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Analytical Expression of Quantum Discord for Rank-2 Two-qubit States
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Quantum correlations characterized by quantum entanglement and quantum discord play impor-
tant roles in many quantum information processing. We study the relations among the entanglement
of formation, concurrence, tangle, linear entropy based classical correlation and von Neumann en-
tropy based classical correlation . We present analytical formulae of linear entropy based classical
correlation for arbitrary d⊗ 2 quantum states and von Neumann entropy based classical correlation
for arbitrary 2 ⊗ 2 rank-2 quantum states. From the von Neumann entropy based classical corre-
lation, we derive an explicit formula of quantum discord for arbitrary rank-2 two-qubit quantum
states.

PACS numbers: 03.67.Mn,03.65.Ud

I. INTRODUCTION

Correlations between the subsystems of a bipartite system play significant roles in many information processing
tasks and physical processes. The quantum entanglement [1] is an important kind of quantum correlation which plays
significant roles in many quantum tasks such as quantum teleportation, dense coding, swapping, error correction
and remote state preparation. A bipartite state is called separable if it has zero entanglement between subsystems
A and B: the probabilities of the measurement outcomes from measuring the subsystem A are independent of the
probabilities of the measurement outcomes from measuring the subsystem B. Nevertheless, a separable state may still
have quantum correlation – quantum discord, if it is impossible to learn all the mutual information by measuring one
of the subsystems. Quantum discord is the minimum amount of correlation, as measured by mutual information, that
is necessarily lost in a local measurement of bipartite quantum states. It has been shown that the quantum discord
is required for some information processing like assisted optimal state discrimination [2, 3].

Let ρAB denote the density operator of a bipartite system HA ⊗HB . The quantum mutual information is defined
by

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (1)

where ρA(B) = TrB(A)(ρAB) are reduced density matrices, S(ρ) = −Tr(ρ log ρ) is the Von Neumann entropy. Quan-
tum mutual information is the information-theoretic measure of the total correlation in bipartite quantum states. In
terms of measurement-based conditional density operators, the classical correlation of bipartite states ρAB is defined
by [4],

I←(ρAB) = max
{Pi}

[S(ρA)−
∑

i

piS(ρ
i
A)], (2)

where the maximum is taken over all positive operator-valued measure (POVM) Pi performed on subsystem B,

satisfying
∑

i P
†
i Pi = I with probability of i as an outcome, pi = Tr[(IA ⊗ Pi)ρAB(IA ⊗ P †i )], ρ

i
A = TrB[(IA ⊗

Pi)ρAB(IA ⊗P †i )]/pi is the conditional states of system A associated with outcome i, IA and I are the corresponding
identity operators.

The quantum discord is defined as the difference between the total correlation (1) and the classical correlation (2)
[4, 5]:

Q←(ρAB) = I(ρAB)− I←(ρAB). (3)
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Generally it is a challenging problem to compute the quantum correlation Q←(ρAB) due to difficulty in computing
the classical correlation I←(ρAB). Analytically formulae of Q(ρ) can be obtained only for some special quantum
states like Bell-diagonal states [6], X-type states [7] with respect to projective measurements, as well as some special
two-qubit states [8]. In stead of analytical formulae, some estimation on the lower and upper bounds of quantum
discord are also obtained [9, 10]. A lower bound of quantum discord for the 2-qutrit systems is obtained in [11]. In
[12] a hierarchy of computationally efficient lower bounds to the standard quantum discord has been presented.

In this paper, by studying the classical correlations of d ⊗ 2 quantum states, we present the analytical formula of
quantum discord for any two-qubit states with rank-2.

To derive an analytical formula of quantum discord for rank-2 two-qubit states under von Neumann entropy, we
first study the classical correlation under linear entropy. The linear entropy S2(ρ) of a quantum state ρ is given by
S2(ρ) = 2[1− Tr(ρ2)]. The linear entropy version of the classical correlation (2) of a bipartite state ρAB is given by
I←2 (ρAB) = max[S2(ρA)−

∑

i piS2(ρ
i
A)].

Any d⊗ 2 bipartite quantum state ρAB may be written as[13]

ρAB = Λρ ⊗ IB(|rB′B〉〈rB′B|), (4)

where |rB′B〉 is the symmetric two qubit purification of the reduced density operator ρB on an auxiliary qubit system
B′ and Λρ is a qubit channel from B′ to A.

A qudit states can be written as the Bloch expression ρ = Id+~rγ
d

, where Id denotes the d × d identity matrix, ~r

is a d2 − 1 dimensional real vector, γ = (λ1, λ2, ..., λd2−1)
T is the vector of the generators of SU(d) and T stands

for transpose. The linear entropy written in terms of the Bloch vector ~r of a qudit state, is given by S2(
Id+~rγ
d

) =
2d2−2d−4|~r|2

d2
. The action of a qubit channel Λ on a single-qubit state ρ = I2+~rBσ

2 , where ~rB is the Bloch vector and σ
is the vector of Pauli operators, has the following form,

Λ(ρ) =
Id + (L ~rB + l)γ

d
, (5)

where L is a (d2 − 1)× 3 real matrix and l is a three-dimensional vect

II. THE LINEAR ENTROPY VERSION OF THE CLASSICAL CORRELATION

Any d⊗ 2 bipartite quantum state ρAB can be written as (4). Let ρB =
∑

λi|φi〉〈φi| be the spectral decomposition
of ρB. Then |VB′B〉 =

∑√
λi|φi〉|φi〉. One has [13],

I←2 (ρAB) = max
{pi,ψi}

(

S2[Λ(ρB)]−
∑

i

piS2[Λ(|ψi〉〈ψi|)]
)

,

where the maximization goes over all possible pure state decompositions of ρB. Taking into account (5), we have

S2[Λ(ρB)] = S2[Λ(
I2 + ~rBσ

2
)]

=
2d2 − 2d− 4(L~rB + l)T (L~rB + l)

d2
.

In the Pauli basis, the possible pure state decompositions of ρB are represented by all possible sets of probability

{pj} and ~rj such that ρB =
∑

j pj
I2+~rjσ

2 . Set ~rj = ~rB + ~xj . One can easily check that the calculation of I←2 (ρAB)

reduces to determine pj , ~xj , subject to the conditions
∑

j pj~xj = 0 and |~rB + ~xj | = 1, in the following maximization,

4

d2
max
{pj ,~xj}

∑

j

pj~x
T
j L

TL~xj .

By using the method used in calculating the linear Holevo capacity for qubit channels [13], we have the follow Lemma.
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Lemma For arbitrary d⊗ 2 quantum states,

I←2 (ρAB) =
4

d2
λmax(L

TL)S2(ρB), (6)

where λmax(L
TL) stands for the largest eigenvalues of the matrix LTL.

By the Lemma, we have corrected a error in [10], where the factor 4/d2 in (6) was missed.

III. ANALYTICAL FORMULA OF QUANTUM DISCORD FOR RANK-2 TWO-QUBIT STATES.

To get the analytical formula of classical correlation I←(ρAB) under von Neumann entropy from I←2 (ρAB) under
linear entropy for any bipartite states ρAB, we consider the relations among entanglement of formation, concurrence,
tangle, I←(ρAB) and I

←
2 (ρAB). The tangle τ(ρAB) is defined by

τ(ρAB) = inf
{pi,|ψ〉i}

∑

piS2(ρ
i
B),

where the infimum runs over all pure-state decompositions {pi, |ψ〉i} of ρAB and ρiB = TrA(|ψ〉i〈ψ|). Due to the
convexity, one has C2(ρAB) ≤ τ(ρAB) for quantum states. Generally, τ(ρAB) is not equal to the square of the
concurrence [14].

The entanglement of formation E(|ψ〉AB) [15–17] and the concurrence C(|ψ〉AB) [18–20] of a pure state |ψ〉AB are

defined by E(|ψ〉AB) = S(ρA) and C(|ψ〉AB) =
√

2[1− Tr(ρ2A)], respectively. They are extended to mixed states ρAB
by convex-roof construction, E(ρAB) = inf{pi,|ψi〉}

∑

i piE(|ψi〉), C(ρAB) = inf{pi,|ψi〉}
∑

i piC(|ψi〉), with the infimum
taking over all possible pure state decompositions of ρAB.

For the two-qubit quantum states ρAB, the entanglement of formation Ef (ρAB) and concurrence C(ρAB) have the
following relation [21]:

Ef (ρAB) = h(
1 +

√

1− C2(ρAB)

2
)

where h(x) = −x log2(x)− (1 − x) log2(1− x).

For a tripartite pure state |ψ〉ABC , one has the following relations [22],

Ef (ρAC) + I←(ρAB) = S(ρA). (7)

In the following we denote f(x) = h(1+
√
1−x
2 ) for simplicity.

In Ref.[23] the authors presented a way to calculate the quantum discord of a rank-2 two-qubit state ρAB =
λ0|φ0〉〈φ0|+λ1|φ1〉〈φ1|, where |φ0〉 and |φ1〉 are the eigenstates of ρAB with the corresponding eigenvalues λ0 and λ1.
By attaching a third qubit C the state ρAB is purified to be |Ψ〉 =

√
λ0|φ0〉|0〉+

√
λ1|φ1〉|1〉. By local unitary operations

one then transforms the eigenstates |φ0〉 and |φ1〉 simultaneously to the following forms: |φ0〉 = a0|0〉|0〉 + b0|η〉|1〉
and |φ1〉 = a1|1〉|0〉+ b1|η⊥〉|1〉, where |ak|2 + |bk|2 = 1 for k = 0, 1 and |η〉 = c|0〉+ d|1〉 is a state which is orthogonal
to |η⊥〉 with |c|2 + |d|2 = 1. The following results are obtained in [23]:

C2(ρBC) = 2λ0λ1
[

|a0b1c∗ − a1b0c|2 + 2|d|2(|a0|2|b1|2 + |a1|2|b0|2)
]

− 2λ0λ1
∣

∣(a0b1c
∗ − a1b0c)

2 − 4a0a1b0b1|d|2
∣

∣ .

From the relation between E(ρBC) and C(ρBC): E(ρBC) = h(C2(ρBC)), one has the entanglement of formation
E(ρBC). From the formula Q→(ρAB) = S(ρA) + E(ρBC)− S(ρAB), one obtains the quantum discord Q→(ρAB)[23].

In the following we present a Theorem which gives an analytical formula of quantum discord for arbitrary rank-2
two-qubit quantum states ρAB. The formula can be directly calculated for given ρAB and no purifications are needed.

Theorem 1 For rank-2 two-qubit quantum states ρAB, the quantum discord is given by

Q←(ρAB) = S(ρB)− S(ρAB) + f(S2(ρA)− I←2 (ρAB)). (8)

Proof : For two-qubit quantum states ρAB with rank-2, they have spectral decompositions, ρAB = λ1|ψ〉1〈ψ| +
λ2|ψ〉2〈ψ|, where λi and |ψ〉i, i = 1, 2, λ1+λ2 = 1, are respectively the eigenvalues and eigenvectors. Then the purified
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tripartite qubit state can be written as |ψ〉ABC =
√
λ1|ψ〉1|0〉 +

√
λ2|ψ〉2|1〉, satisfying ρAB = TrC(|ψ〉ABC〈ψ|). We

have the following monogamy relation [13],

τ(ρAC) + I←2 (ρAB) = S2(ρA). (9)

As ρAC is a two-qubit state, one has τ(ρAC) = C2(ρAC) [14]. Moreover, S(ρA) = Ef (|ψ〉A|BC) = f(C2(|ψ〉A|BC)) =
f(S2(ρA)),

Ef (ρAC) = f(C2(ρAC))

= f (S2(ρA)− I←2 (ρAB)) .

where the fist and second equations are due to (7) and (9). From (7), we have

I←(ρAB) = S(ρA)− f
(

S2(ρA)− I←2 (ρAB)
)

.

According to (3), we have the quantum discord for any rank-2 two-qubit states. �

Theorem 1 provides an analytical formula (8) of quantum discord in terms of the original Von Neumann entropy
for arbitrary rank-2 two-qubit quantum states. Besides, the classical correlation I←(ρAB) based on the Von Neumann
entropy is also analytically presented. It should be emphasized that, the analytical formula of quantum discord (8) is
only for rank-2 two-qubit quantum states, but the formula for classical correlation (6) is valid for any d⊗ 2 bipartite
states with any ranks. In the following, we give some detailed examples for quantum discords and also classical
correlations.

Let us consider the rank-2 of two-qubit Bell-diagonal states,

ρ =
1

4



I +

3
∑

j=1

ciσj ⊗ σj



 .

By Theorem 1, we have S(ρA) = 1 and S2(ρA) = 1 and I←2 (ρ) = c2. Then

I←(ρ) = 1− f(1− c2) =
1− c

2
log2(1− c) +

1 + c

2
log2(1 + c),

which coincides with the result in Ref. [8].

Example 1: Now consider the following two-qubit states,

ρ1 =
2− x

6
|00〉〈00|+ 1 + x

6
|01〉〈01|+ 1

6
|01〉〈10|

+
1

6
|10〉〈01|+ 1 + x

6
|10〉〈10|+ 2− x

6
|11〉〈11|,

where x ∈ [0, 2]. By computation we have S2(ρB) = 1, and the qubit channel Λ is given by Λ(|0〉〈0|) = 2−x
3 |0〉〈0| +

1+x
3 |1〉〈1|, Λ(|0〉〈1|) = 1

3 |1〉〈0|, Λ(|1〉〈0|) = 1
3 |0〉〈1| and Λ(|1〉〈1|) = 1+x

3 |0〉〈0|+ 2−x
3 |1〉〈1|. Therefore we obtain

L =





1
3 0 0
0 − 1

3 0
0 0 1−2x

3





and I←2 (ρ1) = max{x∈[0.2]}{ 1
9 ,

(1−2x)2
9 }, see Fig.1.

The rank of ρ1 is two when x = 2. In this case, we have S(ρB) = S2(ρA) = 1 and S(ρAB) = log2 3 − 2
3 . Hence

Q←(ρAB) =
5
3 − log2 3.

Example 2: We calculate now the discord of the Horodecki state [24],

ρH(p) = p|ϕ+〉〈ϕ+|+ (1− p)|00〉〈00|,
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FIG. 1: The classical correlation I←2 (ρ1) with x ∈ [0, 2] .

where |ϕ+〉 = 1√
2
(|01〉+ |10〉). The qubit channel Λ can be explicitly calculated: Λ(|0〉〈0|) = 2(1−p)

2−p |0〉〈0|+ p
2−p |1〉〈1|,

Λ(|1〉〈0|) =
√

p
2−p |1〉〈0|, Λ(|0〉〈1|) =

√

p
2−p |0〉〈1| and Λ(|1〉〈1|) = |0〉〈0|. By applying Theorem 1, we get the matrix

L =









√

p
2−p 0 0

0 −
√

p
2−p 0

0 0 − p
2−p









.

It is straightforward to verify that S2(ρ
H(p)B) = S2(ρ

H(p)A) = p(2− p) and S(ρH(p)) = h(p). Thus, the discord of
ρH(p) is given by

Q←(ρH(p)) = h(
p

2
)− h(p) + f(2p(1− p)),

see Fig.2.

0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0

discord

FIG. 2: The discord of the Horodecki state ρH(p).

Now we consider some more general rank-2 states,

ρ2 = x|ϕ〉〈ϕ| + (1− x)|φ〉〈φ|,

where |ϕ〉 = Sinθ |00〉+Cosθ |11〉, |φ〉 = Sinη |01〉+Cosη |10〉, x ∈ [0, 1] and θ, η ∈ [0, 2π]. Direct computation shows
L = diag{L1, L2, L3}, where
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L1 =
xSinθCosθ + (1 − x)SinηCosη

√

[xCos2θ + (1− x)Sin2η] [xSin2θ + (1 − x)Cos2η]
,

L2 =
xSinθCosθ − (1 − x)SinηCosη

√

[xCos2θ + (1− x)Sin2η] [xSin2θ + (1 − x)Cos2η]
,

L3 =
x2Sin2θCos2θ − (1− x)2Sin2ηCos2η

[xCos2θ + (1− x)Sin2η][xSin2θ + (1 − x)Cos2η]
,

L4 = 4x(1− x) + x2Sin22θ + (1 − x)2Sin22η − 4x(1− x)Cos2(θ − η)− 2x(1− x)Sin2θSin2η,

L5 = 4
[

xSin2θ + (1− x)Cos2η
] [

xCos2θ + (1− x)Sin2η
]

,

S(ρB) = h
(

xSin2θ + (1 − x)Cos2η
)

, S(ρ2) = h(x), and S2(ρA) = L4. Therefore we obtain

Q←(ρAB) = h
(

xSin2θ + (1 − x)Cos2η
)

− h(x) + f(L4 − max
{i=1,2,3}

{L2
i }L5).

The Horodecki state ρH(p) is a special case of ρ2 at θ = π
2 , η = π

4 and x = 1− p.

IV. CONCLUSION

By analyzing the relations among the entanglement of formation, concurrence, tangle, linear entropy based classical
correlation and von Neumann entropy based classical correlation, we have derived the analytical formulae of classical
correlations under linear entropic for arbitrary d⊗2 states and under von Neumann entropic for arbitrary 2⊗2 rank-2
states. From the von Neumann entropy based classical correlation, we have presented explicit formula of quantum
discord for arbitrary rank-2 two-qubit quantum states. If one can further get the relation between τ(ρAB) and E(ρAB)
for rank-2 d⊗ 2 systems, it would be possible to compute the quantum discord for rank-2 d⊗ 2 states. And if one is
able to get the relation between τ(ρAB) and E(ρAB) for 4 ⊗ 2 systems, maybe one can compute the discord for any
two-qubit states. However, for the rank-2 mixed states ρAB, the corresponding entanglement of formation satisfies
the inequality E(ρAB) ≤ f(τ) [14]. The tangle τ(ρAB) is not, in general, equal to the square of concurrence C2(ρAB).
It is of difficulty to calculate the discord of any rank-2 d⊗ 2 quantum states and any two-qubit states.
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