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We theoretically investigate the implementation of the two-mode squeezing operator in circuit quantum elec-
trodynamics. Inspired by a previous scheme for optical cavities [Phys. Rev. A 73, 043803(2006)], we employ
a superconducting qubit coupled to two nondegenerate quantum modes and use a driving field on the qubit
to adequately control the resonator-qubit interaction. Based on the generation of two-mode squeezed vacuum
states, firstly we analyze the validity of our model in the ideal situation and then we investigate the influence
of the dissipation mechanisms on the generation of the two-mode squeezing operation, namely the qubit and
resonator mode decays and qubit dephasing. We show that our scheme allows the generation of highly squeezed
states even with the state-of-the-art parameters, leading to a theoretical prediction of more than 10 dB of two-
mode squeezing. Furthermore, our protocol is able to squeeze an arbitrary initial state of the resonators, which
makes our scheme attractive for future applications in continuous-variable quantum information processing and
quantum metrology in the realm of circuit quantum electrodynamics.
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I. INTRODUCTION

Squeezed states of electromagnetic fields are characterized by presenting uncertainty in the fluctuations of one of their quadra-
tures smaller than that expected for coherent states, at expenses of an increase in the fluctuations of the conjugated quadrature
[1]. Among other applications, such kind of states, initially proposed by C. Caves [2], have been recently employed in the
improving of high precision quantum measurements, such as in the detection of gravitational waves [3]. Moreover, an special
class of squeezed states, namely two-mode squeezed vacuum states (TMSSs), besides being a resource for quantum metrology
[4], is a cornerstone for many quantum information processing tasks such as quantum teleportation [5], since the TMSS is the
quantum optical representative for bipartite continuous-variable entanglement.

Thus, the generation of such states with high degree of squeezing is a subject of continuous investigation.To mention some
recent advances, experimental generation as well as theoretical proposals of generation of single- [6–10] and two-mode [11–18]
squeezed states have been reported using superconducting circuits [19]. Also, some circuit quantum electrodynamics (QED)
experiments involving the interaction of artificial atoms with squeezed electromagnetic vacuum have confirmed theoretical pre-
dictions of the 1980s in the context of quantum optics [20, 21]. In addition, some schemes that use parametric down conversion
process to generate squeezed states of one or two modes have been investigated in the context of both cavity QED [22, 23] and
circuit QED [24–26].

Here we extend the protocol for the implementation of the two-mode squeezing operator in optical cavities [23] to the context
of a circuit-QED setup, introducing a detailed analysis of the validity of the employed approximations and of the influence of
the dissipative mechanisms on the fidelity of the squeezing process. With the present protocol one would be able to squeeze an
arbitrary two-mode (a and b) initial state |Ψ(0)〉ab, i.e., here we show how to implement the operation S(ζ)ab|Ψ(0)〉ab, being
S(ζ)ab the two-mode squeezing operator with squeezing parameter ζ [1]. Although an arbitrary two-mode initial state can
be squeezed, here we focus on the generation of TMSSs to perform the aforementioned analysis. In Ref. [23] it is proposed
different schemes for the generation of single- and two-mode squeezed states in optical cavities, only the latter can be extended
to the context of circuit QED since the protocol used for the generation of single mode states requires two intense classical fields
driving the qubit, being one of them so intense that would not validate the approximations performed in circuit QED.

We show that, with the current technology, our scheme is able to generate high degrees of squeezing in circuit QED. To this
end, we must consider a superconducting flux qubit (artificial atom) [27, 28] dispersively coupled to two spatially separated
resonators. To engineer the desired Hamiltonian, the qubit must be resonantly driven by a single classical (external) field.
Even though other artificial atoms, as the transmon qubit, can present longer coherence times, as recently demonstrated in
3D superconducting architectures [29, 30], they are not suitable for our protocol. This happens because their energy-level
anharmonicities are not strong enough to avoid unwanted transitions induced by the strong driving field required to engineer the
desired effective interaction.

In this paper we firstly analyze the validity of the approximations employed in the derivation of the effective Hamiltonian,
investigating the ideal scenario for the implementation of the two-mode squeezing operator in circuit QED. Differently from
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Ref. [23], we provide a more detailed study of the validity of the approximations employed in the derivation of the effective
Hamiltonian, and also perform a complete study regarding the influence of the qubit and resonator dissipative processes on the
generation of TMSSs. We note that, as our scheme requires superposition states for the qubit, its decay and dephasing rates
become the critical parameters. Nevertheless, our scheme predicts high degrees of squeezing even for the parameters achieved
in present-day circuit-QED experiments.

II. THE MODEL

Considering a single artificial atom up to its second excited state (flux qubit plus a third level), the dynamics of it interacting
with two resonators and an external classic field can be written as

Hfull = ωaa
†a+ ωbb

†b+
ω0

2
σz +

(ω0

2
+ ωef

)
σff

+
[
ga(a+ a†) + gb(b+ b†) + 2Ω cos (ωdt)

]
× [(σge + σeg) + (σef + σfe)], (1)

in which a (a†) and b (b†) are the annihilation (creation) operators for the respective modes, which have frequencies ωa and ωb.
Here, σz = |e〉〈e| − |g〉〈g| and σeg = σ†ge = |e〉〈g| are the qubit operators, being |e〉 and |g〉 the excited and ground states of the
qubit, respectively, while σff = |f〉〈f| and σef = σ†fe = |e〉〈f| with |f〉 being the second excited state of the artificial atom. The
transition frequency between |g〉 and |e〉 is ω0 while the one between |e〉 and |f〉 is ωef. The qubit-mode “a” (“b”) coupling is
represented by ga (gb). Finally, the flux qubit is driven by a resonant external classical field, being 2Ω its Rabi frequency while
ωd its oscillation frequency. The modes and the external driving field also couple the transition |e〉 ↔ |f〉, and for the sake of
simplicity we consider the same coupling strengths ga (gb) and 2Ω.

When ωy + ωx � |ωy − ωx| � |gx|, with y = {0, ef} and x = {a, b, d} (gd ≡ 2Ω), we can neglect the counter-rotating
terms (rotating-wave approximation) in Eq. (1). Moreover, for a qubit with very large anhamonicity (|ωef − ω0|/ω0 � 1), its
third level does not affect substantially the dynamics and can be neglect without loss of generality. With these considerations the
Hamiltonian can be reduced to [31]

H = H0 +HI , (2)

with

H0 = ωaa
†a+ ωbb

†b+
ω0

2
σz, (3)

HI =
(
gaa+ gbb+ Ωe−iωdt

)
σeg + H.c. (4)

In Fig. 1(a) we have the energy-level configuration of the qubit with the relevant frequencies involved, with δa = ωa − ω0,
δb = ωb − ω0, and ωd = ω0. In Fig. 1(b) we show a pictorial representation of our circuit-QED setup. This configuration
is similar to that employed in Ref. [31] to study the generation of TMSSs through reservoir engineering. While our scheme
requires a monochromatic microwave field that transversely drives the qubit, the protocol in Ref. [31] requires that the qubit
is longitudinally driven by a bichromatic microwave field. Furthermore, the protocol presented in Ref. [31] has the advantage
of generating a TMSS as a stationary state and thus being robust against the decoherence, but it cannot be used to squeeze
an arbitrary initial state as ours. A similar experimental setup is also used in [32] to experimentally generate a Schrödinger
two-mode cat state.

Rewriting H in the interaction picture, we have

VI(t) =
(
gae
−iδata+ gbe

−iδbtb+ Ω
)
σeg + H.c. (5)

Applying a second unitary transformation given by U = exp [−i (Ωσeg + Ω∗σge) t], we end up with the Hamiltonian VI(t) =
U−1VI(t)U − (Ωσeg + Ω∗σge), which contains only highly oscillating terms, allowing us to apply the method employed in
Ref. [33] to obtain the effective Hamiltonian for our system. Namely, considering up to second-order processes, Heff =
−iVI(t)

∫
VI(t)dt.

For δa = ∆ and δb = −∆− δ (|δ| � |∆|), under the large detuning and strong driving field conditions, i.e., |∆ + 2Ω| � |η|
with η = 2Ω −∆, and also considering |η| � g, we derive the effective Hamiltonian within the rotating-wave approximation
(neglecting the residual highly oscillating terms) [23]

Heff =
(
χaaa

† + χbb
†b
)
σ++ −

(
χaa

†a+ χbbb
†)σ−−

+

(
gagbe

iδt

4η
ab+ H.c.

)
(σ−− − σ++) , (6)
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FIG. 1. (a) Energy-level diagram of the qubit and relevant frequencies involved in our scheme. (b) Pictorial representation of the circuit-QED
setup used to generate TMSS, similar to the one employed in Ref. [31], which is composed by two resonators coupled to a flux qubit.

in which χα = |gα|2/4η (α = a, b) and σ± = |±〉〈±|, with |±〉 = 1√
2

(|g〉 ± |e〉).
From the effective Hamiltonian above, we immediately see that the qubit states |+〉 and |−〉 give rise to independent dynamics.

For both qubit states we can adjust the detuning δ to obtain efficient squeezing processes. For instance, let us consider the system
initially in the state |ψ (0)〉 = |−〉atom⊗ |Ψ(0)〉ab. Applying the unitary transformation U− = exp

(
iχaa

†at+ iχbb
†bt
)
, the

effective Hamiltonian for the resonators can be reduced to

H− =
gagb
4η

ab+ H.c. (7)

if we adjust δ = − (χa + χb). This Hamiltonian is exactly the one that allows the generation of ideal TMSSs [1], being
λ ≡

(
gagb
4η

)
the effective coupling constant. In the ideal case, the evolution of this system is simply given by |ψ (τ)〉 =

exp (−iλτab− H.c) |Ψ(0)〉ab = S(ζ)ab|Ψ(0)〉ab, with ζ = −iλτ while τ represents the interaction time between the qubit
and the modes. Thus, this scheme allows us to squeeze an arbitrary initial two-mode state with the squeezing factor given by
r = |λ|τ .

III. ANALYSES OF THE VALIDITY OF THE APPROXIMATIONS

A. Unitary dynamics

Firstly we have to investigate the validity of our approximations carried out above. As our scheme requires a strong driving
field and non-resonant interactions, we must be sure about the range of validity of the parameters. To this end we compare the
dynamics of the effective Hamiltonian H− [Eq. (7)] with VI(t) [Eq.(5)] and also with the Hamiltonian without any approxima-
tion Hfull [Eq. (1)]. For this comparison we focus on the generation of a TMSS. To quantify the degree of squeezing, we employ
the total variance of EPR-like operators [34]

Var = 〈(∆u)
2

+ (∆v)
2〉, (8)

in which u = Xa + Xb and v = Pa − Pb, where the position and momentum quadrature operators are defined as Xα =(
αe−iθ + α†eiθ

)
/
√

2 and Pα = −i
(
αe−iθ − α†eiθ

)
/
√

2, with (α = a, b), respectively. The parameter θ refers to the squeez-
ing direction, which depends on the phases of the driving field and qubit-mode couplings. This variance is an important quantifier
of the degree of squeezing of two-mode states and works out as a witness of entanglement (a two-mode state is entangled when-
ever Var < 2) [34]. In experimental works one usually quantifies the degree of squeezing in decibels (dB), which is connected
to the definition above via the expression −10 log10(Var/2) [35].

In Fig. 2 we plot Var as a function of the ideal squeezing factor, r = |λ|τ , for different parameter regimes assuming the modes
initially in the vacuum state. We clearly see that, increasing |∆|, |Ω|, and |η|, i.e., decreasing |λ|, the dynamics given by VI(t)
approaches better and better the desired one. The smaller λ the higher the degree of squeezing allowed to be reached, but the
longer the interaction time required, and then the dissipative processes can also play an important role as shown later.

We also have to be careful with too strong |η| (high values of ∆ and Ω), since in this limit the model given by Eq. (2) can
become no longer valid as we can see in the last panel of Fig. 2. For instance, assuming the reasonable value of the qubit-field



4

FIG. 2. Variance as a function of r = |λ|τ for different parameter regimes, comparing Hfull [Eq. (1)] (red dashed line), VI(t) [Eq. (2)] (blue
solid line) and H− [Eq. (7)] (black dot-dashed line). We have fixed ga = gb = g, ω0 = 500g, ωef = 5ω0, θ = π/4 (which is the squeezing
axis for the parameters used here) and consider (a) ∆ = 35g and Ω = 20g (λ = g/20), (b) ∆ = 90g and Ω = 50g (λ = g/40), and (c)
∆ = 180g and Ω = 100g (λ = g/80). In all curves we have neglected the dissipative processes.

coupling g/2π = 20 MHz would imply Ω/2π = 2.0 GHz for the values used for λ = g/80, which is a value at which the
rotating-wave approximation starts to fail (for qubit-driving field interactions at least) [36], and therefore Hfull can no longer be
well described by VI(t).

This value of the Rabi frequency of the classical field would also induce transitions to other levels in transmon qubits, as
their energy-level anharmonicities are not strong enough: the transition frequency from the first excited state to the ground
ω0/2π = 8.6 GHz is close to that from the second excited state to the first one (i.e., ωef − ω0 = −421MHz), implying on a
ratio of |ωef|/ω0 = 0.95 only [37]. Thus, a classical field with Rabi frequency Ω/2π = 2.0 GHz, addressing the ground to first
excited state transition, would certainly induce transitions from the first to the second excited state and then our effective model
would be no longer valid. This fact prohibits us considering transmon qubits in our protocol. However, flux qubits have stronger
anharmonicities, providing the ratio |ωef|/ω0 = 5 [28] and then, even for Ω/2π = 2.0 GHz, we are able to neglect the transitions
to higher excited states induced by the classical field, but in this case we have to be careful with the validity of the rotating-wave
approximation in the qubit-driving field Hamiltonian.

In the following we analyze the influence of both resonator and qubit losses on the process of generation of squeezed states.
For that we consider λ = g/40, a parameter with which we have seen that VI(t) provides a dynamics in excellent agreement
with the Hamiltonian without any approximation (Hfull).

B. Dissipative Dynamics

If the qubit and the resonators are coupled to their respective reservoirs under the Born-Markov approximation, we can take
into account the dissipative effects on our system by using the master equation in the Lindblad form [38]

ρ̇ = −i[VI(t), ρ] +
γ

2
D[σ−]ρ+

γph

2
D[σee]ρ+

∑
α=a,b

κα
2
D[α]ρ, (9)

with D[O]ρ = 2OρO† − O†Oρ − ρO†O. The first term describes the unitary evolution while the last ones describe the
dissipation on the qubit (decay rate γ), its dephasing (rate γph), and on the resonators (decay rate κα), respectively. We are
allowed to use this master equation instead of the dressed one [39] since we are assuming neither the ultrastrong nor the deep
strong coupling regimes, i.e., our results are valid for gα/max (ω0, ωα) < 0.1 (α = a, b). Even below this limit, one knows
that dispersive interaction can introduce corrections onto the standard master equation proportional to (gα/∆)2 and the mean
number of photons in the resonators [40]. However, as our protocol requires |∆| � gα and we deal with not so high mean
number of photons, we can neglect such corrections to the master equation above. Due to the high dimension of the Hilbert
space of our system, we numerically solve the master equation using the Monte Carlo wave-function method [38], with the help
of the QuTIP algorithm [41].

Resonator dissipation.— To understand the role of each dissipation channel, firstly we analyze the influence of the dissipation
on the resonators, which we are assuming identical for the sake of simplicity, i.e., κa = κb = κ 6= 0. In Fig. 3(a) we plot Var
as a function of the ideal squeezing parameter (r), considering the parameters that results in λ = g/40, without dissipation and
dephasing on the qubit (γ = γph = 0), and different values for the dissipation on the resonators. The dissipation on the modes
introduces a competition: the interaction with the ideal qubit squeezes the two-mode field while the resonator decays disentangle
pairs of correlated photons, destroying the squeezing. Therefore, the bigger the ratio |λ|/κ, the higher the achieved degree of
squeezing, as shown in Fig. 3(a).
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FIG. 3. Influence of the dissipation and decoherence processes on the generation of TMSS. In all plots we show the Variance, Var, as a
function of r = |λ|τ for ∆ = 90g and Ω = 50g, i.e., λ = g/40. The full black lines represent the ideal squeezing process. (a) Without
qubit dissipation and dephasing (γ = γph = 0). (b) Ideal resonators (κ = 0) and without qubit dephasing (γph = 0). (c) Ideal resonators
(κ = 0) and without qubit dissipation (γ = 0). In (d) we plot the evolution of the system under the action of all reservoirs for present-day
parameters (dotted red line). We have assumed g = 2π × 20 MHz, which gives λ = 2π × 500 KHz. Thus, γ = T−1

1 ' 5.2 × 10−3λ and
γph = T ∗−1

2 − (2T1)−1 ' 1.0 × 10−3λ (T1 = 60µs and a coherence time T ∗2 = 85µs [42]), and κ = κa = κb ' 2π × 53 Hz (κ−1 ' 3
ms [32]), which results in κ ' 1.0 × 10−4λ. An almost ideal squeezing process can be achieved if we are able to improve in one order of
magnitude the current energy relaxation and coherence times of the flux qubit (i.e., we have assumed γ = γreal/10 and γph = γreal

ph /10) as we
see in the dashed blue line.

Qubit dissipation.— Now we consider the dissipation on the qubit only, that is, γ 6= 0 and γph = κa = κb = 0). Here the
interaction of the qubit with the environment will destroy the initial atomic superposition, assumed as |−〉 = (|g〉 − |e〉) /

√
2.

Thus, the dissipation on the qubit will drive it to a different state, projecting the effective Hamiltonian in other different from
H−. For instance, when the qubit decays, we end up with the qubit state |g〉 = (|+〉+ |−〉) /

√
2 and then the effective dynamics

would be given by a mixture of H− (state |−〉) and H+ (state |+〉), which squeezes the cavity modes in orthogonal directions.
Hence, the mixture of these two squeezing process (in orthogonal directions) no longer generates an ideal TMSS. This fact can
be clearly seen in Fig. 3(b). For long interaction times, the qubit decay plays a more prominent negative role than the resonator
decays in the squeezing process.

Qubit dephasing.— Here we analyze the role of the qubit dephasing on the generation of two-mode squeezed states, that is,
γph 6= 0 and γ = κa = κb = 0, as we see in Fig. 3(c). As happened in the previous case, the dephasing process will also destroy
the initial atomic superposition and then this process will also greatly damage the generation of highly squeezed states. In fact,
we see that this decoherence channel is the one that most damages the generation of TMSS.

Resonator and qubit dissipation.— Finally we investigate a real scenario, taking into account the dissipation on both resonators
(assumed equal) and the dephasing and decaying of the flux qubit [see Fig. 3(d)]. Again, we fixed ∆ = 90g and Ω = 50g
(λ = g/40), considering different values for the decay rates. In particular, we consider the state-of-the-art parameters (blue
dashed line) based on the work by F. Yan et al. [42], where the authors report a flux qubit with an energy relaxation time
T1 = 60µs and a coherence time T ∗2 = 85µs, such that γ = T−11 ' 5.2× 10−3λ and γph = T ∗−12 − (2T1)−1 ' 1.0× 10−3λ.
Considering κ = κa = κb ' 2π× 53 Hz (κ−1 ' 3 ms) [32] and assuming g = 2π× 20 MHz, we have λ = 2π× 500 KHz and
κ ' 1.0× 10−4λ. For |λ|τ ∼ 1.5, such parameters allow a generation of 10.5 dB of two-mode squeezing (Var ' 0.178), which
is very close to the degree recently achieved (12 dB) in Ref. [18], but the authors use nonlinear resonators while our protocol
is based only on linear resonators. On the other hand, better and better degrees of squeezing are possible by enhancing T1 and
T ∗2 . For instance our protocol theoretically predicts a behaviour close the ideal one (up to r = 1.5, i.e., a two-mode squeezing
above 12 dB) by considering the improvement of one order of magnitude on the present-day relaxation and coherence times T1
and T ∗2 , respectively [dashed blue line in Fig. 3(d)].

IV. CONCLUSIONS

We investigated how to implement the two-mode squeezing operator in a circuit-QED system composed by two resonators
coupled to a flux qubit, investigating the fidelity of the protocol through its capability of generating highly two-mode squeezed
states. The proposed experimental apparatus is essentially the experimental setup employed in Ref. [32]. To generate two-mode
squeezed states, we must prepare the qubit in the superposition state |−〉 (the state |+〉 also allows for the generation of two-
mode squeezing operator, requiring only slightly different adjustments). Since our scheme depends on the initial atomic state,
the dissipation and the decoherence processes on the qubit will drive the system to a Hamiltonian different from the desired one.
Thus, the qubit-resonators interaction time must be shorter than the lifetime (or decoherence) of the qubit. We observe that our
scheme theoretically allows for the squeezing of arbitrary initial two-mode states and predicts high degrees of squeezing (more
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than 10 dB) with the state-of-the-art parameters, being better with the improvement of such parameters, making the scheme
attractive for continuous-variable quantum information processing and quantum metrology.
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