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Any two-qubit state can be represented, geometrically, as an ellipsoid with a certain size and
a center located within the Bloch sphere of one of the qubits. Points of this ellipsoid represent
the post-measurement states when the other qubit is measured. Based on the most demolition
concept in the definition of quantum discord, we study the amount of demolition when the two
post-measurement states, represented as two points on the steering ellipsoid, have the most dis-
tinguishability. We use trace distance as a measure of distinguishability and obtain the maximum
distinguishability for some classes of states, analytically. Using the optimum measurement that gives
the most distinguishable steered states, we extract quantum correlation of the state and compare
the result with the quantum discord. It is shown that there are some important classes of states for
which the most demolition happens exactly at the most distinguished steered points. Correlations
gathered from the most distinguished post-measurement states provide a faithful and tight upper
bound touching the quantum discord in most of the cases.
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I. INTRODUCTION

In a bipartite quantum system containing some kind
of correlations, when one side is measured locally, the
state of the other side may be collapsed to some specified
states. It means that one side, say Bob’s side, can steer
the state of the other side, say Alice’s side, just by per-
forming local measurement on his particle. This notion
of quantum steering, introduced by Schrödinger [1, 2],
is closely related to the concept of EPR nonlocality [3].
The states to which Alice’s particle steers to can be spec-
ified by the basis on which Bob performs measurement
on his particle. Considering all positive operator valued
measures (POVMs), Bob can steer the Alice’s particle
to a set of post-measurement states. In the case of two-
qubit systems, this set of post-measurement states forms
an ellipsoid, i.e. the so-called quantum steering ellipsoid
(QSE), living in the Alice’s Bloch sphere [4]. This ellip-
soid is unique up to the local unitary transformations for
any two-qubit system [4]. Having this geometry, it is use-
ful to study some non-classical features of composite sys-
tems such as entanglement, separability, negativity, fully
entangled fraction, quantum discord, Bell non-locality,
monogamy, EPR steering and even the dynamic of a
quantum system [1, 4–14]. When the results of the mea-
surement are not recorded, the measurement performed
locally by Bob cannot affect the Alice’s reduced density
matrix. Therefore the ensemble average of the Alice’s
Bloch vectors of the post-measurement states, produced
by a set of POVM on the Bob’s part, must be equal to
the coherence vector of the Alice’s reduced state, mean-
ing that the coherence vector lies inside the ellipsoid. In
particular, when Bob’s reduced state is totally mixed, the
Alice’s coherence vector coincides on her ellipsoid center
[4]. Such a state is called “canonical state”.
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Conversely, we can reconstruct a two-qubit state from
its ellipsoid, given the coherence vectors of two parts [4].
However, not any ellipsoid can belong to a physical state.
For example, any physical ellipsoid touches the Bloch
sphere at most at two points unless it is the whole Bloch
sphere [15]. Given the ellipsoid center, authors in [5] have
been studied conditions of physicality and separability of
canonical states. Based on the Peres-Horodecki criterion
[16, 17], the authors of [4] have shown that the separabil-
ity of the canonical states depends on the shape of their
ellipsoids.

All of the above symmetric features can be observed
from the Bob’s ellipsoid which its dimension is the same
as the Alice’s one [4]. Quantum discord (QD) [18, 19]
is an asymmetric measure of quantum correlations that
could be obtained by eliminating the classical correlation
from the total correlation, measured by the mutual infor-
mation, by means of the most destructive measurement
on the one party of the system (for a review on quantum
discord see [20]). The total information shared between
parts of a bipartite quantum state ρ is given by

I(ρ) = S(ρA) + S(ρB)− S(ρAB), (1)

where ρA = TrBρ is the reduced density matrix of
the Alice’s side, and ρB is defined similarly. Moreover,
S(ρ) = −Tr[ρ log2 ρ] is the von Neumann entropy of the
state ρ. Quantum discord at Bob’s side reads [18]

QB(ρ) = I(ρ)− CB(ρ), (2)

where

CB(ρ) = sup
{ΠB

k }
{S(ρA)− S(ρA| {ΠB

k })}. (3)

Here S
(
ρA| {ΠB

k }
)

=
∑
k pkS(ρAk ) is the Alice’s condi-

tional entropy due to the Bob’s measurement. Equation
(3) shows that in order to calculate quantum discord we
shall be concerned about the set {ΠB

k } of all measure-
ments on the Bob’s qubit [18]. This allows one to extract
the most information about the Alice’s qubit.
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Algorithms to evaluate quantum discord for a general
two-qubit state are presented [21, 22]. However, the opti-
mization problem requires the solution to a pair of tran-
scendental equations which involve logarithms of nonlin-
ear quantities [21]. This prevents one to write an analyt-
ical expression for the quantum discord even for the sim-
plest case of two-qubit states. Indeed, quantum discord
is analytically computed only for a few families of states
including the Bell-diagonal states [23, 24], two-qubit X
states [25, 26] and two-qubit rank-2 states [27]. Using
the Choi-Jamio lkowski isomorphism, the authors of [28]
obtained the transcendental equations and shown that
for a general two-qubit state they always have a finite
set of universal solutions, however, for some cases such
as a subclass of X states, the transcendental equations
may offer analytical solutions.

In this paper we use the notion of distinguishability of
the Alice’s outcomes and look to those measurements on
Bob’s qubit that lead to the most distinguishability of
the Alice’s steered states. We show that such obtained
optimum measurement coincides in some cases with the
optimum measurement of Eq. (3). The correlations gath-
ered from the most distinguished measurements give, in
general, a tight upper bound for the quantum discord.

The paper is organized as follows. In Section II we
present our terminology and provide a brief review for
quantum steering ellipsoid. In section III the notion of
distinguishability of the Alice’s outcomes is defined and
we provide some important classes of states for which
the maximum distinguishability can be calculated, ana-
lytically. Section IV is devoted to compare our results
with quantum discord. The paper is conclude in section
V with a brief conclusion.

II. FRAMEWORK: QUANTUM STEERING
ELLIPSOID

We start from a two-qubit state in the general form as

ρ =
1

4

1⊗ 1 + x · σ ⊗ 1 + 1⊗ y · σ +

3∑
i,j=1

tijσi ⊗ σj

 ,

(4)
where x and y are Alice and Bob coherence vectors,
respectively, T = [tij ] is the correlation matrix, σ =
(σ1, σ2, σ3) are the Pauli matrices, and 1 denotes the unit
2× 2 matrix. If Bob performs a projective measurement

ΠB
k =

1

2
(1 + n̂k · σ) , k = 0, 1, (5)

on his qubit, where n̂0 = (sin θ cosφ, sin θ sinφ, cos θ)t =
−n̂1 and t denotes the transposition, the shared bipartite
state collapses to

ρ = p0ρ
A
0 ⊗ΠB

0 + p1ρ
A
1 ⊗ΠB

1 , (6)

with

ρAk =
1

2
(1 + x̃k · σ), (7)

as the post-measurement state of the Alice’s side associ-
ated with the outcome k, with the corresponding proba-
bility

pk =
1

2
(1 + y · n̂k). (8)

Above, the Alice’s post-measurement coherence vector
x̃k is defined by

x̃k =
x+ T n̂k
1 + y · n̂k

, (9)

for k = 0, 1.
Canonical states.—As we mentioned previously,

canonical states refer to states for which the Bob’s re-
duced state is totally mixed, so y(can) = 0. For such
states, it is easy to construct Alice’s ellipsoid from the
above formalism. In this particular case, Alice’s post-
measurement Bloch vector (9) reduces to

x̃
(can)
k = x(can) + T (can)n̂k, (10)

with probability p
(can)
k = 1

2 for k = 0, 1. Since the unit
vector n̂k defines a unit sphere centered at origin, the
above equation states that the set of all points Alice’s
coherence vector steers to forms an ellipsoid. This canon-
ical ellipsoid, associated with the canonical state ρ(can)

for which y(can) = 0, is obtained by shrinking and rotat-
ing the sphere n̂k by matrix T (can), and then translating
it by vector x(can) [4].

Interestingly, a canonical state can be obtained from a
general state by local filtering transformation (LFT) [29].
More precisely, starting from a generic two-qubit state ρ
with nonzero Bob’s coherence vector y, one can obtain
the canonical state ρ(can) with y(can) = 0 as [4]

ρ(can) =

(
1⊗ 1√

2ρB

)
ρ

(
1⊗ 1√

2ρB

)
(11)

=
1

4

1⊗ 1 + x(can) · σ ⊗ 1 +

3∑
i,j=1

t
(can)
ij σi ⊗ σj

 ,

where the first line denotes a local filtering transforma-
tion on the general state ρ. It is shown that the physical-
ity and separability of states are unchanged under LFT
[5]. Furthermore, the Alice’s ellipsoid is invariant under
LFT on Bob’s side, therefore the LFT makes orbits such
that states on the same orbit have equal ellipsoids [4].
In view of this, the canonical states can be considered as
the representatives on the corresponding orbits, therefore
physicality and separability of the states on a general or-
bit can be determined from the ones of the canonical
states.

III. MEASURING BOB’S QUBIT WITH THE
MOST DISRUPTIVE ALICE’S QUBIT

As we mentioned already, in order to calculate quan-
tum discord we shall be concerned about the set {ΠB

k }
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FIG. 1. (Color online) The conditional entropy (upper sur-
face) and the Euclidean distance (lower surface) of two steered
states of the Alice’s qubit as a function of the Bob’s mea-
surement parameters (θ, φ) for a Bell-diagonal state with
(t1, t2, t3) = (−0.5, 0.7, 0.5). The figure shows that these func-
tions have opposite behaviour under local measurement on the
Bob’s qubit.

of all measurements on the Bob’s qubit. This allows one
to extract the most information about the Alice’s qubit
[18] and that at the same time disturbs least the over-
all quantum state ρ. This corresponds also to finding
measurements that maximize Eq. (3). When the re-
sults of the measurement are not recorded, the measure-
ment on Bob’s qubit does not disturb Alice’s state ρA.
However, corresponding to the measurement outcomes,
Alice’s state steers to some states ρAk in her ellipsoid fol-
lowing the route of Eqs. (7) and (27). The ability to ex-
tract information about Alice’s qubit by measuring Bob’s
qubit comes from correlations shared between them and
this is, in general, accompanied by disrupting the Alice’s
outcome states. Now the question arises: To what extent
does the extraction of the most information about Alice’s
qubit disturb her outcomes? To address this question let
us consider the Bell-diagonal states, i.e. states described
by Eq. (4) with x = y = 0 and T = diag{t1, t2, t3}. A
comparison between the Alice’s conditional entropy and
the Euclidean distance of the Alice’s steered states shows
that these functions behave, in general, oppositely under
local measurement on the Bob’s side (see Fig. 1). In
particular, we observe that the minimum of the condi-
tional entropy coincides with the maximum of the Eu-
clidean distance of two steered states. It seems there-
fore that extracting the most information about Alice’s
qubit can be associated with the most disturbing her out-
comes states. Motivated by the above observation, in
what follows we are looking to those measurements on
Bob’s qubit that cause the most disturbance in the Al-
ice’s post-measurements states. To this aim we use the
trace distance as a measure of quantum distinguishability
between two outcomes [30]

D(ρA0 , ρ
A
1 ) = Tr|ρA0 − ρA1 |. (12)

This, in turns, reduces simply to the Euclidian dis-
tance D(x̃0, x̃1) between Bloch vectors of the two post-

measurement states ρA0 and ρA1 . For the squared distance
we find

D2(x̃0, x̃1) = |x̃0 − x̃1|2 =
4n̂tM n̂

(1− n̂tY n̂)2
, (13)

where Y = yyt and M = mtm with m = (T − xyt).
Maximum distinguishability corresponds therefore to the
maximum distance given by

D2
max(x̃0, x̃1) = max

n̂

[
4n̂tM n̂

(1− n̂tY n̂)2

]
, (14)

where maximum is taken over all unit vectors n̂ ∈ R3.
Before we proceed further to find conditions under which
D2(x̃0, x̃1) is maximize, let us turn our attention on some
particular cases for which the maximum is obtained an-
alytically without any need for rigorous optimization.
(i) Canonical states y = 0.—For the important class of
canonical states for which the Bob’s coherence vector is
zero, the optimum measurement leading to the maximum
distance between Bloch vectors of the post-measurement
states is nothing but the eigenvector of T correspond-
ing to its largest eigenvalue. Therefore in this case we
have D2

max(x̃0, x̃1) = 4 max{t21, t22, t23}. The Bell-diagonal
states, for which the Alice’s coherence vector also van-
ishes, are an important subclass of canonical states.
(ii) States for which y is an eigenvector corresponding
to the largest eigenvalue of M .—In this case maximum
of the enumerate happens in the direction of coherence
vector of the part B, i.e. maxn̂ n̂

tM n̂ = ytMy/y2. For

such states we get D2
max(x̃0, x̃1) =

[
4ytMy

y2(1−y2)2

]
.

(iii) X states.—The important class of X states is de-

fined by x =
(

0 0 x
)t

, y =
(

0 0 y
)t

, and T =
diag{t1, t2, t3}. In this case M is also a diagonal matrix
given by M = diag{M1,M2,M3} with M1 = t21, M2 = t22
and M3 = (t3 − xy)2. In what follows we assume that
|t1| ≥ |t2| (|t1| ≤ |t2| can be obtained just by replacing
1 → 2 and x → y). In this case we find the following
results.

1. M1 ≤ M3. For such case we get D2
max(x̃0, x̃1) =

4M3

(1−y2)2 with σz as the optimal measurement.

2. M1 ≥M3. In this case the optimal measurement is
defined by (n̂∗1)2 = 1− (n̂∗3)2, n̂∗2 = 0, and (n̂∗3)2 =
2M1y

2−(M1−M3)
(M1−M3)y2 if

M1 −M3

2M1
≤ y2 ≤ M1 −M3

M1 +M3
, (15)

or equivalently(
2M3

M1 +M3

)2

≤ (1− y2)2 ≤
(
M1 +M3

2M1

)2

. (16)

On the other hand, the optimal measurement is σz,
i.e. D2

max(x̃0, x̃1) = 4M3

(1−y2)2 , if(
2M3

M1 +M3

)2

≥ (1− y2)2, (17)
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and it is σx, i.e. D2
max(x̃0, x̃1) = 4M1, if

(1− y2)2 ≥
(
M1 +M3

2M1

)2

. (18)

Now, after giving the maximum distance for some par-
ticular classes of states without rigorous optimization, we
provide in what follows an analytical procedure for op-
timization of Eq. (14). In order to determine the max-
imum distance, we have to calculate its derivatives with
respect to θ and φ. For derivative with respect to θ we
get

∂D2

∂θ
=

8n̂t
,θM(n̂)n̂

(1− n̂tY n̂)2
, (19)

where M(n̂) is a n̂-dependent symmetric matrix given
by

M(n̂) = M +
2n̂tM n̂

(1− n̂tY n̂)
Y, (20)

and the unit vector n̂,θ is defined by

n̂,θ =
∂n̂

∂θ
= (cos θ cosφ, cos θ sinφ,− sin θ)t. (21)

Evidently n̂,θ · n̂ = 0. By defining the nonunit vector ñ,φ
by

ñ,φ =
∂n̂

∂φ
= (− sin θ sinφ, sin θ cosφ, 0)t, (22)

orthogonal to both n̂ and n̂,θ, we get a similar equation
for the derivative of the distance with respect to φ, but
now n̂,θ is replaced by ñ,φ. Excluding the case y = 1
which happens if and only if the overall state is pure, we
find the following relation for the stationary condition
∂D2

∂θ = ∂D2

∂φ = 0,

n̂t
⊥M(n̂) n̂ = 0, (23)

where n̂⊥ is any vector perpendicular to n̂, i.e. n̂⊥ · n̂ =
0. This implies that the stationary points are achieved if
and only if n̂ be an eigenvector of M(n̂). Note that
knowing the extremum points of the distance is not
enough to establish its maximum, and we are required
a further investigation of the distance over all extremum
points to get the maximum one. Although condition (23)
does not provide an easy solution for the maximum of
the distance, due to the dependence of the symmetric
matrix M(n̂) on the unknown direction n̂, it provides
still a simple condition to evaluate the stationary points
numerically. Not surprisingly, the above stationary con-
dition is fulfilled for the special classes of states for which
we have already obtained the maximum distance without
rigorous optimization.

From the discussion given at the beginning of this sec-
tion, two questions are being raised. The first one is

that, is there any relation between the optimum measure-
ment associated with the maximum distinguishability of
the Alice’s outcomes with the one that allows one to ex-
tract the most information about the Alice’s qubit? We
demonstrate in the following section that this is, indeed,
the case. To do so, we provide some examples for which
these two optimum measurements coincide exactly. The
second question is that, when the optimum measurement
of the maximum distinguished-outcomes process differs
from the most information-gathering one, whether the
former can be used to find a tight and faithful upper
bound on the quantum discord? We will address these
questions in the next section.

IV. MAXIMUM DISTINGUISHED-OUTCOMES
MEASUREMENT VERSUS THE MOST
INFORMATION-GATHERING ONE

Suppose Bob performs a measurement on his qubit in
the direction n̂∗ which fulfills the maximum distinguisha-
bility condition (14). Using this in the definition of quan-
tum discord we find that

QB(ρ) ≤ Q∗B(ρ), (24)

where QB(ρ) is the quantum discord of ρ, Eq. (2), and
Q∗B(ρ) is its upper bound defined by

Q∗B(ρ) = S(ρB)− S(ρAB) + S(ρA| {Π∗Bk })
= [h2(~q)− h4(~λ)] + [h4(~w)− h2(~p)]. (25)

Above, Π∗Bk = 1
2 (1 + n̂∗k · σ) for k = 0, 1 is the opti-

mum measurement that maximizes D2(x̃0, x̃1). More-
over, hm(~x) stands for the Shannon entropy of a prob-

ability vector of length m. Also ~λ and ~q denotes the
probability vectors constructed from the eigenvalues of
ρ and ρB , respectively, and ~w and ~p are two probability
vectors of length 4 and 2, respectively, given by [22]

wk,l =
1

4

{
1 + (−)ky · n̂∗ + (−)l

∣∣x+ (−)kT n̂∗
∣∣} ,(26)

pk =
1

2

{
1 + (−)ky · n̂∗

}
, (27)

for k, l ∈ {0, 1}. The following lemma shows that the
above upper bound is faithful in a sense that it vanishes
if and only if the bounded quantity vanishes.

Lemma 1. Q∗B(ρ) = 0 if and only if QB(ρ) = 0.

Proof. The sufficient condition is a simple consequence
of Eq. (24). To prove the necessary condition, let ρ be
a zero-discord on the Bob’s side. A two-qubit state has
zero discord on Bob’s side if and only if either (i) T = 0,
or (ii) rank(T ) = 1 and y belongs to the range of T
[31, 32]. We need therefore to prove that both cases lead
to Q∗B(ρ) = 0.

(i) If T = 0, we have from Eq. (14)

D2
max(x̃0, x̃1) = max

n̂

[
4x2(n̂ · y)2

(1− (n̂ · y)2)2

]
,
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which takes its maximum value for n̂∗ = ŷ = y/|y|. On
the other hand, in this case, simple calculation shows
that eigenvalues of ρ and ρB are given by

λk,l =
1

4

{
1 + (−)ky + (−)lx

}
, qk =

1

2

{
1 + (−)ky

}
,

respectively (k, l ∈ {0, 1}). Using these and putting T =
0 in Eqs. (26) and (27), we find from Eq. (25) that
n̂∗ = ŷ gives Q∗B(ρ) = 0.

(ii) For the second case, i.e. when rank(T ) = 1 and y
belongs to the range of T , without any loss of generality

we assume that y and T have the form y = yk̂ and

T = tk̂k̂
t
, respectively. In this case Eq. (14) leads to

D2
max(x̃0, x̃1) = max

n̂

[(
t2 + x2 y2 − 2 t x y

)
(n̂ · k̂)2

(1− y4(n̂ · k̂)2)2

]
,

which takes its maximum value for n̂∗ = k̂. For such
states we have

λk,l =
1

4

{
1 + (−)ky + (−)l

∣∣∣x+ (−)kT k̂
∣∣∣} ,

qk =
1

2

{
1 + (−)ky

}
,

for eigenvalues of ρ and ρB , respectively. Moreover, wk,l
and pk are given by Eqs. (26) and (27) with y = yk̂ and

T = tk̂k̂
t
. A simple investigation shows that Q∗B(ρ) = 0

for n̂∗ = k̂. This completes the proof.

In what follows we show that the above upper bound
is tight in a sense that in more situations the equality is
saturated. To this aim we consider states that we have
considered in the last subsection.

(i) Canonical states y = 0.—There is no complete so-
lution to the quantum discord of the canonical states,
although their geometry and optimization formula are
simpler than the general states. Without losing general-
ity we assume |t1| ≥ |t2| and then do measurement along

the greater semi-axis between î and k̂. We do this and
plot the results versus the quantum discord in Fig. 2 for
more than 20000 random states. There are many points
on the bisector line showing that the optimized direc-
tion is very near to the direction of our upper bound.
Moreover, non-exact results are not too far from quan-
tum discord and distribution of points near the bisector
line shows that the upper bound is very near to the quan-
tum discord. Canonical states with T tx = 0 have been
solved analytically in [22] and it is easy to see that for
this subclass we have QB(ρ) = Q∗B(ρ).

(ii) States for which y is an eigenvector correspond-
ing to the largest eigenvalue of M .—In this case there
are some classes of states for which there exist a good
agreement between QB(ρ) and Q∗B(ρ). Consider states
with

x = xk̂, y = yî, T = diag{t1, t2, 0}. (28)

In this case M = diag{t12 + x2y2, t2
2, 0}, and when

t1
2 + x2y2 ≥ t2

2 both QB(ρ) and Q∗B(ρ) are obtained

0.2 0.4 0.6 0.8 1.0

Q

0.2

0.4

0.6

0.8

1.0

Q *

FIG. 2. (Color online) The upper bound Q∗(ρ) vs. quantum
discord Q(ρ) for 20000 random canonical states. Points on
the bisector line belong to states for which the upper bound
is equal to QD.
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FIG. 3. (Color online) The upper bound Q∗(ρ) vs. quantum
discord Q(ρ) for 3000 random states for which y is an eigen-
vector corresponding to the largest eigenvalue of M . Results
have high accuracy with RE < 10−6.

by measurement along y. In Fig. 3 we have plotted
Q∗B(ρ) versus QB(ρ) for more than 3000 random states
of this category.

(iii) X states.—For X-states we consider the following
classes separately.

1. M1 ≤M3. In this case Q∗B(ρ) is very near to QB(ρ)
and the relative error is less than 10−6. For 10000
random states of this category any point lies on the
bisector line (Fig. 4).

2. M1 ≥ M3. In Figs . 5 and 6 we plot Q∗B(ρ) vs.
QB(ρ) for 20000 random states satisfying one of
the Eqs. (17) and (18), and 5000 random states
satisfying Eq. (16), respectively.

A. Q∗
B(ρ) as a tight upper bound

Now we proceed to employ Q∗B(ρ) as an upper bound
and check if it is a tight one. Here we focus on a two
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FIG. 4. (Color online) The upper bound Q∗(ρ) vs. quantum
discord Q(ρ) for 10000 random X states satisfying M1 ≤M3.
Results have high accuracy with RE < 10−6.
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FIG. 5. (Color online) The upper bound Q∗
B(ρ) vs. quantum

discord QB(ρ) for 20000 random X states satisfying M1 ≥M3

and one of the Eqs. (17) and (18).

parameters state as [33]

ρ =
1

2

 a 0 0 a
0 1− a− b 0 0
0 0 1− a+ b 0
a 0 0 a

 , (29)
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FIG. 6. (Color online) The upper bound Q∗
B(ρ) vs. quantum

discord QB(ρ) for 5000 random X states satisfying M1 ≥M3

and Eq. (16).

where 0 ≤ a ≤ 1 and a − 1 ≤ b ≤ 1 − a. The quantum
discord of this state is [33]

QB(ρ) = min{a, q}, (30)

where

q =
a

2
log2[

4 a2

(1− a)
2 − b2

]− b

2
log2[

(1 + b)(1− a− b)
(1− b)(1− a+ b)

] (31)

+
1

2
log2[

4((1− a)
2 − b2)

(1− b2)(1− a2 − b2)
]−
√
a2 + b2

2
log2[

1 +
√
a2 + b2

1−
√
a2 + b2

].

Here a and q are obtained by measurements n̂ = î and

n̂ = k̂, respectively. Marginal coherence vectors and the
correlation matrix of this state are given by

x = −y =

 0
0
−b

 , T =

 a 0 0
0 −a 0
0 0 2a− 1

 . (32)

On the other hand, the maximal distance of this state is

D2
max = max

{
a2,

(
(2a− 1) + b2

)2
(1− b2)

2

}
, (33)

where a2 and
((2a−1)+b2)

2

(1−b2)2
are obtained by measurements

n̂ = î and n̂ = k̂, respectively.
Evidently, for b = 0 we have QB(ρ) = Q∗B(ρ). In Fig. 7

we plot QB(ρ) and Q∗B(ρ) as a function of a for two cases
b = 0.3 and b = 0.7, respectively. Except at a very small
interval, we have QB(ρ) = Q∗B(ρ). A comparison of these
figures reveals that as b increases the amounts of QD
decreases and also the interval in which QB(ρ) 6= Q∗B(ρ),
grows up. Therefore, we observe that in high discordant
states Q∗B(ρ) is more precise.

V. CONCLUSION

Here we have defined Q∗(ρ) as the correlation that Bob
can extract about Alice’s qubit by means of the most
distinguishable measurements, i.e. measurements that
Bob steers Alice to the most distinguishable states. For
some classes of states, we have shown that this quantity
is equal to the quantum discord Q(ρ). Although Q∗(ρ)
may contain some classical correlations, the amount of
classical correlations is not so much in particular for
high discordant states. The presented quantity provides
a faithful and tight upper bound for the quantum dis-
cord. Marginal states at high discordant states have
high mixedness and so they are near to the Bell-diagonal
states, for which Q∗(ρ) coincides exactly with Q(ρ).

The significance of our method comes from two facts:
(i) the tightness of the provided bound and (ii) the physi-
cal interpretation of this bound. As we mentioned above,
the provided upper bound is faithful and tight, meaning
that the bound vanishes if and only if the bounded quan-
tity vanishes. This, in turn, indicates that a nonzero
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FIG. 7. (Color online) QB(ρ) and Q∗
B(ρ) as a function of a

for (a) b = 0.3 and (b) b = 0.7. The insets show behaviour in
the rigion near QB(ρ) 6= Q∗

B(ρ).

value for the upper bound is a guarantee for the nonzero

quantum discord, a fact that is not valid, in general, for
an arbitrary upper bound. In other words, for zero dis-
cord states with possible classical correlations, the most
distinguishable measurement washes out all classical cor-
relations. On the other hand, the physical interpretation
of our method is related to its relevance to the notion
of quantum distinguishability. Actually a look at mea-
sure of distinguishability of two states, given by Eq. (12)
for outcomes of the Alice’s side when Bob performs a
von Neumann measurement on his particle, shows that
this measure is closely related to the notion of minimum-
error probability of discrimination of two states for equal
a priori probability [30].

The generalization of the above method is not straight-
forward as there are not well known geometries like Bloch
sphere and quantum steering ellipsoid for arbitrary bi-
partite systems. For a general bipartite state with arbi-
trary dimension for Bob’s particle, when Bob performs
POVM measurement on his particle with n outcomes, the
state of the Alice’s side steers to ρAk with probability pk
corresponding to each outcome k = 1, · · · , n. Following
the route of two-qubit system, we left therefore with the
problem of finding the best possible measurement on the
Bob’s side with the outputs that are most distinguishable
on the Alice’s side. This, however, is not an easy task to
treat in general and further study on the subject is under
our investigation.
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