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Entanglement-assisted quantum MDS codes constructed from
constacyclic codes∗

Xiaojing Chen, Shixin Zhu, Xiaoshan Kai

School of Mathematics, Hefei University of Technology, Hefei 230009, Anhui, P.R.China

Abstract: Recently, entanglement-assisted quantum error correcting codes (EAQECCs) have
been constructed by cyclic codes and negacyclic codes. In this paper, by analyzing the cy-
clotomic cosets in the defining set of constacyclic codes, we constructed three classes of new
EAQECCs which satisfy the entanglement-assisted quantum Singleton bound. Besides, three
classes of EAQECCs with maximal entanglement from constacyclic codes are constructed in
the meanwhile.
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1 Introduction

Since the significant discovery in [1] and [2], the theory of quantum error-correcting codes
(QECCs) has experienced tremendous growth. Many good QECCs have been constructed by
using classical error-correcting codes [3]-[8]. In kinds of methods of constructing QECCs, the
CSS construction is the most important one which provides stabilizer codes by exploiting the
link between classical and quantum codes. However, the condition of dual-containing forms
a barrier in the development of quantum coding theory. This problem get solved after Brun
et al. [9] proposed the EAQECCs. In their paper, they proved that non-dual-containing
classical quaternary codes can be used to construct EAQECCs if the sender and receiver shared
entanglement in advance. EAQECCs allow the use of arbitrary classical codes (not necessarily
self-orthogonal) for quantum data transmission via pre-shared entanglement bits. This inspire
more and more researchers to focus on constructing good EAQECCs [10]-[16].

Customarily, an entanglement-assisted quantum error correcting code (EAQECC) can be
denoted as [[n, k, d; c]]q, which encodes k information qubits into n channel qubits with the help
of c pairs of maximally entangled states and corrects up to ⌊d−1

2 ⌋ errors, where d is the minimum
distance of the code. If n− k = c, the code is called an EAQECC with maximal entanglement.
The performance of an EAQECC is measured by its rate and net rate k−c

n
. When the net rate

of an EAQECC is positive it is possible to obtain catalytic codes as shown by Brun et al. [13].
Li et al. [17] proposed the concept about a decomposition of the defining set of BCH cyclic
codes, transformed the problem of calculating the number of share pairs into determining a
special subset of the defining set of a BCH code, and constructed some EAQECCs with good
parameters. In Refs. [18], Lü and Li made a further study on constructing of EAQECCs by
using primitive quaternary BCH codes. Recently, Chen et al. [19] generalize their method
to apply in negacyclic codes, and obtain four classes of optimal EAQECCs and two classes of
maximal entanglement entanglement-assisted quantum codes. Lu et al. [20] constructed six
classes of q-qry entanglement-assisted quantum MDS codes based on classical negacyclic MDS
codes.

As we all known, there exist optimal symmetric and asymmetric quantum codes of length

n = q2+1
5 , where q is some prime power. In Refs. [21], Kai et al. obtained the quantum MDS
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codes from constacyclic codes where n = q2+1
5 and q is an odd prime power. Afterwards, Chen

et al. [22] constructed some asymmetric quantum MDS codes by using constacyclic codes where

n = q2+1
5 and q is an even prime power. Inspired by the above work, we consider constructing

EAQECCs by constacyclic codes naturally. In this paper, we obtain three classes of new optimal
EAQECCs by constacyclic codes. Speaking specifically, for an even prime power q = 2e, where
e is odd, and an odd prime power q with the form 20m + 3 or 20m + 7, we construct three
classes of EAQECCs with parameters as follows:

(1) [[ q
2+1
5 , q2−6q+33

5 − 4t, 3q−1
5 + 2t; 4]]q, where e ≡ 1 mod 4 and 1 ≤ t ≤ q+3

5 .

(2) [[ q
2+1
5 , q2−6q+29

5 − 4t, 3q+1
5 + 2t; 4]]q, where e ≡ 3 mod 4 and 1 ≤ t ≤ q+2

5 .

(3) [[ q
2+1
5 , q2+1

5 − q − 4t+ 1, q+1
2 + 2t+ 2; 4]]q, where q is an odd prime power with the form

20m+ 3 or 20m+ 7, m is a positive integer and m ≤ t ≤ q−3
4 .

We also obtain three classes of maximal-entanglement entanglement-assisted quantum codes
with parameters as follows:

(1) [[ q
2+1
5 , q2+1

5 − 4, d ≥ 2; 4]]q, where e ≡ 1 mod 4.

(2) [[ q
2+1
5 , q2+1

5 − 4, d ≥ 2; 4]]q, where e ≡ 3 mod 4.

(3) [[ q
2+1
5 , q2+1

5 − 4, d ≥ 2; 4]]q, where q is an odd prime power with the form 20m + 3 or
20m+ 7, m is a positive integer.

This paper is organized as follows. In Section 2, some basic background and results about
constacyclic codes are reviewed. In Section 3, we briefly review some basic definitions and
results of EAQECCs. In Section 4, we construct three classes of optimal EAQECCs and three
classes of maximal-entanglement entanglement-assisted quantum codes. Section 5 concludes
the paper.

2 Preliminaries

Let Fq2 be a finite field with q2 elements, where q is a power of a prime p. For any element
x ∈ Fq2 , we denote the conjugate xq of x by x. Given two vectors x = (x0, x1, . . . , xn−1) and
y = (y0, y1, . . . , yn−1) ∈ Fn

q2 , their Hermitian inner product is defined as

〈x,y〉 = x0y0 + x1y1 + · · ·+ xn−1yn−1 ∈ Fq2 .

The vectors x and y are called orthogonal with respect to the Hermitian inner product if
〈x,y〉 = 0. A q2-ary linear code C of length n is a nonempty subspace of the vector space Fn

q2 .

For a q2-ary linear code C, the Hermitian dual code of C is defined as

C⊥h = {x ∈ F
n
q2 | 〈x,y〉 = 0 for all y ∈ C}.

A q2-ary linear code C of length n is called Hermitian self-orthogonal if C ⊆ C⊥h , and it is
called Hermitian self-dual if C = C⊥h . For a nonzero element λ of Fq2 , if C is closed under
the λ-constacyclic shift, i.e., if (x0, x1, . . . , xn−1) ∈ C implies (λxn−1, x0, . . . , xn−2) ∈ C, then
C is said to be a λ-constacyclic code. Customarily, a codeword c = (c0, c1, . . . , cn−1) in C is
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identified with its polynomial representation c(x) = c0 + c1x+ · · ·+ cn−1x
n−1. It is well known

that a λ-constacyclic code C ∈ Fn
q2

is an ideal of the quotient ring Fq2 [x]/〈x
n − λ〉 and C can

be generated by a monic divisor g(x) of xn − λ. The polynomial g(x) is called the generator
polynomial of the code C and the dimension of C is n− k, where k = deg(g(x)).

In the following, we take q is a power of a prime p, r is the order of λ in F∗
q2 . Note that

λλ̄ = 1 in Fq2 . Assume that gcd(q, n) = 1. Let δ be a primitive rn-th root of unity in some
extension field of Fq2 such that δn = η. Let ξ = δr, then ξ is a primitive n-th root of unity.
Hence,

xn − λ =

n−1∏

j=0

(x− δξj) =

n−1∏

j=0

(x− δ1+jr).

Let Ω = {1 + jr| 0 ≤ j ≤ n− 1}. For each i ∈ Ω, let Ci be the q2-cyclotomic coset modulo
rn containing i,

Ci = {i, iq2, iq4, . . . , iq2(mi−1)},

where mi is the smallest positive integer such that iq2mi ≡ i mod rn. Each Ci corresponds to
an irreducible divisor of xn − λ over Fq2 . Let C be an λ-constacyclic code of length n over Fq2

with generator polynomial g(x). Then the set Z = {i ∈ Ω| g(δi) = 0} is called the defining set of
C. Obviously, the defining set of C must be a union of some q2-cyclotomic cosets modulo rn and
dim(C) = n−|Z|. It is clear to see that C⊥h has defining set Z⊥h = {z ∈ Ω| −qz mod rn /∈ Z}.
Note that Z−q = {−qz mod rn| z ∈ Z}. Then C contains its Hermitian dual code if and only
if Z ∩ Z−q = ∅ from lemma 2.2 in Refs. [21].

Similar to cyclic codes, there exists the following BCH bound for λ-constacyclic codes in
Refs. [23] and [24].

Theorem 2.1 (The BCH bound for constacyclic codes) Assume that gcd(q, n) = 1. Let
C be an λ-constacyclic code of length n over Fq2 , and let its generator polynomial g(x) have the
elements {δ1+jr| 0 ≤ j ≤ d− 2} as the roots, where δ is a primitive rn-th root of unity. Then
the minimum distance of C is at least d.

3 Review of EAQECCs

In this section, we give some basic definitions and results of EAQECCs. More details about
EAQECCs theory, please refer to Refs. [9]-[19] therein.

Suppose that H is an (n − k) × n parity check matrix of C over Fq2 . Then, C⊥h has an
n× (n− k) generator matrix H†, where H† is the conjugate transpose matrix of H over Fq2 .

The following proposition is about the Singleton bound of classical linear codes in Ref.[25].

Lemma 3.1 (Singleton bound) If an [n, k, d] linear code over Fq exists, then k ≤ n− d+1.
If the equality k = n− d+ 1 holds, then the code is an MDS code.

In the following, we recall several results which are important for constructing EAQECCs
in Refs. [9], [10] and [14].

Theorem 3.2 [9,10] If C = [n, k, d]q2 is a classical code over Fq2 and H is its parity check ma-
trix, then C⊥h EA stabilizes an entanglement-assisted code with parameters [[n, 2k−n+c, d; c]]q,
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where c = rank(HH†) is the number of maximally entangled states required and H† is the con-
jugate matrix of H over Fq2 .

Theorem 3.3 [9,14] Assume that C = [n, k, d; c]q is an entanglement-assisted quantum code,
where d ≤ n+2

2 , then C satisfies the entanglement-assisted Singleton bound n+ c− k ≥ 2(d− 1).
If C satisfies the equality n+ c− k = 2(d − 1) for d ≤ n+2

2 , then it is called an entanglement-
assisted quantum MDS code.

4 Construction of entanglement-assisted quantum MDS codes

In Refs.[17]-[20], the authors gave definitions for decomposing the defining set of cyclic codes
and negacyclic codes. We define a decomposion of the defining set of constacyclic codes as fol-
lows.

Definition 4.1 Let C be a constacyclic code of length n with defining set Z. Assume that
Z1 = Z ∩ (−qZ) and Z2 = Z \ Z1, where −qZ = {n− qx|x ∈ Z}. Then, Z = Z1 ∪ Z2 is called
a decomposion of the defining set of C.

In the following, we give a lemma which is a generalization of Lemma 1 in Refs.[19]. The
proof is similar, so we omit it there.

Lemma 4.2 Let C be a constacyclic code of length n over Fq2 , where gcd(n, q) = 1. Suppose
that Z is the defining set of the constacyclic code C and Z = Z1 ∪ Z2 is a decomposition of Z.
Then, the number of entangled states requires is C = |Z1|.

Lemma 4.3 [22] Let q = 2e, where e > 1 is odd, n = q2+1
5 , s = (q+6)n

2 , r = q2−q
2 , where

r = s − (q+1)(n+1)
2 and Ω = {1 + (q + 1)j| 0 ≤ j ≤ n − 1}. Then, for any integer i ∈ Ω, the

q2-cyclotomic cosets Ci modulo (q + 1)n is given by

1) Cs = {s} and Cs−(q+1)j = {s− (q + 1)j, s+ (q + 1)j} for 1 ≤ j ≤ n−1
2 .

2) Let q = 2e with e ≡ 1 mod 4. If C is an λ-constacyclic code over Fq2 of length n with

defining set Z =
⋃δ

j=0 Cr−(q+1)j, where 0 ≤ δ ≤ 3q−16
10 , then C⊥h ⊆ C.

3) Let q = 2e with e ≡ 3 mod 4. If C is an λ-constacyclic code over Fq2 of length n with

defining set Z =
⋃δ

j=0 Cr−(q+1)j, where 0 ≤ δ ≤ 3q−14
10 , then C⊥h ⊆ C.

Based on the discussions above, we give the first important theorem of this paper below.

Theorem 4.4 Let q = 2e with e ≡ 1(mod 4). Let n = q2+1
5 , s = (q+6)n

2 and r = q2−q
2 ,

where r = s − (q+1)(n+1)
2 . If C is a q2-ary constacyclic code of length n with defining set

Z =
⋃ 3q−16

10 +t

i=0 Cr−(q+1)i, where 1 ≤ t ≤ q+3
5 , then there exsit EAQECCs with parameters

[[ q
2+1
5 , q2−6q+33

5 − 4t, 3q−1
5 + 2t; 4]]q.

Proof. From Lemma 4.3, we can assume that the defining set of the constacyclic code C is

Z =
⋃ 3q−16

10 +t

i=0 Cr−(q+1)i, where 1 ≤ t ≤ q+3
5 . Then C is a constacyclic code with parameters

[ q
2+1
5 , q2+1

5 − 3q−16
5 − 2t − 2, 3q−16

5 + 2t + 3]q2 from Theorem 2.1 and Lemma 3.1. Therefore,
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we have the following result.

Z1 = Z ∩ (−qZ)

= ((∪
3q−16

10
i=0 Ca) ∪ (∪

3q−16
10 +t

i= 3q−6
10

Ca))

∩ (−q(∪
3q−16

10

i=0 Ca) ∪ −q(∪
3q−16

10 +t

i= 3q−6
10

Ca))

= ((∪
3q−16

10
i=0 Ca) ∩ −q(∪

3q−16
10

i=0 Ca))

∪ ((∪
3q−16

10

i=0 Ca) ∩ −q(∪
3q−16

10 +t

i= 3q−6
10

Ca))

∪ ((∪
3q−16

10 +t

i= 3q−6
10

Ca) ∩ −q(∪
3q−16

10

i=0 Ca))

∪ ((∪
3q−16

10 +t

i= 3q−6
10

Ca) ∩ −q(∪
3q−16

10 +t

i= 3q−6
10

Ca))

= C q2−q+3
5

∪ C 2q2−2q+1
5

, (1)

where a = r − (q + 1)i.
From Lemma 4.3, we have

(∪
3q−16

10

i=0 Ca) ∩ −q(∪
3q−16

10

i=0 Ca) = ∅.

In order to get the result of equation (1), we have to show that

(∪
3q−16

10 +t

i= 3q−6
10

Ca) ∩ −q(∪
3q−16

10

i=0 Ca) = C q2−q+3
5

,

(∪
3q−16

10

i=0 Ca) ∩ −q(∪
3q−16

10 +t

i= 3q−6
10

Ca) = C 2q2−2q+1
5

,

and

(∪
3q−16

10 +t

i= 3q−6
10

Ca) ∩ −q(∪
3q−16

10 +t

i= 3q−6
10

Ca) = ∅.

Firstly, we show that

(∪
3q−16

10 +t

i= 3q−6
10

Ca) ∩ −q(∪
3q−16

10

i=0 Ca) = C q2−q+3
5

.

It is easy to show that −qC q2−q+3
5

= C 2q2−2q+1
5

. Therefore, we have

(∪
3q−16

10 +t

i= 3q−6
10

Ca) ∩ −q(∪
3q−16

10

i=0 Ca)

= (C q2−q+3
5

∪ (∪
3q−16

10 +t

i= 3q+4
10

Ca)) ∩ −q(∪
3q−16

10
i=0 Ca)

= (C q2−q+3
5

∩−q(∪
3q−16

10

i=0 Ca))

∪ ((∪
3q−16

10 +t

i= 3q+4
10

Ca) ∩ −q(∪
3q−16

10
i=0 Ca))

= C q2−q+3
5

5



In fact,

C q2−q+3
5

∩ −q(∪
3q−16

10

i=0 Ca) = C q2−q+3
5

from Lemma 4.3 and

(∪
3q−16

10 +t

i= 3q+4
10

Ca) ∩ −q(∪
3q−16

10

i=0 Ca) = ∅,

for 2 ≤ t ≤ q+3
5 .

If (∪
3q−16

10 +t

i= 3q+4
10

Ca) ∩ −q(∪
3q−16

10
i=0 Ca) 6= ∅ for 2 ≤ t ≤ q+3

5 , i.e.,

(∪t
i=2Cr−(q+1)(i+ 3q−16

10 )) ∩ −q(∪
3q−16

10

i=0 Cr−(q+1)i) 6= ∅

for 2 ≤ t ≤ q+3
5 , then there exist two integers l and j, where 2 ≤ l ≤ q+3

5 , 0 ≤ j ≤ 3q−16
10 , such

that

r − (q + 1)(l +
3q − 16

10
) ≡ −q[r − (q + 1)j]q2k mod (q + 1)n

for some k ∈ {0, 1}. We can seek contradictions as follows.

(i) When k = 0, we have r − (q + 1)(l + 3q−16
10 ) ≡ −q[r − (q + 1)j] mod (q + 1)n. Since

(q+1)r ≡ (q+1)(l+ 3q−16
10 + qj) mod (q+1)n, we have r ≡ l+ 3q−16

10 + qj mod n, which
is equal to

2q + 6

5
+ q ·

q − 12

10
≡ l + qj mod n, (2)

where n = q2+1
5 = 2q+1

5 +q · q−2
5 . From 2 ≤ l ≤ q+3

5 < 2q+1
5 , we have the following results.

(a) when 0 ≤ j ≤ q−2
5 , l + qj < n. If equation (2) establish, we have l = 2q+6

5 , j = q−12
10 .

Because lmax = q+3
5 < 2q+6

5 , it is a contradiction.

(b) when q−2
5 < j ≤ 3q−16

10 , from j is an integer, we have q+3
5 ≤ j ≤ 3q−16

10 , so l + qj ≥

qj ≥ q · q+3
5 = q2+3q

5 > n. From 2 ≤ l ≤ q+3
5 , q+3

5 ≤ j ≤ 3q−16
10 , we can get 2 + q ·

q+3
5 ≤ l + qj ≤ q+3

5 + q · 3q−16
10 , i.e., 3q+9

5 ≤ l + qj − n ≤ q2−14q+4
10 < n. Because

q2−14q+4
10 < q2−8q+12

10 = 2q+6
5 + q · q−12

10 , equation (2) is not establish.

(ii) When k = 1, we have r − (q + 1)(l + 3q−16
10 ) ≡ −q3[r − (q + 1)j] mod (q + 1)n, which is

equal to

11q − 2

10
≡ j + ql mod n, (3)

where n = q2+1
5 = 2q+1

5 + q · q−2
5 . From 0 ≤ j ≤ 3q−16

10 < 2q+1
5 , we have the following

results.

(a) when 2 ≤ l ≤ q−2
5 , j+ql < n. If equation (3) establish, we have j = 11q−2

10 , l = 0. Because
lmin = 2 > 0, it is a contradiction.

(b) when q−2
5 < l ≤ q+3

5 , because l is an integer, we have l = q+3
5 , so j+ ql ≥ ql = q2+3q

5 > n.

From l = q+3
5 , 0 ≤ j ≤ 3q−16

10 , we have q · q+3
5 ≤ j + ql ≤ 3q−16

10 + q · q+3
5 , i.e., 3q−1

5 ≤

j + ql − n ≤ 9q−18
10 < n, because 9q−18

10 < 11q−2
10 , therefore equation (3) is not establish.
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From the above discussions, we can see

(∪
3q−16

10 +t

i= 3q−6
10

Ca) ∩ −q(∪
3q−16

10

i=0 Ca) = C q2−q+3
5

,

for 1 ≤ t ≤ q+3
5 .

Secondly, we show that

(∪
3q−16

10

i=0 Ca) ∩ −q(∪
3q−16

10 +t

i= 3q−6
10

Ca) = C 2q2−2q+1
5

.

Since

−q((∪
3q−16

10 +t

i= 3q−6
10

Ca) ∩−q(∪
3q−16

10

i=0 Ca)) = −qC q2−q+3
5

= C 2q2−2q+1
5

,

it follows that

(∪
3q−16

10

i=0 Ca) ∩ −q(∪
3q−16

10 +t

i= 3q−6
10

Ca) = C 2q2−2q+1
5

.

Finally, we show that

(∪
3q−16

10 +t

i= 3q−6
10

Ca) ∩ −q(∪
3q−16

10 +t

i= 3q−6
10

Ca) = ∅,

for 1 ≤ t ≤ q+3
5 . If (∪

3q−16
10 +t

i= 3q−6
10

Ca) ∩ −q(∪
3q−16

10 +t

i= 3q−6
10

Ca) 6= ∅,, i.e.,

(∪t
i=1Cr−(q+1)(i+ 3q−16

10 )) ∩ −q(∪t
i=1Cr−(q+1)(i+ 3q−16

10 )) 6= ∅

for 1 ≤ t ≤ q+3
5 , then there exist two integers l and j, where 1 ≤ l, j ≤ q+3

5 , such that

r − (q + 1)(l +
3q − 16

10
) ≡ −q[r − (q + 1)(j +

3q − 16

10
)]q2k mod (q + 1)n,

for some k ∈ {0, 1}. We can seek contradictions as follows.

(i) When k = 0, we have r − (q + 1)(l + 3q−16
10 ) ≡ −q[r − (q + 1)(j + 3q−16

10 )] mod (q + 1)n,
which is equal to

4q + 7

5
≡ l + qj mod n, (4)

where n = q2+1
5 = 2q+1

5 +q · q−2
5 . From 1 ≤ l ≤ q+3

5 < 2q+1
5 , we have the following results.

(a) when 1 ≤ j ≤ q−2
5 , l+ qj < n. If equation (4) establish, we have l = 4q+7

5 , j = 0. Because
jmin = 1 > 0, it is a contradiction.

(b) when q−2
5 < j ≤ q+3

5 , because j is an integer, we have j = q+3
5 , so l+qj ≥ qj = q2+3q

5 > n.

From 1 ≤ l ≤ q+3
5 , j = q+3

5 , we can get 1 + q · q+3
5 ≤ l + qj ≤ q+3

5 + q · q+3
5 , i.e.,

3q+4
5 ≤ l + qj − n ≤ 4q+2

5 < n. Because 4q+2
5 < 4q+7

5 , equation (4) is not establish.
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(ii) When k = 1, we have r − (q + 1)(l+ 3q−16
10 ) ≡ −q3[r − (q + 1)(j + 3q−16

10 )] mod (q + 1)n,
which is equal to

4q + 7

5
≡ j + ql mod n, (5)

where n = q2+1
5 = 2q+1

5 + q · q−2
5 . From 1 ≤ j ≤ q+3

5 < 2q+1
5 , we have the following

results.

(a) when 1 ≤ l ≤ q−2
5 , l + qj < n. If equation (5) establish, we have j = 4q+7

5 , l = 0. But
lmin = 1 > 0, it is a contradiction.

(b) when q−2
5 < l ≤ q+3

5 , because l is an integer, we have l = q+3
5 , so j+ ql ≥ ql = q2+3q

5 > n.

From 1 ≤ j ≤ q+3
5 , l = q+3

5 , we can get 1 + q · q+3
5 ≤ j + ql ≤ q+3

5 + q · q+3
5 , i.e.,

3q+4
5 ≤ j + ql − n ≤ 4q+2

5 . Because 4q+2
5 < 4q+7

5 , equation (5) is not establish. It follows

that (∪
3q−16

10 +t

i= 3q−6
10

Ce) ∩ (−q ∪
3q−16

10 +t

i= 3q−6
10

Ce) = ∅.

From Lemma 4.2, we have c = 4. From Theorem 3.2, there exist entanglement assisted

quantum codes with parameters [[ q
2+1
5 , q2−6q+33

5 − 4t, 3q−1
5 + 2t; 4]]q, where 1 ≤ t ≤ q+3

5 .

For the case of q = 2e with e ≡ 3 mod 4, we can produce the following entanglement-assisted
quantum MDS codes. The proof is similar to that in the case of q = 2e with e ≡ 1 mod 4 and
we omit it there.

Theorem 4.5 Let q = 2e with e ≡ 3 mod 4. Let n = q2+1
5 , s = (q+6)n

2 and r = q2−q
2 ,

where r = s − (q+1)(n+1)
2 . If C is a q2-ary constacyclic codes of length n with defining set

Z =
⋃ 3q−14

10 +t

i=0 Cr−(q+1)i, where 1 ≤ t ≤ q+2
5 , then there exsit EAQECCs with parameters

[[ q
2+1
5 , q2−6q+29

5 − 4t, 3q+1
5 + 2t; 4]]q.

Lemma 4.6 [21] Let n = q2+1
5 , s = q2+1

2 . Then, for any integer i ∈ Ω = {1 + (q + 1)j| 0 ≤
j ≤ n− 1}, the q2-cyclotomic cosets Ci modulo (q + 1)n is given by

1) Cs = {s} and C
s+n(q+1)

2

= {s+ n(q+1)
2 }, and Cs−(q+1)j = {s− (q + 1)j, s+ (q + 1)j} for

1 ≤ j ≤ n
2 − 1.

2) Let q be an odd prime power with the form 20m + 3 or 20m + 7, where m is a positive
integer. If C is an ωq−1-constacyclic code over Fq2 of length n with defining set Z =⋃δ

j=0 Cs−(q+1)j , where 0 ≤ δ ≤ q+1
4 , then C⊥h ⊆ C.

From the discussions above, we can get the third theorem of this paper below.

Theorem 4.7 Let n = q2+1
5 and s = q2+1

2 , where q is an odd prime power with the form 20m+3
or 20m+7 and m is a positive integer. If C is a q2-ary constacyclic code of length n with defin-

ing set Z =
⋃ q+1

4 +t

i=0 Cs−(q+1)i, then there exist EAQECCs with parameters [[ q
2+1
5 , q2+1

5 − q −

4t+ 1, q+1
2 + 2t+ 2; 4]]q, where m ≤ t ≤ q−3

4 .

Proof. We only proof the case of q is an odd prime power with the form 20m + 3. As for q
is an odd prime power with the form 20m + 7, the proof is similar to that in the case of the
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former, and we omit it there. From Lemma 4.6, we can assume that the defining set of the

constacyclic code C is Z =
⋃ q+1

4 +t

i=0 Cs−(q+1)i, then C is a constacyclic code with parameters

[ q
2+1
5 , q2+1

5 − q+1
2 − 2t − 1, q+1

2 + 2t + 2]q2 from Theorem 2.1 and Lemma 3.1. Therefore, we
have the following result.

Z1 = Z ∩ (−qZ)

= ((∪
q+1
4

i=0 Cb) ∪ (∪
q+1
4 +t

i= q+5
4

Cb))

∩ (−q(∪
q+1
4

i=0Cb) ∪ −q(∪
q+1
4 +t

i= q+5
4

Cb))

= ((∪
q+1
4

i=0 Cb) ∩ −q(∪
q+1
4

i=0Cb))

∪ ((∪
q+1
4

i=0 Cb) ∩ −q(∪
q+1
4 +t

i= q+5
4

Cb))

∪ ((∪
q+1
4 +t

i= q+5
4

Cb) ∩ −q(∪
q+1
4

i=0Cb))

∪ ((∪
q+1
4 +t

i= q+5
4

Cb) ∩ −q(∪
q+1
4 +t

i= q+5
4

Cb))

= C (q−1)2

4 −m(q+1)
∪Cs−2m(q+1), (6)

where b = s− (q + 1)i.
From Lemma 4.6, we have

(∪
q+1
4

i=0Cb) ∩ −q(∪
q+1
4

i=0Cb) = ∅.

In order to get the result of equation (6), we have to show that

(∪
q+1
4 +t

i= q+5
4

Cb) ∩ −q(∪
q+1
4

i=0Cb) = C (q−1)2

4 −m(q+1)
,

(∪
q+1
4

i=0 Cb) ∩ −q(∪
q+1
4 +t

i= q+5
4

Cb) = Cs−2m(q+1),

and

(∪
q+1
4 +t

i= q+5
4

Cb) ∩ −q(∪
q+1
4 +t

i= q+5
4

Cb) = ∅.

Firstly, we show that

(∪
q+1
4 +t

i= q+5
4

Cb) ∩ −q(∪
q+1
4

i=0Cb) = C (q−1)2

4 −m(q+1)
.

It is easy to show that −qC (q−1)2

4 −m(q+1)
= Cs−2m(q+1). Therefore, we have
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(∪
q+1
4 +t

i= q+5
4

Cb) ∩ −q(∪
q+1
4

i=0Cb)

= ((∪
q+1
4 +m

i= q+5
4

Cb) ∪ (∪
q+1
4 +t

i= q+5
4 +m

Cb)) ∩ −q(∪
q+1
4

i=0Cb)

= (∪
q+1
4 +m

i= q+5
4

Cb ∩ −q(∪
q+1
4

i=0Cb))

∪ ((∪
q+1
4 +t

i= q+5
4 +m

Cb) ∩−q(∪
q+1
4

i=0Cb))

= C (q−1)2

4 −m(q+1)
.

In fact,

(∪
q+1
4 +m

i= q+5
4

Cb) ∩ −q(∪
q+1
4

i=0Cb) = C (q−1)2

4 −m(q+1)
,

and

(∪
q+1
4 +t

i= q+5
4 +m

Cb) ∩−q(∪
q+1
4

i=0Cb) = ∅,

for m+ 1 ≤ t ≤ q−3
4 .

In the following, we proof

(∪
q+1
4 +m

i= q+5
4

Cb) ∩ −q(∪
q+1
4

i=0Cb) = C (q−1)2

4 −m(q+1)
,

i.e. (∪m
i=1Cs−(q+1)(i+ q+1

4 )) ∩ −q(∪
q+1
4

i=0Cs−(q+1)i) = C (q−1)2

4 −m(q+1)
. Then there exist two inte-

gers l and j, where 1 ≤ l ≤ m, 0 ≤ j ≤ q+1
4 , such that

s− (q + 1)(l +
q + 1

4
) ≡ −q[s− (q + 1)j]q2k mod (q + 1)n,

for some k ∈ {0, 1}.

(i) When k = 0, we have s− (q+1)(l+ q+1
4 ) ≡ −q[s− (q+1)j] mod (q+1)n, which is equal

to

q − 3

20
+ q ·

q − 3

10
≡ l+ qj mod n, (7)

where n = q2+1
5 = 3q+1

5 + q · q−3
5 . From 1 ≤ l ≤ m < 3q+1

5 , we have the following results.

(a) when 0 ≤ j ≤ q−3
5 , l + qj < n. If equation (7) establish, we have l = q−3

20 = m,

j = q−3
10 = 20m+3−3

10 = 2m.

(b) when q−3
5 < j ≤ q+1

4 , because j is an integer, we have q+2
5 ≤ j ≤ q+1

4 , so l + qj ≥ qj ≥

q · q+2
5 = q2+2q

5 > n. From 1 ≤ l ≤ m, q+2
5 ≤ j ≤ q+1

4 , we can get 1 + q · q+2
5 ≤ l + qj ≤

m+ q · q+1
4 , i.e., 2q+4

5 ≤ l+ qj − n ≤ q2+5q+20m−4
20 < q−3

20 + q · q−3
10 , therefore equation (7)

is not establish.
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(ii) When k = 1, we have s − (q + 1)(l + q+1
4 ) ≡ −q3[s − (q + 1)j] mod (q + 1)n, which is

equal to

9q + 3

10
+ q ·

q − 23

20
≡ j + ql mod n, (8)

where n = q2+1
5 = 3q+1

5 + q · q−3
5 . From 0 ≤ j ≤ q+1

4 < 3q+1
5 , 1 ≤ l ≤ m < q−3

5 = 4m,

If equation (8) establish, we have j = 9q+3
10 , l = q−23

10 . Because 9q+3
10 > q+1

4 , it is a
contradiction.

Next, we proof

(∪
q+1
4 +t

i= q+5
4 +m

Cb) ∩−q(∪
q+1
4

i=0Cb) = ∅.

If (∪
q+1
4 +t

i= q+5
4 +m

Cb) ∩ −q(∪
q+1
4

i=0Cb) 6= ∅, for m+ 1 ≤ t ≤ q−3
4 , i.e.,

(∪t
i=m+1Cs−(q+1)(i+ q+1

4 )) ∩−q(∪
q+1
4

i=0Cs−(q+1)i) 6= ∅,

for m+1 ≤ t ≤ q−3
4 , then there exist two integers l and j, where m+1 ≤ l ≤ q−3

4 , 0 ≤ j ≤ q+1
4 ,

such that

s− (q + 1)(l +
q + 1

4
) ≡ −q[s− (q + 1)j]q2k mod (q + 1)n

for some k ∈ {0, 1}. We can seek contradictions as follows.

(i) When k = 0, we have s− (q+1)(l+ q+1
4 ) ≡ −q[s− (q+1)j] mod (q+1)n, which is equal

to

q − 3

20
+ q ·

q − 3

10
≡ l+ qj mod n, (9)

where n = q2+1
5 = 3q+1

5 + q · q−3
5 . From m+ 1 ≤ l ≤ q−3

4 < 3q+1
5 , we have the following

results.

(a) when 0 ≤ j ≤ q−3
5 , l + qj < n. If equation (9) establish, we have l = q−3

20 , j = q−3
10 .

Because lmin = m+ 1 > q−3
20 = m, it is a contradiction.

(b) when q−3
5 < j ≤ q+1

4 , because j is an integer, we have q+2
5 ≤ j ≤ q+1

4 , so l + qj ≥

qj ≥ q · q+2
5 = q2+2q

5 > n. From m + 1 ≤ l ≤ q−3
4 , q+2

5 ≤ j ≤ q+1
4 , we can get

m+ 1+ q · q+2
5 ≤ l+ qj ≤ q−3

4 + q · q+1
4 , m+ 1 + q2+2q

5 ≤ l+ qj ≤ q2+2q−3
4 , m+ 2q+4

5 ≤

l + qj − n ≤ q2+10q−19
20 < n. because q2+10q−19

20 < q−3
20 + q · q−3

10 , equation (9) is not
establish.

(ii) When k = 1, we have s − (q + 1)(l + q+1
4 ) ≡ −q3[s − (q + 1)j] mod (q + 1)n, which is

equal to

9q + 3

10
+ q ·

q − 23

20
≡ j + ql mod n, (10)

where n = q2+1
5 = 3q+1

5 + q · q−3
5 . From 0 ≤ j ≤ q+1

4 < 3q+1
5 , we have the following

results.
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(a) when m+1 ≤ l ≤ q−3
5 , l+ qj < n. If equation (10) establish, we have j = 9q+3

10 , l = q−23
20 .

Because lmin = m+ 1 > q−23
20 = m− 1, it is a contradiction.

(b) when q−3
5 < l ≤ q−3

4 , because l is an integer, q+2
5 ≤ l ≤ q−3

4 , so j + ql ≥ ql ≥ q · q+2
5 =

q2+2q
5 > n. From q+2

5 ≤ l ≤ q−3
4 , 0 ≤ j ≤ q+1

4 , we can get q · q+2
5 ≤ j+ ql ≤ q+1

4 + q · q−3
4 ,

i.e., q2−1
5 ≤ j + ql − n ≤ q2−10q+1

20 < n, because 9q+3
10 + q · q−23

20 = q2−5q+6
20 > q2−10q+1

20 ,
equation (10) is not establish.

From the above discussions, we can see

(∪
q+1
4 +t

i= q+5
4

Cb) ∩ −q(∪
q+1
4

i=0Cb) = C (q−1)2

4 −m(q+1)
,

for m ≤ t ≤ q−3
4 .

Secondly, we show that

(∪
q+1
4

i=0Cb) ∩ −q(∪
q+1
4 +t

i= q+5
4

Cb) = Cs−2m(q+1).

Since −q · [(∪
q+1
4 +t

i= q+1
4 +1

Cb) ∩ −q(∪
q+1
4

i=0Cb)] = −q · C (q−1)2

4 −m(q+1)
= Cs−2m(q+1),

it follows that

(∪
q+1
4

i=0Cb) ∩ −q(∪
q+1
4 +t

i= q+5
4

Cb) = Cs−2m(q+1).

Finally, we show that

(∪
q+1
4 +t

i= q+5
4

Cb) ∩ −q(∪
q+1
4 +t

i= q+5
4

Cb) = ∅,

for m ≤ t ≤ q−3
4 . If

(∪
q+1
4 +t

i= q+5
4

Cb) ∩ −q(∪
q+1
4 +t

i= q+5
4

Cb) 6= ∅,

i.e.,
(∪t

i=1Cs−(q+1)(i+ q+1
4 )) ∩ −q(∪t

i=1Cs−(q+1)(i+ q+1
4 )) 6= ∅,

for m ≤ t ≤ q−3
4 . Then there exist two integers l and j, where m ≤ l, j ≤ q−3

4 , such that

s− (q + 1)(l +
q + 1

4
) ≡ −q[s− (q + 1)(j +

q + 1

4
)]q2k mod (q + 1)n,

for some k ∈ {0, 1}. We can seek contradictions as follows.

(i) When k = 0, we have s− (q+1)(l+ q+1
4 ) ≡ −q[s− (q+1)(j+ q+1

4 )] mod (q+1)n, which
is equal to

13q + 1

20
+ q ·

q − 23

20
≡ l + qj mod n, (11)

where n = q2+1
5 = 3q+1

5 + q · q−3
5 . From m ≤ l ≤ q−3

4 < 3q+1
5 , we have the following

results.

(a) when m ≤ j ≤ q−3
5 , l + qj < n. If equation (11) establish, we have l = 13q+1

20 , j = q−23
20 .

Because jmin = m > q−23
20 = m− 1, it is a contradiction.
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(b) when q−3
5 < j ≤ q−3

4 , because j is an integer, we have q+2
5 ≤ j ≤ q−3

4 , so l + qj ≥ qj ≥

q · q+2
5 = q2+2q

5 > n. From m ≤ l ≤ q−3
4 , q+2

5 ≤ j ≤ q−3
4 , we can get m+ q · q+2

5 ≤ l+ qj ≤
q−3
4 + q · q−3

4 , i.e., m+ 2q−1
5 ≤ l+ qj−n ≤ q2−10q−19

20 < n. because q2−10q+1
20 > q2−10q−19

20 ,
equation (11) is not establish.

(ii) When k = 1, we have s− (q+1)(l+ q+1
4 ) ≡ −q3[s− (q+1)(j+ q+1

4 )] mod (q+1)n, which
is equal to

13q + 1

20
+ q ·

q − 23

20
≡ j + ql mod n, (12)

where n = q2+1
5 = 3q+1

5 + q · q−3
5 . From m ≤ j ≤ q−3

4 < 3q+1
5 , we have the following

results.

(a) when m ≤ l ≤ q−3
5 , l + qj < n. If equation (12) establish, we have j = 13q+1

20 , l = q−23
20 .

Because lmin = m > l = q−23
20 = m− 1, it is a contradiction.

(b) when q−3
5 < l ≤ q−3

4 , because l is an integer, we have q+2
5 ≤ l ≤ q−3

4 , so l + qj ≥ qj ≥

q · q+2
5 = q2+2q

5 > n. From m ≤ j ≤ q−3
4 , q+2

5 ≤ l ≤ q−3
4 , we can get m+ q · q+2

5 ≤ j+ ql ≤
q−3
4 + q · q−3

4 , i.e., m + 2q−1
5 ≤ j + ql − n ≤ q2−10q−19

20 . Because q2−10q+1
20 > q2−10q−19

20 ,
equation (12) is not establish.

From Lemma 4.2, we have c = 4. From Theorem 3.2, there exist entanglement assisted

quantum codes with parameters [[ q
2+1
5 , q2+1

5 − q− 4t+1, q+1
2 +2t+2; 4]]q, where m ≤ t ≤ q−3

4 .

Remark 4.8 In Theorem 4.4, 4.5, and 4.7, n+ c− k = 2(d− 1). Then from Theorem 3.3, the
constructed EAQECCs attain entanglement-assisted quantum Singleton bound. Hence, these
EAQECCs are optimal.

Besides, when q is an odd prime power with the form 20m + 3, our EAQECCs wirh pa-

rameters [[ q
2+1
5 , q2+1

5 − q − 4t + 1, q+1
2 + 2t + 2; 4]]q, where m ≤ t ≤ q−3

4 , i.e., 12m + 4 ≤

d = q+1
2 + 2t + 2 ≤ 20m + 4 be even. Compared with EAQECCs in [20] with parmeters

[[ q
2+1
5 , q2+1

5 − 2d + 6, d; 4]]q, where 8m + 3 ≤ d ≤ 12m + 1 be odd, in the case of the same
n and c, our EAQECCs have the larger d. Compared with EAQECCs in [20] with parmeters

[[ q
2+1
5 , q2+1

5 − 2d+ 7, d; 5]]q, where 16m+ 4 ≤ d ≤ 24m+ 4 be even, in the case of the same n
and d, we use the lesser c to attain the same net rate of EAQECCs.

When q is an odd prime power with the form 20m + 7, our EAQECCs wirh parameters

[[ q
2+1
5 , q2+1

5 −q−4t+1, q+1
2 +2t+2; 4]]q, where m ≤ t ≤ q−3

4 , i.e., 12m+6 ≤ d = q+1
2 +2t+2 ≤

20m+8 be even. Compared with EAQECCs in [20] with parmeters [[ q
2+1
5 , q2+1

5 −2d+6, d; 4]]q,
where 16m + 7 ≤ d ≤ 28m + 11 be odd, in the case of the same n and c, both of EAQECCs
are optimal, and our EAQECCs is new. Compared with EAQECCs in [20] with parmeters

[[ q
2+1
5 , q2+1

5 − 2d+ 7, d; 5]]q, where 16m+ 8 ≤ d ≤ 24m+ 8 be even, in the case of the same n
and d, we use the lesser c to attain the same net rate of EAQECCs.

We give some examples in Table 1-5.

In the above part of this section, we have discussed three families of entanglement-assisted
quantum MDS codes constructed from constacyclic codes. In the following part of this section,
we will find that there exist EAQECCs with maximal entanglement.
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Table 1: Optimal EAQECCs from Theorem 4.5

q e [[ q
2+1
5 , q2−6q+33

5 − 4t, 3q−1
5 + 2t; 4]]q

32 5 [[205, 169, 21; 4]]32
32 5 [[205, 165, 23; 4]]32
32 5 [[205, 161, 25; 4]]32
32 5 [[205, 157, 27; 4]]32
32 5 [[205, 153, 29; 4]]32
32 5 [[205, 149, 31; 4]]32
32 5 [[205, 145, 33; 4]]32

Table 2: Optimal EAQECCs from Theorem 4.6

q e [[ q
2+1
5 , q2−6q+29

5 − 4t, 3q+1
5 + 2t; 4]]q

8 3 [[13, 5, 7; 4]]8
8 3 [[13, 1, 9; 4]]8

Table 3: Optimal EAQECCs from Theorem 4.6

q e [[ q
2+1
5 , q2−6q+29

5 − 4t, 3q+1
5 + 2t; 4]]q

128 7 [[3277, 3125, 79; 4]]128
128 7 [[3277, 3121, 81; 4]]128
128 7 [[3277, 3117, 83; 4]]128
128 7 [[3277, 3113, 85; 4]]128
128 7 [[3277, 3109, 87; 4]]128
128 7 [[3277, 3105, 89; 4]]128
128 7 [[3277, 3101, 91; 4]]128
128 7 [[3277, 3097, 93; 4]]128
128 7 [[3277, 3093, 95; 4]]128
128 7 [[3277, 3089, 97; 4]]128
128 7 [[3277, 3085, 99; 4]]128
128 7 [[3277, 3081, 101; 4]]128
128 7 [[3277, 3077, 103; 4]]128
128 7 [[3277, 3073, 105; 4]]128
128 7 [[3277, 3069, 107; 4]]128
128 7 [[3277, 3065, 109; 4]]128
128 7 [[3277, 3061, 111; 4]]128
128 7 [[3277, 3057, 113; 4]]128
128 7 [[3277, 3053, 115; 4]]128
128 7 [[3277, 3049, 117; 4]]128
128 7 [[3277, 3045, 119; 4]]128
128 7 [[3277, 3041, 121; 4]]128
128 7 [[3277, 3037, 123; 4]]128
128 7 [[3277, 3033, 125; 4]]128
128 7 [[3277, 3029, 127; 4]]128
128 7 [[3277, 3025, 129; 4]]128
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Table 4: Optimal EAQECCs from Theorem 4.7

q m [[ q
2+1
5 , q2+1

5 − q − 4t+ 1, q+1
2 + 2t+ 2; 4]]q

23 1 [[106, 80, 16; 4]]23
23 1 [[106, 76, 18; 4]]23
23 1 [[106, 72, 20; 4]]23
23 1 [[106, 68, 22; 4]]23
23 1 [[106, 64, 24; 4]]23

Table 5: Optimal EAQECCs from Theorem 4.7

q m [[ q
2+1
5 , q2+1

5 − q − 4t+ 1, q+1
2 + 2t+ 2; 4]]q

47 2 [[442, 388, 30; 4]]47
47 2 [[442, 384, 32; 4]]47
47 2 [[442, 380, 34; 4]]47
47 2 [[442, 376, 36; 4]]47
47 2 [[442, 372, 38; 4]]47
47 2 [[442, 368, 40; 4]]47
47 2 [[442, 364, 42; 4]]47
47 2 [[442, 360, 44; 4]]47
47 2 [[442, 356, 46; 4]]47
47 2 [[442, 352, 48; 4]]47

Theorem 4.9 Let q = 2e with e ≡ 1(mod 4). Let n = q2+1
5 , s = (q+6)n

2 and r = q2−q
2 ,

where r = s − (q+1)(n+1)
2 . If C is a q2-ary constacyclic code of length n with defining set

Z = C q2−q+3
5

∪C 2q2−2q+1
5

, then there exsit maximal-entanglement entanglement-assisteed quan-

tum codes with parameters [[ q
2+1
5 , q2+1

5 − 4, d ≥ 2; 4]]q.

Proof. Assume that the defining set of the constacyclic code C is Z = C q2−q+3
5

∪ C 2q2−2q+1
5

,

then C is a constacyclic code with parameters [ q
2+1
5 , q

2+1
5 − 4, d ≥ 2]q2 from Theorem 2.1 and

Lemma 3.1. Since Z ∩ (−qZ) = C q2−q+3
5

∪ C 2q2−2q+1
5

, it follows that c = 4 from Lemma 4.2.

Therefore,there exist maximal-entanglement entanglement-assisted quantum codes with param-

eters [[ q
2+1
5 , q2+1

5 − 4, d ≥ 2; 4]]q.

Similar to the proof of Theorem 4.9, we can get another two theorems as follows.

Theorem 4.10 Let q = 2e with e ≡ 3(mod 4). Let n = q2+1
5 , s = (q+6)n

2 and r = q2−q
2 ,

where r = s − (q+1)(n+1)
2 . If C is an q2-ary constacyclic code of length n with defining set

Z = C q2−2q+2
5

∪C 3q2−q+1
5

, then there exist maximal-entanglement entanglement-assisteed quan-

tum codes with parameters [[ q
2+1
5 , q2+1

5 − 4, d ≥ 2; 4]]q.

Theorem 4.11 Let n = q2+1
5 and s = q2+1

2 , where q is an odd prime power with the form
20m + 3 or 20m + 7 and m is a positive integer. If C is a q2-ary constacyclic code of length
n with defining set Z = C (q−1)2

4 −m(q+1)
∪Cs−2m(q+1) or Z = C (q−1)2

4 −m(q+1)
∪Cs−(2m+1)(q+1),
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then there exist maximal-entanglement entanglement-assisteed quantum codes with parameters

[[ q
2+1
5 , q2+1

5 − 4, d ≥ 2; 4]]q.

5 Conclusion

In this paper, we have constructed three classes of optimal EAQECCs and three classes of
maximal-entanglement entanglement-assisted quantum codes from constacyclic codes over the

finite field Fq2 of length n = q2+1
5 , where q is some prime power. The construction is through

cyclotomic cosets and ideal theory. According to the entanglement-assisted quantum Singleton
bound, the resulting entanglement-assisted quantum codes are optimal and different from the
codes available in the literature. It would be interesting to construct optimal EAQECCs from
other types of constacyclic codes.
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