to show that the output state after each OWF unitary operation is a
GCH state, it suffices to show that the preconditions for compatible pairs of
qubits ensure that after each such CNOT operation, the output state is a GCH
state.

Lemma 1. If |φ〉 is an n-qubit GCH state and CNOT gate is applied on a pair
of compatible qubits (as defined in OWF evaluation), then the output quantum
state is also an n-qubit GCH state.

Proof. Let the kth and the lth qubits be any arbitrary pair of compatible qubits
of |φ〉 and say we apply the CNOT gates on them with the lth qubit as the
control qubit. Let this be represented as a unitary transformation H on |φ〉.
We need to show that

H |φ〉 ∈
{∣∣∣ψ(n)

〉
GCH

}
.

Now since the qubits are a pair of compatible qubits, one can verify that exactly
one of the following cases occur.

1. If both the lth and the kth qubits are in C or H, then the output quantum
states of both the lth and the kth qubits will be in C or H respectively.

2. If both the lth and the kth qubits are entangled into the same GHZ state
which itself is in Bm (1 < m < n), then in the output state, the lth qubit
is in the same GHZ state (for m = 2, the lth qubit gets transformed into
an element of H), but the size of the GHZ state is decreased by one as the
kth qubit is disentangled into an element in C.

3. If the lth qubit is in H and the kth qubit is in C, then the combined output
state |φ〉l,k ∈ B2.

4. If the lth qubit is in C and the kth qubit is in H or entangled in a GHZ
state (G), then both the qubits will remain in the same basis in the output
state, as they were before.

5. If the lth qubit is entangled in a GHZ state and the kth qubit is in C, then
the kth qubit will get entangled into the same GHZ state in which the lth

qubit is entangled, increasing the size of the GHZ state by 1.

9



6. If the lth qubit is entangled in a GHZ state (of G) and the kth qubit is in
H, then both the qubits will remain in the same basis in the output state,
as they were before.

Hence we notice that the CNOT operations that we allow on the compatible
pair of qubits of a GCH state, keep the total quantum state in GCH state only.
Since we started with an n-qubit GCH state |ψ〉, each of the output states |φi〉
of the gates Xi (i = 1, 2 . . . k) is a GCH state. In fact, after the kth gate in each
operation Ul, the qubits in the measurement positions are either elements in C
or H, since the marked qubits are such that they correspond to the Hadamard
and computational basis elements used as control and target qubits respectively
in the (1) and (2) case as given above, and the combined quantum state of the
remaining qubits form a n

2 + 1 qubit GCH state.
Also, by the previous chart, we conclude that after a CNOT operation on

compatible pairs of qubits, the output pair of qubits is also compatible for
CNOT operation. Therefore, inverting the CNOT operation on the output
state (U |φ〉) of a OWF unitary operation (U), in reverse directions, is also
a OWF unitary operation. Hence the inverted OWF unitary operation
(U†) on the output state (U |φ〉) is also a OWF unitary operation.

The obvious next question is whether or not for each OWF unitary oper-
ation Ul, we can chose the first (k − 2) OWF gate operations obeying the
different conditions as specified in the OWF evaluation algorithm. For that, we
will show that unless all qubits have been saturated, we can choose compatible
pairs of qubits for CNOT operations, obeying all essential properties.

Lemma 2. In the OWF evaluation algorithm, while choosing the OWF gate
operations for any OWF unitary operation Ul, at any point of time if
a qubit is unsaturated, then it can be saturated by selecting a suitable OWF
gate operation in the next step such that all possible pairs of positions remain
CNOT-once after that step.

Proof. By the previous lemma, the output state, after any of the gates Xi

(i = 1, 2, . . . , k), is a GCH state. Hence, the unsaturated qubit say the jth

qubit, can be either an element in C,H or is entangled in a GHZ state at that
time.

1. If the jth qubit is entangled in a GHZ state, then there shall be at least
one more qubit say, the lth qubit, which is entangled in the same GHZ
state at that time. Then we can apply a CNOT gate operation on the lth

and the jth qubit with anyone of them used as the control qubit.

2. If the jth qubit is an element in C, then we can choose any other qubit, say
the lth qubit and apply a CNOT operation on the lth and the jth qubit
with any one of them being used as the control qubit.

3. If the jth qubit is an element in H, then we can choose any other qubit,
say the lth qubit and apply a CNOT operation with the lth qubit as the
control qubit and the jth qubit as the target qubit.
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Note that in each of the cases, the lth and the jth qubit together form a compat-
ible pair, and after this OWF gate operation, the pair remains CNOT-once
(this pair could not have been used previously, since the jth qubit was un-
saturated). Hence, all possible pairs of qubits remain CNOT-once after this
step.

Theorem 3. Unless, all of the qubits have been saturated, we can always find
at least one compatible pair of qubits for CNOT operations in the next OWF
gate operation such that the pair after this operation remains CNOT-once.

Proof. If all of the qubits have not been saturated, then

∃k ∈ [1, n]

such that kth qubit is not saturated.
Hence by the previous lemma, we can find another qubit say the lth qubit,

such that they form a compatible pair for CNOT gate operations in the next
OWF gate operation.

3.2 Complexity of the algorithm

In the OWF evaluation algorithm, for each OWF unitary operation, we
selected k many OWF gate operations, each consisting of parallel actions of
CNOT gates and we had to keep track of the pairs of qubits that have been
used in previous CNOT operations and which qubits have not been used at
all so far. The latter can be done by keeping a list of used pairs of qubits
and an one dimensional array of length n to keep track whether the qubit has
been used before or not and this is iterated n times for each of the OWF
unitary operations. The space required for maintaining the array and list is
still polynomial. The number of times we have to update or view the array and
the list is exactly equal to the total number of CNOT operations used in the
one-way function. Therefore, we can express the time complexity of the OWF
evaluation algorithm in terms of the number of CNOT gates used.

Theorem 4. In the OWF evaluation algorithm, the number of CNOT gates
used is O(n3).

Proof. Let Y be the total number of CNOT gates used in the OWF evaluation
algorithm. We want to show that

Y ∈ O(n3).

Fix m ∈ [1, 2 . . . , n].
For the OWF unitary operation Um, let j be the number of the CNOT

operations used in the first (k − 2) gates of the OWF evaluation algorithm
and let l be the total number of CNOT operations in the k gates. In the last
(k − 1)th gate, there can be a maximum of n

2 parallel CNOT gates as there are
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only n-qubits, and we saw that there are n
2 CNOT operations in the kth gate.

Hence,

l ≤ j +
n

2
+
n

2
= j + n. (1)

Each of the CNOT operations in the first (k − 2) gates, corresponds to a
pair of compatible qubits and by the condition 1.(a) in the OWF evaluation
algorithm (that pairs of qubits are used for at most one CNOT operation), we
conclude that

j ≤ total number of pairs possible

=
n(n− 1)

2
.

By (1), we get,

l ≤ n(n− 1)

2
+ n.

This is true for each of the n OWF unitary operation Um. Therefore,

Y ≤ n
(
n(n− 1)

2
+ n

)
=
n3 + n2

2
∈ O(n3).

Assuming that a CNOT gate takes constant time, we conclude that our
OWF evaluation algorithm works in polynomial time.

The OWF image verification algorithm involves use of those CNOT gates,
that have been chosen during the OWF evaluation algorithm followed by mea-
surement and comparisons which take only linear time. Hence we can also
implement the OWF image verification algorithm in polynomial time.

Now, we will analyse the space complexity of the two algorithms. The space
required for applying the CNOT gates is proportional to the number of CNOT
gates used, hence by previous theorem, only polynomial space is required for
executing the gate operations. Next, we will see the amount of space required for
storing the description of the one-way function and its image is also polynomial.

Theorem 5. The space required for storing the description of the one-way func-
tion is O(n3) whereas to store the image is O(n2).

Proof. Fix l ∈ [1, 2 . . . , n], arbitrary, For the OWF unitary operations Ul.
By the previous theorem,

the number of CNOT gates used is in O(n2).

As far as the measurement positions and measurement basis are concerned,
note that, we have to store the POVM and positions for n

2 − 1 qubits. Hence,

space required for Fl ∈ O(n2) , ∀l = 1, 2, . . . , n.
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For Cl, we have to store the quantum state of n
2 − 1 qubits (which can be

|0〉 , |1〉 , |+〉 or |−〉).
Hence,

space required for Cl ∈ O(n) , ∀l = 1, 2, . . . , n.

Therefore,
total space required for H ∈ O(n3).

and
total space required for C ∈ O(n2).

Since both the algorithms demand only the storage of the one-way function
description and its image, we conclude that both the algorithms run in O(n3)
space.

Due to low space and time complexity, our proposed one-way function can
be feasibly used in various other protocols of quantum crypto currencies for
authenticating quantum states.

4 Security Analysis

Now we shall discuss about the security aspects of our protocol, where the main
aim is to ensure the one-wayness of the the proposed one-way function and prove
its security against random guesses.

Firstly, notice that, in the OWF Image verification algorithm, if a different
quantum state, say |φ〉 6= |ψ〉 (original input GCH state), is used as input
and for any OWF unitary operation Ul, if the qubits in the measurement
positions of Ul |φ〉 is not in the same basis (B, C, or H) as that of the qubits
in the measurement of Ul |ψ〉, then measuring through the POVM as recorded
in the measurement basis would result in the destruction of the state Ul |φ〉.
Hence, the primary goal for an adversary is to produce a state such that the
qubits in the measurement position of this state are in the same basis as that
of the qubits in the measurement positions of Ul |ψ〉.

Also, note that in our OWF evaluation algorithm, for any pair of positions,
say (k, l), we have used at most two CNOT operations on the qubits at these
positions. Moreover, if there are two CNOT operations on the kth and the lth

qubits, the second CNOT operation is due to a CF operation on that pair of
positions and hence the two CNOT operations do not nullify each other. This is
because CNOT gates are self invertible (i.e., U2 = UU† = I) and non-symmetric
about the qubits.

4.1 Non-invertibility of the one-way function

Now, we will show that the way we defined the operations in the OWF evalua-
tion algorithm, it is not possible to invert the gates and get back the input state.
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Finding the input state |ψ〉 by inverting the gates basically means constructing
the output state Ul |φ〉 completely or partially and then applying the inverted
gates on it to get the input state completely or partially, i.e., finding the quan-
tum state of qubits at some positions. Since half the output state is revealed,
we need to ensure that by the knowledge of half the qubits and applying the
inverted gates, one should not be able to get back the input state, not even par-
tially. Although both the OWF evaluation and verification algorithm involves
measurement, it is not straightforward why inversion of gates is not possible.
This is because the output state Ul |φ〉 is preserved after the measurement and
hence measurement does not really play a role in terms of non-invertibility of
gates.

Theorem 6. For any OWF unitary operation Ul (∀1 ≤ l ≤ n) as defined
in the OWF evaluation algorithm, given the value of Fl and Cl it is not possible
for an adversary to find the quantum state of the qubits of the input GCH state
|ψ〉 in polynomial time.

Proof. Fix l, arbitrary such that 1 ≤ l ≤ n. Let Ul, Cl, Xj , |φ〉j has the same
meaning as before.

For the operation Ul, let us analyse the step in the OWF evaluation algo-
rithm, where we choose n

2 CNOT operations for the last gate Xk, and then
mark the qubits from which we chose (n

2 − 1) marked qubits to be revealed as
Cl in C.

The pair of qubits on which the CNOT operations took place in the kth

operation, such that at least one of the output qubit were marked, are either of
the following forms:

1. Both were entangled in the same GHZ state, which itself is an element of
Bm.

2. Both are in C.

3. Both are in H.

In the first case, if m = 2, we mark the control qubit in the output state, else we
mark the target qubit. Note that, the target qubit is always transformed into
an element in C after the CNOT operation, but the control qubit is transformed
into an element in H if m = 2, otherwise remains entangled in a GHZ state
belonging to Bm−1. Hence the marked qubit in the output state after the kth

operation is either an element in H (if m = 2) which was used as the control
qubit or an element in C (for m > 2) which was used as the target qubit in the
CNOT operations of Xk.

Similarly in the second and third cases, the marked qubits were used as
target qubits and control qubits respectively in the CNOT operations. After
the CNOT operation, the marked qubits remain to be an element in C and H
in the second and third cases respectively.

We know that, in Xk there are n
2 CNOT operations and for all but one

CNOT operation, there exists a single marked qubit, quantum state of which in
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the output state is revealed through Cl. For the remaining one CNOT operation,
none of the output qubits is revealed, hence there can be many possible states
of the input qubits, clearly more than 2.

Hence with the knowledge of the quantum state of the marked qubits (in Cl)
each of which can either be an element in C or H, there are at least two possible
bases for the input pair of qubits of each of the CNOT operations. Therefore,
by the knowledge of Cl,

#(quantum states for |φ〉(k−1)) ≥ 2
n
2 ,

each of which are equally likely. Hence there are at least 2
n
2 possible quantum

states for |φ〉(k−1) and no two states out of these 2
n
2 possibilities, have the same

POVM for all of their qubits. Since we have constructed the OWF evaluation
algorithm in such a way that in each OWF unitary operation, the CNOT gate
operations do not nullify each other, one must figure out all the intermediate
|φ〉i ∀i = 1, 2, . . . , (k − 1) in order to get |ψ〉.

Hence, in order to recover the possible quantum state of any qubit of the
original input state |ψ〉 or even the bases of its qubits, an adversary must scan
through all the 2

n
2 possibilities, each of which is equally likely, and hence shall

take exponential time.

If the adversary randomly guesses the unknown qubits of the output state
for the OWF unitary operation Ul, then

Pr (adversary gets back the correct input state |φ〉) ≤ 1

2
n
2

which is negligible.

4.2 Security against random guess

Another kind of attack that is possible in our one-way function is by random
guess of unknown qubits. Note that for each of the Ul, by the knowledge of Cl

and Fl, an adversary can only know about n
2 − 1 qubits of the output state.

Hence, for a particular OWF unitary operation Uj , it can guess the quantum
state of the unknown n

2 + 1 qubits to be any n
2 + 1 qubit state and then invert

the gates of Fj to get a state, say |φ〉j , which might not be same as the original
input state |ψ〉 but satisfies the equation,

Fj |x〉 = Fj |ψ〉 . (2)

But in order to have
F |φ〉l = F |ψ〉
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it must satisfy the equation,

Fl |x〉 = Fl |ψ〉 , ∀l = 1, 2, . . . , n. (3)

But note that, there are infinitely many quantum states possible for the
combined state of n-qubits. Hence, it does not make sense for an adversary to
randomly select from an infinite space. So the best an adversary can do is to
select from a finite set of quantum state for a random guess of the unknown
qubits of Ul. We shall show that the probability of success of such an attack is
exponentially low, but before that let’s prove some useful lemmas.

Let Pj be the probability that any randomly chosen n-qubit GCH state
will satisfy Equation (2) and pj be the probability that any randomly chosen
quantum non-GCH state will satisfy Equation (2).

Lemma 7. For any OWF unitary operation Uj, pj = 0.

Proof. Let S be the set of all n-qubit quantum states and let B denotes the set
of all n-qubit quantum states satisfying Equation (2) and let

M =
{∣∣∣ψ(n)

〉
GCH

}c

.

Thus,

pj = Pr
(
|ξ〉 ∈ B | |ξ〉 $←−M

)
.

Here, |ξ〉 $←−M denotes that |ξ〉 is selected from M at random. Note that,

Uj |B : B → S

as a unitary transformation from a subspace of the 2n dimensional Hilbert space
to the Hilbert space. Also by definition of B, ∀ |ξ〉 ∈ B, Uj |ξ〉 has the property
that it is the tensor of a 2(

n
2 +1) tuple vector and a 2(

n
2−1) tuple vector out of

which the later is fixed and the former can be any 2(
n
2 +1) tuple vector. Hence,

Rank(Uj |B) = 2(
n
2 +1) < 2n = dim(S). (assuming n > 2)

Since Uj is unitary and hence invertible, by rank-nullity theorem.

dim(B) = Rank(Uj |B) < dim(S).

Since, the total 2n-dimensional Hilbert space is a finite dimensional vector
space over the infinite field C.

Pr
(
|ξ〉 ∈ B | |ξ〉 $←− S

)
= 0.

In order to see this, consider any finite dimensional vector space V of dim n,
over a finite field F of size p = |F |. Let W be a subspace of V of dimension m
(< n). Hence, |V | = pn and |W | = pm. Let

P = Pr
(
x ∈W | x $←− V

)
.

16



Clearly,

P =
|W |
|V |

=
1

p(n−m)
.

In our case, we are concerned with a finite dimensional vector space over an
infinite field. Hence it suffices to take the limit p→∞. Now,

lim
p→∞

P = lim
p→∞

1

p(n−m)
= 0

as n > m. Hence, Pr
(
|ξ〉 ∈ B | |ξ〉 $←− S

)
= 0.

In our case, the set
{∣∣ψ(n)

〉
GCH

}
has finite cardinality whereas the total set

S is an infinite set. Hence,

Pr
(
|ξ〉 ∈ B | |ξ〉 $←−M

)
= Pr

(
|ξ〉 ∈ B | |ξ〉 $←− S

)
= 0.

Lemma 8. For any OWF unitary operation Ul, there can be 2(
n
2−1) possible

values of Cl for the same Fl and for each such possible values of Cl’s, ∃ |φ〉 ∈{∣∣ψ(n)
〉
GCH

}
such that Fl |φ〉 = Cl.

Proof. Since Fl is fixed, the measurement positions and measurement bases are
fixed. The quantum state of some of the qubits in the output state is in C and
some in H. Keeping the basis same, a particular qubit in the measurement
position can either be |0〉 or |1〉 (if the qubit is supposed to be an element in C);
or can be |+〉 or |−〉 (if the qubit is supposed to be an element in H).

Since there are n
2 − 1 qubits in the measurement positions, there can be

2
n
2−1 possible combined states of qubits in measurement positions.

Since, Cl is uniquely defined by the quantum states of the qubits in the
measurement positions of Ul and vice versa,

#( values of Cl) = 2
n
2−1 = s(say). (4)

Let the quantum states corresponding to all such possible values of Cl be
listed as

∣∣α1
〉
,
∣∣α2
〉
, . . . , |αs〉 . Note that

∃t such that αt = Fl |ψ〉 where |ψ〉 is the original input.

Let the quantum state of the other n
2 + 1 qubits of Ul |ψ〉 be represented by

(|β〉).
For m = 1, 2, . . . , s, construct a quantum state |ζm〉 keeping |αm〉 at the

measurement position and |β〉 for the other n
2 + 1 positions. Hence, up to some

rearrangement, |ζm〉 = (|αm〉 ⊗ |β〉). Let

|ξm〉 = Ul
† |ζm〉 .

Hence, ∣∣ξt〉 = Ul
†(
∣∣αt
〉
⊗ |β〉) = |ψ〉 (5)
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and
Ul |ξm〉 = |ζm〉 = (|αm〉 ⊗ |β〉) (up to some rearrangement).

=⇒ Fl |ξm〉 = αm ∀m = 1, 2, . . . , s. (6)

Following the proof of Lemma 1, we note that, after a OWF gate operation
on a GCH state, the basis of the output qubits depends only on the basis of
the input qubits. Since the measurement basis is fixed and the inverted OWF
unitary operation Ul

† on |ζm〉 (m = 1, 2 . . . s), is also a OWF unitary
operation we conclude that if

∃αm such that |ξm〉 ∈
{∣∣∣ψ(n)

〉
GCH

}
,

then
|ξm〉 ∈

{∣∣∣ψ(n)
〉
GCH

}
∀m = 1, 2, . . . , s.

But by Eqn (5),
|ξ〉t = |ψ〉 .

Therefore,

|ξm〉 ∈
{∣∣∣ψ(n)

〉
GCH

}
∀m = 1, 2, . . . , s. (7)

By equations (4), (6) and (7), we are done.

Corollary 8.1. For a random n-qubit GCH state and a fixed OWF unitary
operation Ul, there can be at least 2

n
2−1 distinct possible values of Cl.

Proof. By the above lemma, keeping Fl fixed, there are 2
n
2−1 n-qubit quantum

states which produce 2
n
2−1 distinct values of Cl. Hence, for any random n-qubit

GCH state, there can be at least 2
n
2−1 distinct possible values of Cl.

Lemma 9. For each of the OWF unitary operations Uj, Pj ≤ 1

2
n
2

−1 .

Proof. By the previous corollary, for any random n-qubit quantum state,

#(quantum states of the qubits in the measurement position of Uj) ≥ 2
n
2−1.

In order to satisfy Equation (2), the value in the measurement position must be
exactly same as Cj . Hence, Pj ≤ 1

2
n
2

−1 .

Theorem 10. For each OWF unitary operation Um, the probability that the
state thus constructed by an adversary by randomly guessing the unknown qubits
of Um, satisfies Equation (3), is negligible.

Proof. Let Pm be the probability that the state |φ〉m thus constructed by ran-
domly guessing the unknown qubits of Um, satisfies Equation (3). Let Xm be the
finite set from which the adversary randomly guesses the unknown qubits and
Ym be the finite set of input states which can be constructed by randomly guess-
ing from Xm. Let |φ〉m be an arbitrary element of Ym. Let Z =

{∣∣ψ(n)
〉
GCH

}
.
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Note that,

Pr
(
|φ〉m satisfies Eqn. (2) | |φ〉m ∈ Z

)
= Pr

(
|φ〉 satisfies Eqn. (2) | |φ〉 $←− Z, |φ〉 ∈ Ym

)
.

Since the n OWF unitary operations are chosen independently, for m 6= j
(the index of the unitary in Equation (2)), the above probability is equal to

Pr
(
|φ〉 satisfies Eqn. (2) | |φ〉 $←− Z

)
= Pj .

Similarly,

Pr
(
|φ〉m satisfies Eqn. (2) | |φ〉m ∈ Z

c
)

= pj .

Obviously, for j = m,

Pr
(
|φ〉m satisfies Eqn. (2) | |φ〉m ∈ Z

)
= 1,

Pr
(
|φ〉m satisfies Eqn. (2) | |φ〉m ∈ Z

c
)

= 1.

Again, since the n OWF unitary operations are chosen independently, and
by previous discussion,

Pr
(
|φ〉m satisfies Eqn. (3) | |φ〉m ∈ Z

)
= 1.

(∏
j 6=m

Pj

)
.

Pr
(
|φ〉m satisfies Eqn. (3) | |φ〉m ∈ Z

c
)

= 1.
(∏

j 6=m
pj

)
.

Therefore, by Lemma 7 and Lemma 9, we conclude,

Pr
(
|φ〉m satisfies Eqn. (3) | |φ〉m ∈ Z

)
≤
(

1

2
n
2−1

)(n−1)

.

Pr
(
|φ〉m satisfies Eqn. (3) | |φ〉m ∈ Z

)
= 0.

Let
P (m) = Pr

(
|φ〉m satisfies Eqn. (3) | |φ〉m ∈ Z

)
,

p(m) = Pr
(
|φ〉m satisfies Eqn. (3) | |φ〉m ∈ Z

c
)
.

Therefore,

Pm = P (m) Pr
(
|φ〉m ∈ Z

)
+ p(m) Pr

(
|φ〉m ∈ Z

c
)

= P (m) Pr
(
|φ〉m ∈ Z

)
≤ P (m) ≤

(
1

2
n
2−1

)(n−1)

.

This concludes our proof.
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Hence,

the success probability of forgery by this method ≤
(

1

2
n
2−1

)(n−1)

,

which is negligible.

5 Application of the proposed OWF in Quan-
tum Money Schemes

In the post quantum era, there have been some great works in the field of
quantum money. Wiesner’s private key quantum scheme was the first of its
kind which was proven to be information theoretically secured [9]. Later, Farhi
also came up with the quantum money scheme based on knot theory [11]. Also,
Aaronson and Christiano proposed the idea of hidden subspace for constructing
public key quantum money schemes [3]. Recently, Panigrahi and Moullick also
came up with the idea of quantum cheques using entanglement and quantum
teleportation [4].

The classical one-way function had a major contribution in developing the
data authentication models in cryptography. Similarly, the concept of quantum
to classical one-way function would enhance the facility of authenticating a
quantum state and with the help of secured digital signature schemes, would
provide the ability to authenticate any quantum state publicly multiple times.
This property is the main reason why the Quantum to Classical OWF is so useful
in the field of quantum money. Our proposed one-way function is multiple times
verifiable, as the verification does not destroy the original quantum state.

Hence it is of great use in public key quantum money schemes like quan-
tum bitcoins and quantum currencies which demand multiple times verification
without destroying the original state. However, it cannot be used in quantum
cheques or currency bonds since the multiple times verifiability property can
be exploited for double-spending in such schemes. Ideally, any currency bond
scheme should be only one time verifiable, in order to avoid double spending.

Now, we will give explicit constructions of quantum currency and quantum
bitcoins scheme based on the proposed one-way function. The security of both
the schemes can be explained on the basis of the no-cloning principle [6], the
security of the quantum to classical one-way function and the security of the
digital signatures.

5.1 Quantum Currency Notes

In this section, we are going to discuss a centralised yet public-key quantum
money scheme called Quantum Currency Notes where a central authority mints
the currency notes but these notes are publicly verifiable multiple times. The
explicit protocol is shown below.
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5.1.1 Minting Algorithm

In the minting session, the central authority or Bank mints the quantum cur-
rency notes. The algorithm followed is listed below.

1. The Bank first performs the key generation algorithm of the digital sig-
nature scheme and produces the key pair (Kpriv,Kpub). The key Kpub is
made public.

2. The Bank creates a random quantum GCH state |ψ〉 and runs the OWF
evaluation algorithm and selects a suitable one-way function F during the
execution and produces the classical image L of the quantum state |ψ〉
under the chosen one-way function F .

3. Let the worth value of the quantum currency note be represented classi-
cally byM. The Bank signs the classical string I = (M‖L‖F ) with its pri-
vate key Kpriv to get the signature state σ. The state $ = (|ψ〉 ,M, L, F, σ)
is the quantum currency note that the Bank gives to the user.

5.1.2 Verification Algorithm

Before accepting the quantum currency note, the user performs the following
algorithm.

1. The user after receiving the state verifies that the state is of the form
(|ψ〉 ,M, L, F, σ) or not.

2. Then the user recovers the classical text I = (M‖L‖F ). After that, with
the help of Kpublic, the user verifies whether the signature state σ matches
with the message text I or not. If the signature state σ does not match
with I, then the user aborts the verification and declares the quantum
currency note to be invalid.

3. Then the user runs the OWF Verification Algorithm on the state |ψ〉 with
F as the one-way function description and L as the one-way function
image and thus checks whether the three match or not. If they do not
pass the OWF Verification Algorithm, the user aborts the verification and
the currency note is declared to be invalid.

If and only if all the three steps are passed successfully, the user accepts the
quantum currency note and the verification is said to be complete.

It can be seen that this scheme is secured on the basis of no-cloning the-
orem [6] and the security of the digital signatures and the secured Quantum
to Classical OWF. The main use of the no-cloning theorem [6] in the entire
protocol is to ensure that anybody having the currency note consisting of a
quantum state (unknown to him) and some classical data, cannot copy or know
the quantum state and hence cannot reproduce the currency note and therefore
cannot do forgery.
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5.2 Quantum Bitcoins

Ever since its very origin, the popularity of bitcoins have gathered a lot of pace
across the globe for its decentralised network and anonymity of transactions.
Being a public-key quantum money, the quantum bitcoin scheme demands mul-
tiple times verifiability. Hence, the quantum to classical one-way function is an
ideal tool for such a scheme.

In recent times, some schemes have been devised on quantum bitcoins, that
have the advantage that unlike the classical bitcoins the transactions are not
required to be recorded [5] and thereby saving on a lot of space and time. In our
quantum bitcoin protocol, at the mining session two miners are chosen randomly
which can be chosen by the system itself by a lottery or through a competition
as it is done in case of the real bitcoins just for minting the bitcoins. The
concept of incentives for the miners is still valid for our scheme. The minting
and verification algorithms are as follows.

5.2.1 Minting Algorithm

Let Alice and Bob be the miners selected for the minting session who mint a
bitcoin and stores some of its verification tools in the public classical blockchain
ledger.
The steps of the minting algorithm are as follows.

1. At first, Bob runs the Key generation algorithm of digital signatures to
produce its own pair of private-public keys (K∗priv,K

∗
pub) and sends K∗pub

to Alice. Alice also runs key generation algorithm to produce its own
private key and public key (Kpriv,Kpub).

2. Then, Bob prepares two copies of a random n-qubit quantum GCH state
and sends one of the copies to Alice. Let the state be of the form |K〉.

3. Alice applies a random quantum gate G (which can be realised through
polynomially many universal gates) on its copy of |K〉 to produce the state
|K∗〉 = G |K〉, a randomised state and tags with a serial number Sr. Let
the description of the gate be given by G, a classical information. Then
Alice signs on the classical information Sr‖G with its Kpriv to get the
signature state σ1 and keeps the corresponding Kpub with herself. She
thus forms the token $1 = (Sr, G, |K∗〉 , σ1).

4. Bob runs the OWF evaluation algorithm during which it selects a suit-
able Quantum to Classical one-way function F and computes the classical
image L of the quantum state under the chosen one-way Function i.e.,

L = F (|K〉).

He signs the classical information (F‖L) with the help of K∗priv and pro-
duces the signature state σ2. He thus forms the token $2 = (|K〉 , L, F, σ2)
and sends it to Alice.
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5. Alice stores Sr and the corresponding Kpub and K∗pub in her ledger which
she does not disclose immediately.

6. The whole token $ = ($1, $2) is the quantum bitcoin. After making m such
bitcoins Alice uploads the m serial numbers and the respective informa-
tion into the public classical blockchain ledger and releases the quantum
bitcoins to the users each of which verifies it before accepting it.

5.2.2 Verification Algorithm

Before accepting a bitcoin a user shall run a verification protocol which can be
summed up in the following steps:

1. After receiving the bitcoin $ at first the user checks whether the bitcoin
is of the valid form or not, i. e., it checks whether $ = ($1, $2) or not and
whether $1 = (Sr, G, |K∗〉 , σ1) or not and whether $2 = (|K〉 , L, F, σ2).
If not, it aborts the verification.

2. Then with the help of the K∗pub, the user verifies whether the signature
state σ2 and the classical information (F‖L) matches or not. Similarly,
with the help of the Kpub, the user verifies whether the signature state σ1
and the classical information (Sr‖G) matches or not. If any of the two do
not match, the verification is aborted.

3. After that with the help of the classical information F and L, it runs the
one-way function verification algorithm on the state |K〉 with F as the
one-way function description and L as the one-way function image. If the
one-way function verification fails, the user aborts the verification.

4. Then from the knowledge of the classical information G, it applies the
quantum gate G on the state |K〉 to get the state |K ′〉 = G |K〉 and
verifies whether |K ′〉 = |K∗〉 by the help of non-destructive comparison of
states. If they do not match, the user aborts the verification.

The user concludes it to be a valid bitcoin and accepts it, if and only if the
bitcoin passes all the four verification steps.

Our scheme is secured under reuse attack, mentioned in the previous quantum
bitcoins protocol [5], i.e., the same exact quantum bitcoin cannot be minted by
the previous miners in order to cause inflation. Bob cannot know which bitcoin
has he minted as the serial numbers are not disclosed to him, whereas Alice
does not know the random state Bob had prepared during minting. So as long
as they do not work together they cannot launch the re-use attack and since the
miners are randomly chosen, it is very less probable that both of them would
collaborate to launch the attack.

In any bitcoin scheme, minting is done only once for a definite bitcoin but
the verification is done every time after a transaction is done and hence veri-
fication should be fast and simple. Our scheme offers a quite fast and simple
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verification procedure, as both OWF image verification and verification of the
digital signatures take polynomial time.

As mentioned earlier, the security of our scheme relies on the no-cloning
property [6], the security of the digital signatures and the Quantum to Classical
OWF.

6 Conclusion & Future Works

We have put forward the concept of Quantum to Classical OWF that is very
useful in authenticating a particular kind of quantum states. Although the
scheme seems analogous to the classical signature schemes, it is more secure in
some sense due to no-cloning property [6] which ensures that it is not possible
for any counterfeiter to copy unknown quantum states. Hence, it is going to
be very useful in money schemes as shown above. In fact, almost any classical
money scheme can be modelled into a quantum money scheme with the help of
a Quantum to Classical OWF. Just like digital signatures help to authenticate
classical strings, the Quantum to Classical OWF allows one to authenticate
quantum states. Of course, the scheme in the current form is theoretical and
practical implementation of such a scheme brings in many other challenges like
decoherence and Quantum error-correction.

Also in our scheme, for each OWF unitary operation we have revealed the
classical measured state of half the qubits. Although it might seem that, if we
decrease the number of qubits to be revealed, the security of the scheme would
be enhanced, but this is not entirely true. It is true that by doing that, it would
be harder to recover the qubits of the original input by inversion of gates but
at the same time there will be an increase in the probability of success for an
adversary to construct a quantum state, capable of passing the OWF verification
algorithm. Thus, it is a good question to ask what is the optimal strategy or
optimal number of qubits to be revealed in the measurement position of each of
the OWF unitary operations.

Another thing to notice in our scheme is that it does not allow authentication
for an arbitrary quantum state. This is basically because there is no known way
to simulate any given unitary operation through polynomially many quantum
universal gates. A natural question to ask is whether it is possible to somehow
modify the scheme to include more quantum states? Further study is required
to address such interesting but open questions.
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