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Abstract

We first consider quantum communication protocols between a sender Alice and a receiver Bob,

which transfer Alice’s quantum information to Bob by means of non-local resources, such as classical

communication, quantum communication, and entanglement. In these protocols, we assume that

Alice and Bob may have quantum side information, not transferred. In this work, these protocols

are called the state transfer with quantum side information. We determine the optimal costs

for non-local resources in the protocols, and study what the effects of the use of quantum side

information are. Our results can give new operational meanings to the quantum mutual information

and the quantum conditional mutual information, which directly provide us with an operational

interpretation of the chain rule for the quantum mutual information.

PACS numbers: 03.67.Hk, 89.70.Cf, 03.67.Mn
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I. INTRODUCTION

There are quantum communication protocols, such as the quantum teleportation [1] and

the Schumacher compression [2], which transfer quantum information from Alice to Bob.

In quantum information theory, these protocols have been regarded as the leading research

topics, since they can provide new operational meanings to quantum quantities, such as the

von Neumann entropies [3] and the smooth entropies [4]. New operational meanings have

made the quantum information theory richer through intuitive understandings of quantum

phenomena.

We here consider protocols in which Alice’s information can be asymptotically transferred

to Bob by means of quantum/classical communication and entanglement as non-local re-

sources. In the protocols, Alice and Bob are able to apply local operations on their states,

and employ their quantum side information (QSI) in order to transfer Alice’s information.

We call the protocols the state transfer with QSI, and divide the state transfer protocols

with QSI into two types: the state redistribution with QSI and the state merging with QSI.

In the former Alice and Bob use quantum channels for communication from Alice to Bob,

and in the latter they use classical channels.

Although there have been some protocols [5–13] which deal with Alice’s or Bob’s QSI,

the results have not explicitly explained how the use of QSI has the effects on the optimal

resource costs. In addition, when Alice and Bob can use more (or less) QSI, it has not been

mentioned in literature. On this account, one can raise the following two questions: (i) How

does the use of Alice’s and Bob’s QSI affect the optimal resource costs in the state transfer

with QSI? (ii) Assume that Alice or Bob uses more (or less) QSI in the state transfer with

QSI. How does the use of more (or less) QSI affect the optimal resource costs?

In order to answer the two questions, we describe a mathematical definition of the state

transfer with QSI, and calculate its optimal costs for non-local resources. Then we study

the effects of QSI on the optimal resource costs of the state transfer with QSI. From these

results, we present new operational meanings of the quantum mutual information (QMI),

quantum conditional mutual information (QCMI), and a new operational interpretation of

the chain rule for the QMI [3].

This paper is organized as follows. In Sec. II we define the state transfer with QSI, and

calculate its optimal costs for non-local resources. In Sec. III we study what the effects of
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the use of QSI are in the state transfer with QSI. Then we give new operational meanings to

the QMI and the QCMI in Sec. IV. We also present well-known examples which are special

cases of the state transfer with QSI in Sec. V. Finally, in Sec. VI we summarize and discuss

our results.

II. STATE TRANSFER WITH QSI

We formally define the state transfer with QSI as follows.

Definition 1 (State transfer with QSI). Let |ψ〉 ≡ |ψ〉A1···AmCAB1···BnR be a pure initial state,

where Alice and Bob hold A1 · · ·AmCA and B1 · · ·Bn, respectively, and R is the reference.

Assume that Alice and Bob have additional systems Ein
A , Eout

A and Ein
B , Eout

B for entanglement

resources, respectively. For 0 ≤ i ≤ m and 0 ≤ j ≤ n, a joint operation

Tij : A1 · · ·AiCAE
in
A ⊗B1 · · ·BjE

in
B

−→ A1 · · ·AiE
out
A ⊗ CBB1 · · ·BjE

out
B

is called the state transfer with QSI of |ψ〉 (or trR(|ψ〉 〈ψ|) with error ε, if it consists of local

operations and either qubit channels or bit channels from Alice to Bob, and satisfies

F
(

(Tij ⊗ 1Ai+1···AmBj+1···BnR)
(
|ψ〉 ⊗ |Φ〉Ein

AEin
B

)
,

|ψ′〉 ⊗ |Φ〉Eout
A Eout

B

)
≥ 1− ε,

where CB is Bob’s system with dimCB = dimCA, F (·, ·) is the quantum fidelity, |ψ′〉 is a final

state defined as (1A1···AmB1···BnR ⊗ 1CA→CB
) |ψ〉, and |Φ〉Ein

AEin
B

and |Φ〉Eout
A Eout

B
are maximally

entangled states with Schmidt-rank ein(Tij) and eout(Tij), respectively.

In addition, we call the operation Tij the state redistribution with QSI, if it consists of

local operations and q(Tij) qubit channels without any classical channels, and Tij is called

the state merging with QSI, if it consists of local operations and c(Tij) bit channels without

any quantum channels.

In Definition 1, the indices i and j of Tij mean that Alice and Bob apply local operations

on their QSI A1 · · ·Ai and B1 · · ·Bj in order to transfer Alice’s CA to Bob as depicted in

Fig. 1, and in this situation we say that Alice and Bob use their QSI A1 · · ·Ai and B1 · · ·Bj.
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FIG. 1: The initial and final states for the state transfer with QSI of |ψ〉: CA is a transferred

part, A1 · · ·Am and B1 · · ·Bn are Alice’s and Bob’s QSI, and R is the reference. In the state

transfer with QSI, they use QSI A1 · · ·Ai and B1 · · ·Bj , respectively, while the rests Ai+1 · · ·Am

and Bj+1 · · ·Bn are left unused.

For instance, Alice and Bob do not use any QSI if and only if i = 0 and j = 0, respectively,

and they make use of the whole QSI if and only if i = m and j = n, respectively.

We also define the optimal resource costs of the state transfer with QSI of |ψ〉 for fixed i

and j.

Definition 2. For n independent and identically distributed copies of |ψ〉 ≡

|ψ〉A1···AmCAB1···BnR, say |ψ〉⊗n, let T n
ij be a state redistribution (or a state merging) with QSI

of |ψ〉⊗n with error εn, then the resource rates (log ein(T n
ij ) − log eout(T n

ij ))/n and q(T n
ij )/n

(or c(T n
ij )/n) are called the entanglement rate and quantum communication rate (or classical

communication rate) of the protocol, respectively.

For each resource rate, we call a real number r an achievable rate if there is a sequence
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{T n
ij }n∈N such that the sequence {εn}n∈N converges to zero, and the sequence for the resource

rate converges r as n tends to infinity. The smallest achievable rates for entanglement and

quantum communication (or classical communication) are called the optimal entanglement

cost and optimal quantum communication cost (or optimal classical communication cost),

respectively.

We investigate the optimal resource costs for the state redistribution with QSI of

|ψ〉 ≡ |ψ〉A1···AmCAB1···BnR. Let Qi,j and Ei,j be its optimal quantum communication and

entanglement costs, respectively, when Alice and Bob use QSI A1 · · ·Ai and B1 · · ·Bj. Let

Ã = A1 · · ·Ai, B̃ = B1 · · ·Bj, and R̃ = Ai+1 · · ·AmBj+1 · · ·BnR. Then the given state |ψ〉

becomes a four-partite state |ψ〉ÃCAB̃R̃. Since Ai+1 · · ·Am and Bj+1 · · ·Bn are not used, and

R̃ can be considered as the reference system of a purification |ψ〉 of a quantum state ρÃCAB̃,

our state redistribution with QSI is identical to the state redistribution for |ψ〉ÃCAB̃R̃ [7, 8].

Thus, we can obtain that

Qi,j =
1

2
I(CA; R̃|B̃)

= H(CA)− 1

2
I(CA; Ã)− 1

2
I(CA; B̃),

Ei,j =
1

2
I(CA; Ã)− 1

2
I(CA; B̃),

where I(·; ·|·) is the QCMI, H(·) is the von Neumann entropy and I(·; ·) is the QMI. This

implies the following lemma.

Lemma 3. For a state ρA1···AmCAB1···Bn shared by Alice and Bob, the optimal quantum com-

munication cost Qi,j and the optimal entanglement cost Ei,j for the state redistribution with

QSI can be expressed as the von Neumann entropy H(CA) and the QMI I(CA;A1 · · ·Ai) and

I(CA;B1 · · ·Bj) as follows:

Qi,j = H(CA)− 1

2
I(CA;A1 · · ·Ai)−

1

2
I(CA;B1 · · ·Bj),

Ei,j =
1

2
I(CA;A1 · · ·Ai)−

1

2
I(CA;B1 · · ·Bj). (1)

By replacing qubit channels with bit channels, we can consider the state merging with

QSI of the state |ψ〉. For each 0 ≤ i ≤ m and 0 ≤ j ≤ n, let ci,j and ei,j be the optimal

classical communication and entanglement costs of the state merging with QSI, respectively,

when Alice and Bob employ QSI A1 · · ·Ai and B1 · · ·Bj. Then we obtain the following

lemma.
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Lemma 4. For each 0 ≤ i ≤ m and 0 ≤ j ≤ n, the optimal classical communication cost

ci,j and the optimal entanglement cost ei,j for the state merging with QSI can be expressed

in terms of the optimal costs Qi,j and Ei,j for the state redistribution with QSI as follows:

ci,j = 2Qi,j,

ei,j = Qi,j + Ei,j.

Proof. We first note that Qi,j qubit channels can be perfectly simulated with 2Qi,j bit

channels and Qi,j ebits by the quantum teleportation [1]. Thus by Lemma 3 Alice and Bob

can perform the state merging with QSI by consuming 2Qi,j bit channels and Qi,j + Ei,j

ebits.

Now, we show that the costs of 2Qi,j bit channels and Qi,j + Ei,j ebits are optimal for

the state merging with QSI.

Suppose that the cost of 2Qi,j bit channels is not optimal, that is, there exists c′i,j such that

c′i,j < 2Qi,j and the state merging with QSI can be performed with c′i,j bit channels. Then as

in the proof of the optimality for the classical communication cost in the state merging [6], c′i,j

bit channels can be replaced by c′i,j/2 qubit channels and −c′i,j/2 ebits through the coherent

bit channel [14, 15]. Thus, the state redistribution with QSI can be performed with c′i,j/2

qubit channels, which contradicts the optimality of the quantum communication cost for the

state redistribution with QSI in Lemma 3. Therefore, the optimal classical communication

cost is 2Qi,j.

Finally, suppose that there exists e′i,j such that e′i,j < Qi,j + Ei,j and the state merging

with QSI can be performed with e′i,j ebits and 2Qi,j bit channels. Since 2Qi,j bit channels

can be replaced by Qi,j qubit channels and −Qi,j ebits, it is possible to perform the state

redistribution with QSI with e′i,j − Qi,j ebits. This contradicts the optimality of the en-

tanglement cost for the state redistribution with QSI in Lemma 3. Therefore, the optimal

entanglement cost is Qi,j + Ei,j.

By Lemma 3 and Lemma 4, we can obtain that the optimal costs ci,j and ei,j of the state

merging with QSI become

ci,j = 2H(CA)− I(CA;A1 · · ·Ai)− I(CA;B1 · · ·Bj),

ei,j = H(CA)− I(CA;B1 · · ·Bj) (2)

for 0 ≤ i ≤ m and 0 ≤ j ≤ n.
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III. EFFECTS OF QSI ON OPTIMAL RESOURCE COSTS IN STATE TRANS-

FER WITH QSI

In this section, we investigate how the use of (additional) QSI affects the optimal resource

costs in the state transfer with QSI. For this, we consider the state transfer with QSI of

ρ ≡ ρA1···AmCAB1···Bn which is shared by Alice and Bob as in Definition 1. In this state

transfer with QSI of ρ, O denotes a type of non-local resources. For instance, O can present

one of non-local resources Q, E, c, or e. Here, Q and c are qubit channels and bit channels

consumed in the state transfer with QSI, respectively. E (e) is ebits consumed/generated

in the state redistribution with QSI (in the state merging with QSI). For 0 ≤ i ≤ m and

0 ≤ j ≤ n, if Alice and Bob use QSI A1 · · ·Ai and B1 · · ·Bj in the state transfer with QSI of

ρ then the following definition enables us to quantify the effects of their QSI on an optimal

resource cost R in the state transfer with QSI of ρ.

Definition 5. Let E[O]i,j = O0,0 − Oi,j. Then E[O]i,j is called the effect on the optimal

resource cost of type O with respect to QSI A1 · · ·Ai and B1 · · ·Bj in the state transfer with

QSI of ρ.

The effect E[O]i,j in Definition 5 appropriately measures the effect of QSI A1 · · ·Ai and

B1 · · ·Bj in the state transfer with QSI of ρ, since the only difference between the optimal

resource costs R0,0 and Ri,j is the use of QSI A1 · · ·Ai and B1 · · ·Bj.

From the formulas for the optimal costs in Eqs. (1) and (2), the effect E[O]i,j on the

optimal resource cost of type O is readily calculated. Specifically, for the state redistribution

with QSI of ρ, the effects E[Q]i,j and E[E]i,j on the optimal quantum communication cost

and the optimal entanglement cost are given by

E[Q]i,j =
1

2
I(CA;A1 · · ·Ai) +

1

2
I(CA;B1 · · ·Bj),

E[E]i,j = −1

2
I(CA;A1 · · ·Ai) +

1

2
I(CA;B1 · · ·Bj). (3)

For the state merging with QSI of ρ, the effects E[c]i,j and E[e]i,j on the optimal classical

communication cost and the optimal entanglement cost are

E[c]i,j = I(CA;A1 · · ·Ai) + I(CA;B1 · · ·Bj),

E[e]i,j = I(CA;B1 · · ·Bj). (4)
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From Eqs. (3) and (4), it is observed that the effects of QSI A1 · · ·Ai and B1 · · ·Bj can

be decomposed according to Alice’s QSI A1 · · ·Ai and Bob’s QSI B1 · · ·Bj. This means

that the use of Alice’s QSI A1 · · ·Ai and the use of Bob’s QSI B1 · · ·Bj independently affect

the optimal resource costs in the state transfer with QSI of ρ. The second observation is

that all effects of QSI stem from the correlation between the part CA and QSI A1 · · ·Ai (or

B1 · · ·Bj).

From these observations, it follows that the effect E[O]i,j on the optimal resource cost of

type O can be decomposed as

E[O]i,j = A[O]i + B[O]j,

where A[O]i = E[O]i,0 and B[O]j = E[O]0,j. Here, A[O]i (B[O]j) indicates the effect of

Alice’s QSI A1 · · ·Ai (Bob’s QSI B1 · · ·Bj) on the optimal resource cost of type O for the

state transfer with QSI of ρ. This leads us to the following theorem which provides answers

about the first question.

Theorem 6. In the state transfer with QSI of ρ, the effects of Alice’s QSI A1 · · ·Ai are

simply expressed as A[e]i = 0 and

A[c]i = 2A[Q]i = −2A[E]i = I(CA;A1 · · ·Ai).

For the case of Bob’s QSI B1 · · ·Bj, the effects are

B[c]j = B[e]j = 2B[Q]j = 2B[E]j = I(CA;B1 · · ·Bj).

It is worth mentioning that since the QMI is always non-negative, the use of Bob’s QSI

B1 · · ·Bj can reduce all optimal resource costs of the state transfer with QSI compared to

the case that Bob uses no QSI. On the other hand, the effects of Alice’s QSI are somewhat

different. If Alice uses her QSI A1 · · ·Ai, then the optimal quantum/classical communication

costs can be reduced, since the effects A[Q]i and A[c]i are non-negative. However, from the

fact that A[e]i = 0 and A[E]i is non-positive, the optimal entanglement cost for the state

merging with QSI is unchanged and that for the state redistribution with QSI can increase.

This means that even if Alice’s QSI is sufficiently large, the use of the QSI cannot reduce

the optimal entanglement cost of the state transfer with QSI, and can even increase that of

the state merging with QSI.
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In order to answer the second question about additional QSI, we need to consider the state

transfer with QSI of ρ which is shared by Alice and Bob as before. Let 0 ≤ i1 ≤ i2 ≤ m and

0 ≤ j1 ≤ j2 ≤ n. In this state transfer with QSI of ρ, Alice and Bob first use QSI A1 · · ·Ai1

and B1 · · ·Bj1 . Then they use more QSI A1 · · ·Ai2 and B1 · · ·Bj2 , so that QSI Ai1+1 · · ·Ai2

and Bj1+1 · · ·Bj2 are additionally used in this situation.

We define the effects of the use of the additional QSI Ai1+1 · · ·Ai2 and Bj1+1 · · ·Bj2 on

the optimal resource cost of type O in the state transfer with QSI of ρ as follows.

Definition 7. Let E[O]i2,j2i1,j1
be defined as

E[O]i2,j2i1,j1
= E[O]i2,j2 − E[O]i1,j1 ,

where E[O]i,j is the effect of QSI A1 · · ·Ai and B1 · · ·Bj on the optimal resource cost of

type O in the state transfer with QSI of ρ as in Definition 5. Then we call E[O]i2,j2i1,j1
the

additional effect on the optimal resource cost of type O with respect to QSI Ai1+1 · · ·Ai2 and

Bj1+1 · · ·Bj2 in the state transfer with QSI of ρ.

Since Alice’s QSI and Bob’s QSI independently affect the optimal resource costs as shown

in Theorem 6, the additional effect E[O]i2,j2i1,j1
on the optimal resource cost of type O can be

written in the form

E[O]i2,j2i1,j1
= A[O]i2i1 + B[O]j2j1

where A[O]i2i1 = E[O]i2,0i1,0
and B[O]j2j1 = E[O]0,j20,j1

. In the above equation, A[O]i2i1 (B[O]j2j1)

means the additional effect of Alice’s QSI Ai1+1 · · ·Ai2 (Bob’s QSI Bj1+1 · · ·Bj2). This

together with Theorem 6 gives us the following theorem which explains the effects of the

more QSI Ai1+1 · · ·Ai2 and Bj1+1 · · ·Bj2 in the state transfer with QSI of ρ.

Theorem 8. In the state transfer with QSI of ρ, the additional effects of Alice’s QSI

Ai1+1 · · ·Ai2 are given by A[e]i2i1 = 0 and

A[c]i2i1 = 2A[Q]i2i1 = −2A[E]i2i1

= I(CA;Ai1+1 · · ·Ai2|A1 · · ·Ai1).

For Bob’s QSI Bj1+1 · · ·Bj2, the additional effects are

B[c]j2j1 = B[e]j2j1 = 2B[Q]j2j1 = 2B[E]j2j1

= I(CA;Bj1+1 · · ·Bj2|B1 · · ·Bj1).
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Remark that in Theorem 8 only the additional effect A[E]i2i1 is non-positive, while the

other additional effects are non-negative. Moreover, by comparing Theorem 6 and Theo-

rem 8, it is verified that the effect A[O]i1 (B[O]j1) and the additional effect A[O]i2i1 (B[O]j2j1)

on the optimal resource cost of type O can have the same sign, since the QCMI is always

non-negative [3]. This means that the use of more QSI Ai1+1 · · ·Ai2 and Bj1+1 · · ·Bj2 can

enhance the effects of QSI A1 · · ·Ai1 and B1 · · ·Bj1 in the state transfer with QSI of ρ.

IV. NEW OPERATIONAL MEANINGS OF QMI AND QCMI IN TERMS OF QSI

In this section, we present new operational meanings of the QMI, the QCMI, and the

chain rule for the QMI.

From the effects of Alice’s QSI provided in Theorem 6, we can obtain the following new

operational meanings of the QMI, which have never been considered before.

Corollary 9 (Operational meanings of QMI). Let ρCS be a quantum state. Consider the

state merging with QSI of ρCS, in which C is merged from Alice to Bob.

(i) If Alice has S and uses it as QSI, then I(C;S) can be interpreted as how much the

classical communication cost can be reduced compared to the case that Alice uses no QSI.

(ii) If Bob has S and uses it as QSI, then I(C;S) can be interpreted as how much both

classical communication and entanglement costs can be reduced compared to the case that

Bob uses no QSI.

The additional effects of Alice’s more QSI in Theorem 8 provides us new operational

meanings of the QCMI, which have never appeared in any previous literature.

Corollary 10 (Operational meanings of QCMI). Let ρCS1S2 be a quantum state. Consider

the state merging with QSI of ρCS1S2, in which C is merged from Alice to Bob.

(i) If Alice has S1S2 and uses it as QSI, then I(C;S2|S1) means how much the classical

communication cost can be more reduced compared to the case that Alice uses QSI S1 only.

(ii) If Bob has S1S2 and uses it as QSI, then I(C;S2|S1) means how much both classical

communication and entanglement costs can be more reduced compared to the case that Bob

uses QSI S1 only.

We note that other operational meanings of the QMI and the QCMI have been found in

literature [6, 7]. In both meanings, one argument of the QMI and the QCMI is interpreted
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as the reference system. This means that the operational meanings are explained in terms of

the reference system which has nothing to do with the corresponding operational tasks. On

the other hand, our operational meanings in Corollary 9 and Corollary 10 are intuitive and

natural since they only involve Alice’s and Bob’s systems without mentioning the reference.

In addition, there is one more difference between our operational meanings and the others.

We first note that each of the operational meanings for the quantum conditional entropy [6],

the QCMI [7], and the min- and max-entropies [4] is obtained from one concrete operation.

However, the state transfer with QSI can describe various operational situations in which

more (or less) QSI can be used. From comparing these situations, we can see that the effects

of QSI can be naturally derived, and hence the QMI and the QCMI can be operationally

interpreted with respect to the effects, even though each of them does not correspond to any

concrete operation.

We furthermore remark that if QSI S1S2 can be almost produced from QSI S1 then the

optimal cost of the state merging with QSI S1S2 is almost the same as one of the state

merging with QSI S1 only. Recently, it has been shown that there is an important relation

between the QCMI and the recovery map through the Markov chain condition [16], that is,

for any state ρ = ρCS1S2 , there exists a quantum operation RS1→S1S2 such that

F (ρ,RS1→S1S2 (ρCS1)) ≥ 2−
1
2
I(C;S2|S1)ρ . (5)

This implies that the converse of our above remark is also true. Thus we can obtain the

following corollary.

Corollary 11. In the state merging with QSI S1S2, the amount of the reduced cost by adding

QSI S2 to QSI S1 is close to zero if and only if the QSI S1S2 can be almost recovered from

the QSI S1.

Moreover, the inequality (5) also implies that if the fidelity of its left-hand side decreases

then the QCMI I(C;S2|S1) increases. This means that if QSI S1S2 cannot be properly

recovered from QSI S1 then the state merging with QSI S1S2 can have the more reduced

optimal cost than that of the state merging with QSI S1.
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The chain rule [3] for the QMI is that

I(C;S1 · · ·Sn)

= I(C;S1) + I(C;S2|S1) + · · ·+ I(C;Sn|S1 · · ·Sn−1)

= I(C;S1 · · ·Si) + I(C;Si+1 · · ·Sn|S1 · · ·Si) (6)

for 1 ≤ i ≤ n, where the first equality is the original chain rule but it can be simply rewritten

by exploiting the rightmost side in Eq. (6). From the concept of the state merging with QSI,

we can interpret the chain rule in Eq. (6) as follows. In the state merging with QSI, the cost

reduced by using the whole QSI S1 · · ·Sn is equal to the sum of the cost reduced by using

the partial QSI S1 · · ·Si and the cost more reduced by using the additional QSI Si+1 · · ·Sn.

V. EXAMPLES OF STATE TRANSFER WITH QSI

Our protocol includes many well-known protocols of quantum information theory in the

sense that their optimal resource costs directly obtained from Eqs. (1) and (2). We present

four protocols which exploit qubit channels and other four protocols using bit channels.

Denote Q and E by the optimal quantum communication and entanglement costs.

(i) Schumacher compression (SC): In the state redistribution with QSI of

|ψ〉A1···AmCAB1···BnR, if any QSI does not exist, that is, m = n = 0, then the protocol becomes

the SC [2] as depicted in Fig. 2 (a). From Eq. (1), we have Q = H(CA) and E = 0, which

are the optimal resource costs for SC.

(ii) Fully quantum Slepian-Wolf (FQSW): FQSW [9, 10] is described in Fig. 2 (b), which

is a special case of our state redistribution with QSI if Alice does not have any QSI but Bob

can use his QSI, that is, m = 0 and n = 1. Q = H(CA)− 1
2
I(CA;B1) and E = −1

2
I(CA;B1)

computed from Eq. (1) are identical to the optimal costs of FQSW.

(iii) Fully quantum reverse Shannon (FQRS): FQRS [9, 10] can be considered as the state

redistribution with QSI when Alice has QSI A1 but Bob does not as in Fig. 2 (c), that is,

m = 1 and n = 0. Using Eq. (1), its optimal costs are given by Q = H(CA) − 1
2
I(CA;A1)

and E = 1
2
I(CA;A1), which are equivalent to the optimal costs of FQRS.

(iv) State redistribution (SR): In SR [7, 8], both Alice and Bob have QSI A1 and B1 as (d)

in Fig. 2, that is, m = 1 and n = 1. Its optimal resource costs Q = H(CA)− 1
2
I(CA;A1)−

1
2
I(CA;B1) and E = 1

2
I(CA;A1)− 1

2
I(CA;B1) can be achieved from Eq. (1).
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FIG. 2: The initial and final states for protocols with qubit/bit channels which can be classified

into (a) SC/QT, (b) FQSW/SM, (c) FQRS/GQT, (d) SR/GSM, according to the use of QSI. CA

is transferred from Alice to Bob, R is the reference, and A1 and B1 are Alice’s and Bob’s QSI,

respectively.

As mentioned earlier, we continue to see the protocols with bit channels, which are

contained in the state merging with QSI of |ψ〉A1···AmCAB1···BnR. Let us now define c and e

as the optimal classical communication and entanglement costs, respectively.
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(v) Quantum teleportation (QT): In the original QT [1], Alice and Bob can teleport only

one qubit unknown to them. However, we here assume that they asymptotically teleport an

initial state known to themselves. Then its optimal costs can be obtained as c = 2H(CA)

and e = H(CA) from Eq. (2). This is described in (a) of Fig. 2, as in the case of SC.

(vi) State merging (SM): In SM [5, 6], Alice has no QSI but Bob has QSI, as depicted

in (b) of Fig. 2. This is equivalent to FQSW except for using different kind of channels.

From Eq. (2), its optimal costs c = 2H(CA)− I(CA;B1) and e = H(CA)− I(CA;B1) can be

obtained.

(vii) Generalized quantum teleportation (GQT) and Generalized state merging (GSM): In

QT and SM, if Alice has QSI A1 and exploits it for teleporting and merging CA, then we

call these protocols GQT and QSM, which are seen in (c) and (d) of Fig. 2, respectively. We

note that the concepts of the GQT and the GSM have been known in literature [7, 11–13],

but the optimal resource costs have not precisely been mentioned. By using Eq. (2), it can

be shown that c = 2H(CA)− I(CA;A1) and e = H(CA) are the optimal costs for GQT, and

c = 2H(CA)− I(CA;A1)− I(CA;B1) and e = H(CA)− I(CA;B1) for GSM.

So far, we have seen that the state transfer with QSI includes many quantum information

protocols to transfer Alice’s information to Bob, and our protocol is the most generalized

one when taking account of Alice’s and Bob’s QSI.

VI. CONCLUSION

We have considered the state transfer with QSI as a general quantum communication

protocol, and have determined its optimal resource costs when Alice and Bob use their QSI.

We also have investigated the effects of (additional) QSI on the optimal resource costs in the

state transfer with QSI. Based on this study, we have provided new operational meanings

of the QMI and the QCMI, in addition to a new operational interpretation of the chain rule

for the QMI, which is naturally understandable with respect to the state transfer with QSI.

In addition, we expect that our state transfer with QSI provides further understandings of

specific multipartite quantum states, such as the Greenberger-Horne-Zeilinger state [17] and

the Werner state [18].

Throughout this paper, we have assumed that the initial states of the protocols are inde-

pendent and identically distributed (i.i.d.). However, there have been some results [19–23]
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which do not take into account the i.i.d. assumption. Since these results have provided the-

oretical bases for the proofs of some practical applications, such as quantum key distribution

with finite resources [24, 25], it can be helpful to devise the one-shot version of our work. For

this, recent results about resource costs for the one-shot quantum state redistribution [23, 26]

might be useful.

Furthermore, it would be interesting to investigate the optimal resource costs of the state

transfer with QSI under various conditions. For instance, we can assume that Alice and

Bob can consume non-local noisy resources [14, 27], or they can use a local resource, such

as maximally coherent states [28–30], as in the incoherent quantum state merging [30] and

the coherence distillation [31].
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