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Abstract

This paper continues the study of large time behavior of a nonlinear quantum walk begun
in [13]. In this paper, we provide a weak limit theorem for the distribution of the nonlinear
quantum walk. The proof is based on the scattering theory of the nonlinear quantum walk and
the limit distribution is obtained in terms of its asymptotic state.

1 Introduction

This paper continues the study of a one-dimensional nonlinear quantum walk (NLQW) begun in
[13], where we developed a scattering theory for NLQW. The model treated there covers a nonlinear
optical Galton board [17, 15], a quantum walk with a feed-forward quantum coin [20], nonlinear
discrete dynamics [11], and a model exhibiting topological phenomena [4]. For more details on earlier
works, we refer to the previous paper[13]. In a forthcoming companion paper [14], we numerically
study a solitonic behavior of NLQW. In this paper, we study a weak limit theorem (WLT) for
NLQW. The WLT for the one-dimensional (linear) quantum walk (QW) was first found by Konno
[9], proved in [10], and then generalized by several authors [1, 2, 3, 5, 6, 7, 8, 12, 19, 21]. The WLT
states that

Xt

t
converges in law to a random variable V as t → ∞,

where Xt is a random variable denoting the position of a quantum walker at time t = 0, 1, 2, . . ..
Because Xt/t is the average velocity of the walker, V is interpreted as the asymptotic velocity of the
walker and hence WLT well describes the asymptotic behavior of the walker. Here, the probability
distribution of Xt is naturally defined according to Born’s rule as

P (Xt = x) = ‖Ψt(x)‖2
C2 , x ∈ Z,

where Ψt is the state of the walker at time t, which is in the state space H := l2(Z;C2). The state
evolution is governed by

Ψt+1(x) = P (x + 1)Ψt(x + 1) + Q(x− 1)Ψt(x− 1), x ∈ Z, t = 0, 1, 2, . . . ,

where P (x) and Q(x) ∈ M(2;C) satisfy P (x) + Q(x) =: C(x) ∈ U(2). More precisely, the state
at time t is given by Ψt = U t

LΨ0, where Ψ0 is the initial state, which is a normalized vector in

H, and UL is the evolution operator defined as follows. Let Ĉ be the coin operator defined as the
multiplication by C(x) and S be the shift operator, i.e., (ĈΨ)(x) := C(x)Ψ(x) and (SΨ)(x) :=
t(Ψ1(x + 1),Ψ2(x − 1)) (x ∈ Z) for Ψ = t(Ψ1,Ψ2) ∈ H. The evolution operator UL is a unitary
operator defined as UL = SĈ. As shown in [21], if C(x) = C0 +O(|x|−1−ǫ) with some C0 ∈ U(2) and
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ǫ > 0 independent of x, then WLT is proved and the limit distribution µV is expressed in terms of
the wave operator W+ := s- limt→∞ U−t

L U t
0Πac(U0), where U0 = SĈ0 and Πac(U0) is the projection

onto the subspace of absolute continuity. See also [1, 18, 19] for anisotropic cases.
In the case of NLQW, the dynamics is governed by

u(t + 1, x) = (P̂ u(t))(x + 1) + (Q̂u(t))(x − 1), x ∈ Z, t = 0, 1, 2, . . . , (1.1)

where t 7→ u(t) := u(t, ·) ∈ H is in l∞(N ∪ {0};H). P̂ and Q̂ are nonlinear maps on H and give a
norm preserving nonlinear map Ĉ : H ∋ u 7→ Ĉu := P̂u + Q̂u. Although the dynamics is similar to
the linear quantum walk, it does not define a quantum system. However,

pt(x) := ‖u(t, x)‖2
C2 , x ∈ Z. (1.2)

defines a probability distribution. Indeed, similarly to the linear quantum walk, the dynamics (1.1)
is expressed as u(t + 1, ·) = Uu(t, ·), t = 0, 1, 2, . . ., where U := SĈ is a nonlinear map on H.
Because U preserves the norm, (1.2) defines the probability distribution provided that the initial
state u(0, ·) = u0 ∈ H is a normalized vector. We use Xt to denote the random variable that follows
(1.2), i.e., P (Xt = x) = pt(x). Of course Xt never describes the position of a walker that occupies
any single position in Z, but we dare to call Xt the position of a nonlinear quantum walker in analogy
with the linear quantum walk. It is mathematically more convenient to study the limit behavior of
Xt than the distribution pt(x) itself.

In this paper, we consider a nonlinear coin given by

(Ĉu)(x) = CN(g|u1(x)|2, g|u2(x)|2)u(x), x ∈ Z for u = t(u1, u2) ∈ H,

where g > 0 controls the strength of the nonlinearity and CN : [0,∞) × [0,∞) ∋ (s1, s2) 7→
CN(s1, s2) ∈ U(2) with CN(0, 0) =: C0 ∈ U(2). As was shown in [13], in the weak nonlinear regime,
U(t)u0 scatters, i.e., limt→∞ ‖u(t, ·) − U t

0u+‖H = 0 with some asymptotic state u+ ∈ H. The aim
of this paper is to establish WLT for Xt that follows (1.2) and prove that the limit distribution is
given by

µV (dv) = w(v)fK(v; |a|)dv,
where w(v) is a function expressed in terms of u+ and fK(v; r) is the Konno function (r > 0).

The rest of this paper is organized as follows. Sec. 2 is devoted to reviewing the results of [13].
We state our main results in Sec. 3 and give proofs in Sec. 4.

2 Preliminaries

In this section, we review the definition of NLQW and results obtained in [13]. Throughout this
paper, we set H = l2(Z;C2) and drop the subscript H in the norm and inner product when there is
no ambiguity. Let

CN : [0,∞) × [0,∞) → U(2)

satisfy

C0 := CN(0, 0) =

(

a b
−b̄ ā

)

with |a|2 + |b|2 = 1 and 0 < |a| < 1.

We define a nonlinear coin operator Ĉ as

(Ĉu)(x) = CN(g|u1(x)|2, g|u2(x)|2)u(x), x ∈ Z for u = t(u1, u2) ∈ H, (2.1)
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where g > 0 is a constant that controls the strength of the nonlinearity. Let u0 ∈ H be the initial
state of a walker with ‖u0‖ = 1. The state u(t) of the walker at time t = 1, 2, . . . is defined by
induction as follows.

u(0) = u0, u(t + 1) = Uu(t), t = 0, 1, 2, . . . ,

where U = SĈ. We then define a nonlinear evolution operator U(t) as

U(t)u0 = u(t).

Similarly, we define a linear coin operator Ĉ0 as (Ĉ0u)(x) = C0u(x) and set U0 = SĈ0. By scattering,
we mean the following:

Definition 2.1. We say U(t)u0 scatters if there exists u+ ∈ H such that

lim
t→∞

‖U(t)u0 − U t
0u+‖ = 0.

We use Ug=1(t) to denote the evolution operator U(t) that has the nonlinear coin Ĉ defined
in (2.1) with g = 1. As mentioned in the previous paper [13], the smallness of ‖u0‖H and ‖u0‖l1
corresponds to the smallness of g, because

U(t)u0 =
1√
g
Ug=1(t)v0 with v0 :=

√
gu0.

Thus, the result in [13] is reformulated as follows. We use ‖A‖C2→C2 tot denote the operator norm
of the matrix A, i.e., ‖A‖C2→C2 := supv∈C2,‖v‖

C2
=1 ‖Av‖C2 .

Theorem 2.2 ([13]). Assume that CN ∈ C1(Ω;U(2)) with some domain Ω including [0,∞) ×
[0,∞) and there exists c0 > 0 and m ≥ 2 such that ‖CN(s1, s2) − C0‖C2→C2 ≤ c0(s1 + s2)m and
‖∂sjCN(s1, s2)‖C2→C2 ≤ c0(s1 + s2)m−1 for j = 1 or 2. Let u0 ∈ H be a normalized vector. Suppose
in addition that either of the following conditions holds: (1) m ≥ 3; (2) m = 2 and u0 ∈ l1(Z,C2).
Then U(t)u0 scatters if g is sufficiently small.

3 Weak limit theorem

Our aim is to establish the weak limit theorem for the position Xt of a walker at time t that follows
the probability distribution

P (Xt = x) = ‖u(t, x)‖2
C2, x ∈ Z, (3.1)

where u(t, ·) := U(t)u0 with ‖u0‖H = 1. By Theorem 2.2, if g is sufficiently small, then U(t)u0

scatters, i.e., there exists u+ ∈ H such that

lim
t→∞

‖U(t)u0 − U t
0u+‖ = 0.

Let v̂0 be the asymptotic velocity operator for U0 = SĈ0, which is a unique self-adjoint operator
such that

eiξv̂0 = s- lim
t→+∞

eiξx̂0(t)/t. (3.2)

Here x̂0(t) = U−t
0 x̂U0 is the Heisenberg operator of the position operator x̂. See [5, 21] for more

details. We give the precise definition of v̂0 in (4.2). We use EA(·) to denote the spectral projection
of a self-adjoint operator A.
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Theorem 3.1 (weak limit theorem). Let Xt, v̂0, and u+ be as above. Then there exists a random
variable V such that Xt/t converges in law to V , whose distribution µV is given by

µV (dv) = d‖Ev̂0(v)u+‖2.

In what follows, we provide an explicit formula for the density function of µV obtained in
Theorem 3.1. To this end, we proceed along the lines of [19]. Let fK be the Konno function defined
for all r > 0 as

fK(v; r) =

{ √
1−r2

π(1−v2)
√
r2−v2

, |v| < r,

0, |v| ≥ 0.

Similarly to [19], we introduce operators

Kj,m : H → G := L2([−|a|, |a|], fK(v; |a|)dv/2), j = 1, 2, m = 0, 1

as follows. Let T := R/2πZ. Because U0 is translation invariant, it can be decomposed by the Fourier
transformation F : H → L2(T;C2; dk/2π) and the Fourier transform FU0F

−1 is the multiplication
operator by

Û0(k) =

(

eika eikb
−e−ikb̄ e−ikā

)

∈ U(2), k ∈ T.

We use ϕj(k) to denote the normalized eigenvectors of Û0(k) corresponding to the eigenvalues

λj(k) = |a| cos(k + θa) + i(−1)j−1
√

|b|2 + |a|2 sin(k + θa), j = 1, 2.

Let kk,m : [−|a|, |a|] → Im := [π(m− 1/2) − θa, π(m + 1/2) − θa] be a function defined as

kj,m(v) = −θa + mπ + arcsin

(

(−1)j+m|b|v
|a|

√
1 − v2

)

, j = 1, 2, m = 0, 1,

where θa ∈ [0, 2π) is the argument of a. By direct calculation, kj,m is differentiable in (−|a|, |a|) and

d

dv
kj,m = (−1)j+mπfK(v, |a|).

We now define the operators Kj,m as

(Kj,mu)(v) = 〈ϕj(kj,m(v)), û(kj,m(v))〉C2 , v ∈ [−|a|, |a|],

where û is the Fourier transform of u ∈ H.

Theorem 3.2. Let u+ and V be as Theorem 3.1. Then

µV (dv) = w(v)fK(v, |a|)dv,

where

w(v) =
1

2

∑

j=1,2

∑

m=0,1

|(Kj,mu+)(v)|2, v ∈ [−|a|, |a|].
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4 Proofs of Theorems

The proofs of Theorem 3.1 and 3.2 proceed along the same lines as that of [21][Corollary 2.4]. We
suppose that ‖u0‖H = 1. Let x̂ be the position operator. By (3.1), the characteristic function of
Xt/t is given by

E

(

eiξXt/t
)

=
〈

U(t)u0, e
iξx̂/tU(t)u0

〉

, ξ ∈ R, (4.1)

where E(X) denotes the expectation value of a random variable X . The asymptotic velocity operator
v̂0 in (3.2) is defined via the Fourier transform: Fv0F

−1 is the multiplication operator by

v̂0(k) =
∑

j=1,2

vj(k)|ϕj(k)〉〈ϕj(k)|, k ∈ T, (4.2)

where

vj(k) :=
i

λj(k)

d

dk
λj(k) =

(−1)j|a| sin(k + θa)
√

|b|2 + sin2(k + θa)
.

As was shown in [19], vj : Im → [−|a|, |a|] is the inverse function of kj,m.

Lemma 4.1.

lim
t→∞

〈U(t)u0, e
iξx̂/tU(t)u0〉 = 〈u+, e

iξv̂0u+〉

Proof. A direct calculation yields

|〈U(t)u0, e
iξx̂/tU(t)u0〉 − 〈u+, e

iξv̂0u+〉|
≤ |〈U(t)u0 − U t

0u0, e
iξx̂/tU(t)u0〉| + |〈U t

0u0, e
iξx̂/t(U(t)u0 − U t

0u0)〉|
+ |〈U t

0u0, e
iξx̂/tU t

0u0〉 − 〈u+, e
iξv̂0u+〉〉|

=: I1(t) + I2(t) + I3(t).

Because eiξx̂/t and U(t) preserve the norm and U(t)u0 scatters, limt→∞ I1(t) = limt→∞ I2(t) = 0.
By (3.2), limt→∞ I3(t) = 0. Hence the proof is completed.

Proof of Theorem 3.1. By (4.1) and Lemma 4.1,

lim
t→∞

E(eiξXt/t) = 〈u+, e
iξv̂0u+〉 =

∫

[−|a|,|a|]
eiξvd‖Ev̂0(v)u+‖2, (4.3)

where we have used the spectral theorem. The right-hand side in the above equation is equal
to the characteristic function of a random variable V following the probability distribution µV =
‖Ev̂0(·)u+‖2. This completes the proof of Theorem 3.1.

In what follows, we prove Theorem 3.2. The following lemma is proved similarly to [19].

Lemma 4.2. We use Ĝ to denote the multiplication operator on G by a Borel function G :
[−|a|, |a|] → C. Then

G(v̂0) =
∑

j=1,2

∑

m=0,1

K∗
j,mĜKj,m.
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Proof of Theorem 3.2. It suffices to prove

〈u+, e
iξv̂0u+〉 =

∫

[−|a|,|a|]
eiξvw(v)fK(v; |a|)dv, ξ ∈ R. (4.4)

Let G(v) = eiξv. By Lemma 4.2, the left-hand side of (4.4) is

〈u+, e
iξv̂0u+〉 =

∑

j=1,2

∑

m=0,1

〈

Kj,mu+, ĜKj,mu+

〉

G
.

Because
〈

Kj,mu+, ĜKj,mu+

〉

G
=

∫

[−|a|,|a|]
eiξv|(Kj,mu+)(v)|2fK(v; |a|)dv/2,

the proof of theorem is complete.
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