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Abstract The sequential unambiguous state discrimination (SSD) of two
states prepared in arbitrary prior probabilities is studied, and compared with
three strategies that allow classical communication. The deviation from equal
probabilities contributes to the success in all the tasks considered. When one
considers at least one of the parties succeeds, the protocol with probabilistic
cloning is superior to others, which is not observed in the special case with
equal prior probabilities. We also investigate the roles of quantum correlations
in SSD, and show that the procedure requires discords but rejects entangle-
ment. The left and right discords correspond to the part of information ex-
tracted by the first observer and the part left to his successor respectively.
Their relative difference is extended by the imbalance of prior probabilities.

Keywords Sequential state discrimination · Entanglement · Discord

1 Introduction

The roles of quantum correlations in quantum information procedures is a
fundamental problem in quantum information. These correlations have been
widely investigated in various perspectives such as quantum entanglement [1],
Bell nonlocality [2], and quantum discord [3,4]. One of the interesting findings
in this field is that the algorithm for deterministic quantum computation with
one qubit (DQC1) can surpass the performance of the corresponding classical
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algorithm in the absence of entanglement between the control qubit and a
completely mixed state [5,6]. Thus, the entanglement which had been regarded
as the only resource for demonstrating the superiority of quantum information
processing [1,7] is considered to be completely unnecessary [8]. The quantum
discord, which gives a measurement of the nonclassical correlations and can
exist in a separable state, is considered to be the key resource in this quantum
algorithm and has gained wide attention [9,10].

Another example aided by quantum discord rather than entanglement
is the procedure of unambiguous state discrimination assisted by an auxil-
iary qubit [11,12] . Unambiguous discrimination among linearly independent
nonorthogonal quantum states is a fundamental subject in quantum informa-
tion theory [13,14,15,16,17]. In its simplest form, Alice prepares a qubit in
one of two known nonorthogonal states, |Ψ1〉 and |Ψ2〉, and sends it to the
observer Bob. Bob’s task is to determine the state he received with no error
permitted. The measurement has three possible outcomes, |Ψ1〉, |Ψ2〉, and fail-
ure, in which the last one is the price to pay for no error. This is realized by a
positive-operator-valued measurement (POVM) on the qubit, which requires
a three dimensional Hilbert space [18]. The Hilbert space can be extended
via either the tensor product extension or the direct sum extension [19,20,
21] . The former is necessary when the dimension of the measured system is
fixed, e. g. a qubit realized by a spin-half particle. In such cases, Bob has to
introduce an ancillary system to couple with the principal one. This prompts
the researchers [11,12] to study the quantum correlations (entanglement and
discord) created in the discrimination process.

The work [8] goes even further, studying the quantum correlations in se-
quential state discrimination (SSD) presented in [22]. In the protocol of SSD,
another observer Charlie will also perform an unambiguous discrimination
measurement on the same qubit after Bob’s measurement. It is one of the the-
ories to extract information from a quantum system by multiple observers [22,
23,24]. The results in [8] demonstrate that the entanglement is not only unnec-
essary for Bob’s recognition, but also an obstacle for the next observer Charlie.
The left discord of the state in Bob’s hands corresponds to the information he
extracts, and the right one to the information he left to Charlie.

However, both the researches [8] and [22] have been limited to the special
case with equal prior probabilities. There are some critical reasons for solving
the general problem with arbitrary priors. The optimal solution to an equal-
prior problem often has a symmetric form. We can check the robustness of
optimal solution against variations of the priors around 1/2 through a gen-
eral non-uniform prior result. In both the probabilistically cloning of two pure
states [25] and sequential mixed states discrimination [26], initial states pre-
pared with general non-uniform prior have demonstrated great significance.
Thus, the present study will complete the results in the general case with
arbitrary probabilities and check whether the existing conclusions in [8] hold.

In the next section, we give the details of SSD with arbitrary prior probabil-
ities. We show the absence of entanglement is required for SSD. It is compared
with other three protocols that allows classical communication in Sec. 3. The
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Fig. 1 Protocol for SSD. Alice has a qubit A prepared in one of the two nonorthogonal
states |Ψ1〉 and |Ψ2〉 with prior probabilities P1 , P2 respectively. After the qubit is sent to
Bob, a joint unitary operation is performed between the qubit A and an auxiliary qutrit
B, followed by a von Neumann measurement on the qutrit. The state discrimination is
successful if the outcome is 1 (for |Ψ1〉) and 2 (for |Ψ2〉), but unsuccessful if the outcome is
0. Then the qubit in the postmeasurement state is sent to Charlie by Bob. Charlie performs
a similar joint unitary operation Uc between it and his qutrit C and then makes an optimal
unambiguous discrimination measurement [22] on C.

roles of quantum correlations are discussed in Sec. 4. And the final section is
a summary.

2 Sequential state discrimination

We now consider the procedure of SSD, which is shown in Fig.1. A qubit
A is prepared randomly by Alice in a state |Ψi〉 with prior probabilities Pi,
where i = 1, 2, and P1 + P2 = 1. Without loss of generality, we take the
overlap s = 〈Ψ1|Ψ2〉 to be a real number (0 ≤ s ≤ 1) and P1 ∈ (0, 1/2] in the
present work. Alice sends the qubit to Bob. After performing a joint unitary
transformation Ub between A and his auxiliary qutrit B, Bob obtains the state
of the composite system as

Ub|Ψi〉|0b〉 =
√

qbi |χi〉|0〉b +
√

1− qbi |φi〉|i〉b, (1)

where {|0〉b, |1〉b, |2〉b} is a set of basis of the ancilla, and |χi〉 and |φi〉 are
pure states of A. Then, Bob performs a von Neumann measurement on the
qutrit with respect to the basis. He succeeds in discrimination if the ancilla
collapses to |1〉b or |2〉b, while he fails if the outcome is |0〉b. The average
success probability of Bob can be obtained as

Pb = P1(1− qb1) + P2(1 − qb2). (2)

The inner product is conserved under the unitary operation. Thus, the
states |χi〉 satisfy the constraint

√

qb1q
b
2〈χ1|χ2〉 = s. Here, we denote the over-

lap 〈χ1|χ2〉 = t, with s ≤ t ≤ 1. The change from s to t corresponds to the
information Bob extracts from the qubit A in his measurement[8,22]. When
t = s, the overlap constraint demands qb1 = qb2 = 1, which leads to the success
probability to be zero. When t = 1, in our following discussion, one can find
that the discrimination of the next observer has a zero success probability.
That is, all the information encoded in qubit A is extracted by Bob.
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Fig. 2 The optimal success probability Pb,max as a function of the parameter P1 for s =
0.05, t = 0.06 (solid line), 0.1 (dotted line).

For fixed values of s and t, the success probability Pb of Bob can be maxi-
mized into two forms as

(i) : Pb,max = 1− 2
√

P1P2
s

t
, when

s2

s2 + t2
≤ P1 ≤ 1

2
; (3a)

(ii) : Pb,max = P2(1−
s2

t2
), when 0 < P1 <

s2

s2 + t2
. (3b)

In the above two cases, the values of the qb1 corresponding to the optimal
success probabilities are (i): qb1 =

√

P2/P1s/t and (ii): qb1 = 1. When qb1 = 1,
the state |1〉b of B is absent in Eq. (1), and simultaneously the first term in
Eq. (2) vanishes. That is, Bob ignores |Ψ1〉 to maximize his success probability
Pb, when P1 is less than the critical value s2/(s2 + t2).

As is shown in Fig. 2, Bob’s optimal success probability is enhanced by the
deviation from equal probabilities. However, it can’t reach 1 as P1 approaches
0. This fact is attributed to the requirement of no error in the task. As long
as there is even a little probability of |Ψ1〉, the value of qb2 is lower bounded by
s2/t2 due to the overlap constraint.

After Bob’s discrimination, the qubit A is sent to the second observer Char-
lie, who knows Bob’s protocol and performs a similar unambiguous discrim-
ination. A necessary condition for Charlie’s discrimination is that the states
he receive are linearly independent[8,18]. In Eq. (1), there are four postmea-
surement states sent to Charlie: |χ1〉, |χ2〉, |φ1〉 and |φ2〉. In the Hilbert space
of the principal qubit, the independency requires |χi〉 = |φi〉. Thus, the trans-
formation in Eq. (1) should be

Ub|Ψi〉|0b〉 = |φi〉|αi〉b, (4)

where |αi〉b =
√

qbi |0〉b +
√

1− qbi |i〉b with i = 1, 2. One can find that, the
absence of entanglement in the states (4) is a necessary condition of SSD.
The task of Charlie is to distinguish the states |φ1〉 and |φ2〉 to extract the
information encoded in |Ψ1〉 and |Ψ2〉 by Alice. Obviously, a necessary condition
for his success is the overlap 〈φ1|φ2〉 = t < 1.

Similar to Eq. (4), Charlie makes a joint unitary operation Uc between the
qubit A and his auxiliary qutrit C, with the parameters qb1, q

b
2 replaced by qc1
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and qc2. The difference is that, his two postmeasurement states of qubit A are
the same, which indicates Charlie obtains all the information left by Bob. His
optimal success probability is given by

(i) : Pc,max = 1− 2
√

P1P2t, when
t2

1 + t2
≤ P1 ≤ 1

2
; (5a)

(ii) : Pc,max = P2(1− t2), when 0 < P1 <
t2

1 + t2
, (5b)

corresponding to the values (i): qc1 =
√

P2/P1t and (ii): qc1 = 1 respectively.

When P1 6= 1/2, although both the optimal success probabilities Pb,max

and Pc,max become piecewise functions, the former is a monotonous increasing
function of the overlap t and the later is a decreasing one. In other words, the
trade-off relation between the information extracted by Bob and Charlie holds
in the general case, which can be measured by Pb,max and Pc,max respectively.

One can obtain the success probability for both Bob and Charlie to identify
the state as

PSSD = P1(1− qb1)(1 − qc1) + P2(1− qb2)(1 − qc2). (6)

Its maximum, for fixed s and P1 ≤ 1/2, occurs at t =
√
s and qb1 = qc1,

which indicates the equivalence between the information extracted by Bob and
Charlie. It is given by

(i) : PSSD
max = P1(1 − q∗)2 + P2(1 −

s

q∗
)2, when PC ≤ P1 ≤ 1

2
; (7a)

(ii) : PSSD
max = P2(1− s)2, when 0 < P1 ≤ min{PC ,

1

2
}, (7b)

where q∗ satisfies P1q
∗4 − P1q

∗3 + P2sq
∗ − P2s

2 = 0 and the critical value PC

is determined by PC(1−q∗)2+(1−PC)(1−s/q∗)2 = (1−PC)(1−s)2. For case
(i), the optimal success probability occurs at qb1 = qc1 = q∗, while qb1 = qc1 = 1
for case (ii) , where Bob and Charlie conspire to ignore the state |Ψ1〉.

When s < 3− 2
√
2, PC < 1/2, it is similar to the problem to maximize Pb

or Pc that the observers avoid the state with the lower probability. However,
when s ≥ 3 − 2

√
2, PC ≥ 1/2, the case (i) vanishes. That is, even for the

probabilities P1 = P2 = 1/2, it is required to ignore one of the states in the
optimal solution. The phenomenon is a symmetry breaking due to the lack of
quantum information in qubit A as pointed out in [8]. In Fig. 3, one can find
that the optimal success probability PSSD

max decreases with the overlap s, and
increases with the deviation from the equal prior case. The region of case (i)
is reduced by s and the deviation.
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Fig. 3 The joint optimal success probability PSSD
max as a function of the parameter P1 and

s with the other fixed which are shown in Fig (a) and (b) respectively. (a): s = 0.04 (solid
line), 0.36 (dotted line); (b): P1 = 0.5 (solid line), 0.4 (dotted line), 0.2 (dashed line).

3 Comparison with other protocols

In this part we compare the SSD with another three strategies that allow Bob
and Charlie to communicate classically, which are studied in [22] with the
equal prior probabilities.

(1) Bob performs an optimal unambiguous discrimination measurement on
the qubit A, which requires t = 1 in Eq.(3). He sends his results to Char-
lie through a classical channel. If Bob’s outcome is “failure”, they end the
procedure. In the optimization, one need only consider the success of Bob, in
distinguishing the two states with overlap s. Consequently, the maximal prob-
ability of both of them gaining the information sent by Alice is given by [12]

(i) : P (1)
max = 1− 2

√

P1P2s, when
s2

1 + s2
≤ P1 ≤ 1

2
; (8a)

(ii) : P (1)
max = P2(1 − s2), when 0 < P1 <

s2

1 + s2
. (8b)

These two cases require qb1 =
√

P1/P2s and qb1 = 1 respectively.
(2) Similar to the above task, Bob performs an optimal unambiguous dis-

crimination measurement. If the outcome is “failure”, he informs Charlie and
end the procedure. Otherwise, he sends a qubit in the state he found to Char-
lie, and then Charlie performs an optimal unambiguous discrimination on the
qubit. Here, we assume that Charlie knows the two states |Ψi〉 and their prob-
abilities in Alice’s preparation.
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In Appendix A, we show the details of optimization. The maximal proba-
bility for both Bob and Charlie to identify the state is a function divided in
three cases as

(i) : P (2)
max = (1− 2

√

P1P2s)(1− 2
√

P c
1P

c
2 s), when Pc1 < P1 ≤ 1

2
; (9a)

(ii) : P (2)
max = (P2 −

√

P1P2s)(1 − s2), when Pc2 ≤ P1 ≤ Pc1; (9b)

(iii) : P (2)
max = P2(1− s2), when 0 < P1 < Pc2, (9c)

where the critical probabilities are

Pc1 =
s2

[

s4 − (s2 − 1)
√
s4 − 2s2 + 5 + 3

]

2(s6 − s4 + 3s2 + 1)
,

Pc2 =
s2

1 + s2
, (10)

and P c
i = (Pi −

√
P1P2s)/(1 − 2

√
P1P2s) with i = 1, 2. In case (i), P c

1 and
P c
2 are the conditional probabilities given Bob’s discrimination success of |Ψ1〉

and |Ψ2〉 received by Charlie. The parameters satisfy qb1 =
√

P1/P2s and q
c
1 =

√

P c
1 /P

c
2 s. The value of P c

1 decreases with the decreasing of P1 from 1/2, and
always satisfies P c

1 ≤ P1. When Pc2 ≤ P1 ≤ Pc1, the conditional probability of
|Ψ1〉 is less than the value of P c

2 . To maximize the total success probability, he
only recognizes state |Ψ2〉, which has a larger prior probability. The parameters
satisfy qb1 =

√

P1/P2s and qc1 = 1. In case (iii), the optimal total probability
requires that Bob ignores |Ψ1〉, i.e. qb1 = 1. The conditional probability of |Ψ1〉
is zero. Hence, once Charlie receives the qubit, he can learn the state in his
hands being |Ψ2〉. This fact makes optimal probability to be discontinuous at
the point P1 = Pc2.

(3) Bob performs a probabilistic unitary optimal clone operation on the
qubit he receives from Alice [25,27]. If Bob succeeds in cloning, he keeps one
copy and sends the other one to Charlie. Then, Bob and Charlie perform
optimal unambiguous discriminations to their respective qubits independently.
While if Bob’s cloning fails, he will inform Charlie and end the procedure.

The maximal probability of both of their succeeding is

P (3)
max = P cl

maxP
cl
b,maxP

cl
c,max, (11)

where P cl
max is the maximal success cloning probability, and P cl

b,max = P cl
c,max

are the optimal success probabilities of the two discriminations. The form of
P cl
b,max and P cl

c,max are the same as Eq. (8), with the probabilities Pi replaced

by P cl
i . Here, i = 1, 2 and P cl

i are the conditional probabilities of |Ψi〉 given
Bob’s cloning success, whose relations with Pi and s are given in Appendix
B. The form of P cl

max and details to maximize the success probability in this
protocol are shown in Appendix B.

These results show that the joint optimal success probabilities of the above
four protocols have more complicated properties than the special case with
equal prior probabilities. In Fig. 4, one can find that as P1 decreasing from 1/2,
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Fig. 4 The joint optimal success probability Pmax as a function of P1 is shown for s = 0.04

corresponding to the four strategies respectively. Solid line: PSSD
max ; dotted line: P

(1)
max; dot-

dashed line: P
(2)
max; dashed line: P

(3)
max.

it becomes easier to extract the information sent by Alice in all the strategies.
And, meanwhile, their differences decreases and the order remains unchanged.

Then we consider the probabilities P ∗ that at least one of the observers
succeeds in identifying the states, which are shown in Fig.5. It can be noticed
that, the optimal probabilities of protocols (1), (2) and SSD are the same,

where are PSSD∗
max = P

(1)∗
max = P

(2∗)
max = P

(1)
max. But for the cloning protocol, the

optimal probability is given by (see Appendix C for details)

(i) : P (3)∗
max = P cl

max

(

1− 4P cl
1 P

cl
2 s

2
)

, when
s2

1 + s2
≤ P cl

1 <
1

2
; (12a)

(ii) : P (3)∗
max = P cl

max

[

1− (P cl
1 + P cl

2 s
2)2

]

, when 0 < P cl
1 <

s2

1 + s2
. (12b)

As is shown in Fig. 5, these optimal success probabilities P ∗ are enhanced
by the deviation from equal prior probabilities. A difference with the existing
results in [22] is that protocol (3) is superior to the other three strategies when
0 < P1 < 1/2.

Above all, the deviation from equal prior probabilities makes it easier to
gain the information sent by Alice. In the case with general prior probabilities,
the strategies that allow communication all do better than SSD in the sense of
both the observers gaining the information. In [22], this fact is ascribed to that
SSD uses only one qubit while the others use more. This view is supported by
our results when one considers at least one of the parties succeeds. Namely, as
a new qubit is included after Bob’s cloning in protocol (3), the discriminations
of the two observers are independently from each other, while Charlie’s success
depends on Bob in the other three protocols.
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4 Discords in SSD

The key step in the process of discrimination is the joint unitary transforma-
tion between the system and ancilla in Eq.(4), followed by orthogonal mea-
surements on the ancilla. This prompts us to examine roles of quantum corre-
lations between the principal and the auxiliary systems in SSD with general
non-uniform prior probabilities. Since entanglement is completely excluded by
the form of Eq. (4), we focus on quantum discords in this part. The separable
state in the discrimination of Bob can be written as

ρAB = P1|φ1〉〈φ1| ⊗ |α1〉b〈α1|+ P2|φ2〉〈φ2| ⊗ |α2〉b〈α2|. (13)

Discord is a kind of quantum correlation, which can exist in a separable state.
It can be considered as the part of total correlation, measured by the quan-
tum mutual information, which can be disturbed by the measurements on a
subsystem [4]. That is, there are two discords in state ρAB, corresponding to
the measurements on subsystem A or B. In the present work, we call the one
with the measurements on A as left discord and denote it as DBA, while the
other as right discord and DAB.

The two discords of the two-rank system ρAB can be derived by using the
Koashi-Winter identity [28]. Namely, one can consider ρAB as a reduced state
of the tripartite state

|Ψ〉 =
√

P1|φ1〉|α1〉b|0〉e +
√

P2|φ2〉|α2〉b|1〉e, (14)

where {|0〉e, |1〉e} is the basis of a environment qubit E. Then, it is directly to
obtain the residual tangle τABE of the tripartite state and the tangles between
one party with the other two as [29]

τABE = 4P1P2(1 − t2)(1− r2), τA|EB = τA|BE = 4P1P2(1− t2),

τB|EA = τB|AE = 4P1P2(1− r2), τE|BA = τE|AB = 4P1P2(1− t2r2),(15)
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where we set r = s/t = 〈α1|α2〉 =
√

qb1q
b
2. The right discord can be explicitly

expressed as

DAB = H(τB|AE)−H(τE|AB) +H(τA|BE − τABE), (16)

where

H(x) = −1 +
√
1− x

2
log2

1 +
√
1− x

2
− 1−

√
1− x

2
log2

1−
√
1− x

2
. (17)

The left discord DBA can be easily obtained by interchanging the subscripts
A and B in Eq. (16). To analyze the roles of quantum discords in SSD, we
define the proportion of left (right) discord in their total as

D̃left =
DBA

DBA +DAB
, D̃right =

DAB

DBA +DAB
, (18)

and a symmetrized discord as

Dsymm =
√

DBADAB. (19)

From the form of ρAB in Eq. (13) and the relations in Eqs. (15) and (16),
an obvious property can be noticed is that one can obtain DBA by exchanging
r and t in DAB. Consequently, Dsymm is symmetric under the exchanging of
r and t. Based on the symmetries and the curves in Fig. 6, we can check the
conclusions in [8] and the influence of prior probabilities on discords.

As is shown in Fig. 6 (a), for fixed P1 and s, the proportion of left discord
D̃left increases with the overlap t. According to the mentioned symmetries,
D̃right increases with r, and consequently decreases with t. Hence, the informa-

tion extracted by Bob is positively correlated with D̃left, and the information
left to Charlie corresponds to D̃right.

When t = r = s1/2, the state ρAB is symmetric under the permutation of
A and B. Thus, D̃left = D̃right = 1/2 is independent of the prior probabilities.

When t > s1/2 > r, D̃left > D̃right, and otherwise D̃left < D̃right. Fig. 6 (b)

shows a curve in the former case, where D̃left is enhanced as P1 moves away
from 1/2. According with the symmetry of ρAB in Eq. (13), one can learn
that the deviation increases the larger one while decreases the smaller one,
and consequently enlarges their difference.

Fig. 6 (c) shows the symmetrized discord as a function of P1 for different
values of t. For fixed values of P1 and s, the maximum symmetrized discord
is reached at t = r = s1/2, where occurs the optimal joint probability for both
Bob and Charlie to identify the state. When t = 1 or s, both the two discords
DAB and DBA are zero as the state ρAB becomes a product state. Thus, the
discords are needed to realize the task of SSD. For fixed t, the value of Dsymm,
together with the difficulties of the two discriminations, are reduced by the
deviation from the equal prior case. When P1 approaches 0 or 1, one of the
two terms in ρAB in Eq. (13) vanishes, and consequently both DAB and DBA

become zero.
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(c)

Fig. 6 D̃left as a function of the parameter t and P1 with the other variables fixed shown
in (a) and (b). (a): P1 = 0.2, s = 0.1 (solid line), 0.5 (dotted line), 0.9 (dashed line); (b):
s = 0.1, t = s1/4; Fig(c) corresponds to the symmetrized discord as a function of the prior
probability P1 for s = 0.36, t = s1/2 (solid line), s1/4 (dotted line) and s1/8 (dashed line)
respectively.

5 Summary and Outlook

The procedure of SSD in general case is investigated. We focus on the influ-
ence of prior probabilities on the properties found in the existing researches
[8,22]. The deviation from equal probabilities represents more priori knowl-
edge held by the observers before their measurements. It enhances the success
probabilities in all tasks considered in the present work.

In the cases with general prior probabilities, the optimal success proba-
bilities have more complicated details than the special cases with equal prior
probabilities. In the sense of both the observers succeeding, all the three strate-
gies that allow classical communication do better than SSD. This is consistent
with the existing result, and is ascribed to that SSD uses only one qubit while
the others use more in [22]. The imbalance of prior probabilities leads to that
the protocol (3) is superior to others when one considers at least one of the
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parties succeeds. This result is an evidence of the mentioned viewpoint in [22],
since a new qubit is introduced making the two discriminations in protocol (3)
to be independent from each other.

The procedure for both Bob and Charlie to recognize the states requires
the absence of entanglement in Bob’s system-ancilla state. Quantum discords
are necessary for their succeeding in discriminations. Both the left and right
discords become zero when only one of the observers is allowed to gain the
information, while their proportions in total are correlated with the informa-
tion extracted by Bob and Charlie respectively. The symmetrized discord and
joint success probability reach their maximums simultaneously when the left
discord equals the right one. These conclusions are independent of the prior
probabilities. The imbalance, corresponding to the priori knowledge of the ob-
servers, reduces the symmetrized discord but extends the relative differences
between the left and right discords.

Our results may be generalized in several aspects. One of these is the SSD
for n (n ≥ 3) nonorthogonal states, |ψi〉 (prepared with prior probabilities Pi,
i = 0, 1...n−1), of a n dimensional quantum system. Although, it is difficult to
optimize the probability of success PSSD, the conclusion about entanglement
still hold true, which is required by the independency of the states sent to the
second observer. That is, Bob’s unitary transformation remains in the form of
Eq. (4), and his system-ancilla state is

ρAB =

n−1
∑

i=0

Pi|φi〉〈φi| ⊗ |αi〉b〈αi|, (20)

where 〈φi|φj〉〈αi|αj〉 = 〈ψi|ψj〉. In addition, the ancilla is required to be a
2n−1 dimensional system [18]. There are two extremes of Bob’s transformation
in Eq. (4) corresponding to zero discord [30], one of which is identity and
another is a swap followed by a local unitary operation on the auxiliary system.
In the former case, no information is extracted by Bob, and in the latter no
information is sent to Charlie. This result is the same as the two-state case,
shown in Fig. 6.

Another two generalizations is the extension to more than two consecutive
observers and the one to mixed states. The optimizations in both cases are
solved partly very recently [26,31], which are studied in POVM formalism. Be-
sides analyzing the more general success probabilities, it is directly to describe
these results via the Neumark formalism and study the roles of correlations in
the procedures.
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A Calculations for protocol (2) that allows classical communication

The optimization of success probability for both Bob and Charlie to succeed in identifying
the state can be written as

maximize : P (2) = [P1(1− qb1) + P2(1 − qb2)][P
′

1(1 − qc1) + P ′

2(1 − qc2)], (21)

subject to : P ′

i =
Pi(1 − qbi )

P1(1− qb1) + P2(1− qb2)
, i = 1, 2, qc1q

c
2 = qb1q

b
2 = s2,

qb1, q
b
2, q

c
1, q

c
2 ∈ [s2, 1], P1 ∈ (0, 1/2]. (22)

The values of P ′

1 and P ′

2 are derived as

(i) : P ′

1 = P c
1 , P

′

2 = P c
2 , when

s2

1 + s2
≤ P1 ≤ 1

2
; (23a)

(ii) : P ′

1 = 0, P ′

2 = 1, when 0 < P1 <
t2

1 + t2
. (23b)

The case (i) in Eq.(23a) is divided into two subcases: (ia) s2

1+s2
< P ′

1 ≤ 1
2
and (ib) 0 ≤

P ′

1 ≤ s2

1+s2
which correspond to the results in Eq.(9a), (9b) respectively. The corresponding

critical values Pc1 in Eq.(9a) and Eq.(9b) can be acquired after solving the equation which
satisfy the successive boundary condition.

For case (ii) in Eq.(23b), Bob gets optimized success probability for qb1 = 1. Then, for
the next observer Charlie, the conditional probability is found to be 0 (P ′

1 = 0) according
to Eq.(22) and the state |ψ1〉 is completely impossible to appear. Charlie can succeed in
identifying the state with 100% probability because he has learned that his state is actually
|ψ2〉. Thus, the results in Eq.(9c) are obtained.

B Calculations for protocol (3) where probabilistic cloning occurs

Bob’s unitary cloning operation is given by [25]

U(|Ψi〉)|0〉) =
√
γi|Ψi〉|Ψi〉|λi〉+

√
1− γi|β〉|β〉|λ0〉, i = 1, 2, (24)

where |0〉 is a initialized state of the ancillas and |λi〉, |λ0〉 are orthogonal states of the
flag associated with successful cloning and failure cloning respectively. γi is the success
probability of the cloning for the state |Ψi〉 and |β〉 is a genetic failure state.

Thus we can get an optimized successful cloning probability as

maximize : P cl = P1γ1 + P2γ2 (25)

subject to : s =
√
γ1γ2s

2〈λ1|λ2〉+
√

(1− γ1)(1− γ2). (26)
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according to Eq.(24), where |λ1〉 = |λ2〉 is required for optimal cloning [25].
If we set sin θi =

√
1− γi (i = 1, 2) for 0 ≤ θi ≤ π/2, the variables x = cos(θ1 + θ2),

y = cos(θ1 − θ2) are further introduced. Eq.(26) is equivalent to 2s = (1+ s2)y− (1− s2)x.
And then we find an intermediate parameter ω which satisfies

x =
1− (1 + s2)ω

s
, y =

1− (1− s2)ω

s
. (27)

The range of the parameter ω is given in Eq.(31). It’s found that

γi =
1

2
[1 + xy + (−1)i

√
(1 − x2)(1 − y2)]. (28)

To seek the optimal value P cl
max, the following equation should be satisfied (P cl

max)
′ =

dP cl

max

dω
= 0. This equation is equivalent to P1γ′1 + (1 − P1)γ′2 = 0, thus the following

results are obtained

P1 =
γ′2

γ′2 − γ′1
, P cl

max =
γ′2γ1 − γ′1γ2

γ′2 − γ′1
. (29)

where

γ′i =
dγi

dω
=

√
γi(1 − γi)

s
[− 1 + s2√

1− x2
+ (−1)i

1− s2√
1− y2

]. (30)

And then, the conditional probabilities P cl
i (i = 1, 2) of |Ψi〉 for the following two discrim-

inations can be obtained as P cl
i = Piγi

P1γ1+P2γ2
. Hence, for the optimized successful cloning

probability, Pi, P cl
i , P cl

max, P
cl
b,max and P cl

c,max are all obtained as parametric functions of ω

with the range

ω1 ≤ ω ≤ ω2, ω1 =
1

1 + s
, ω2 =

1

1 + s2
, (31)

where ω1 and ω2 correspond to the cases for P1 = P2 = 1
2
and P1 = 0 respectively.

At last, the optimal success probability for both Bob and Charlie to identify the state
is obtained as

maximize : P (3) = P cl
max[P

cl
1 (1− qb1) + P cl

2 (1− qb2)][P
cl
1 (1− qc1) + P cl

2 (1 − qc2)] (32)

subject to : qc1q
c
2 = qb1q

b
2 = s2, qb1, q

b
2, q

c
1, q

c
2 ∈ [s2, 1] (33)

.
Thus, we can acquire the results in Eq.(11) analytically.

C Optimal probability for at least one of Bob and Charlie
succeeding in identifying the states

It is obvious that the optimized probability P ∗

max for one of their succeeding in discrimination
for protocol (1) and (2) is equivalent to the results in Eq.(8). For SSD protocol, we can obtain
the optimization as

maximize : PSSD∗ = P1(1− qb1q
c
1) + P2(1 − qb2q

c
2) (34)

.

subject to : P1 ∈ (0, 1/2], qb1q
b
2 = s2/t2, qc1q

c
2 = t2,

qb1, q
b
2 ∈ [s2/t2, 1], qc1, q

c
2 ∈ [t2, 1]. (35)
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Thus, this result is also equal to P
(1)
max. For protocol (3), the maximal probability is derived

as

maximize : P (3)∗ = 1− (P cl
1 q

b
1 + P cl

2 q
b
2)(P

cl
1 q

c
1 + P cl

2 q
c
2) (36)

subject to : qb1q
b
2 = qc1q

c
2 = s2, qb1, q

b
2, q

c
1, q

c
2 ∈ [s2, 1], P1 ∈ (0, 1/2] (37)

Thus, the result in Eq.(12) can be easily obtained.
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