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Abstract Relief algorithm is a feature selection algorithm used in binary clas-
sification proposed by Kira and Rendell, and its computational complexity re-
markable increases with both the scale of samples and the number of features.
In order to reduce the complexity, a quantum feature selection algorithm based
on Relief algorithm, also called quantum Relief algorithm, is proposed. In the
algorithm, all features of each sample are superposed by a certain quantum
state through the CMP and rotation operations, then the swap test and mea-
surement are applied on this state to get the similarity between two samples.
After that, Near-hit and Near-miss are obtained by calculating the maximal
similarity, and further applied to update the feature weight vector WT to get
WT ′ that determine the relevant features with the threshold τ . In order to
verify our algorithm, a simulation experiment based on IBM Q with a simple
example is performed. Efficiency analysis shows the computational complexity
of our proposed algorithm is O(M), while the complexity of the original Relief
algorithm is O(NM), where N is the number of features for each sample, and
M is the size of the sample set. Obviously, our quantum Relief algorithm has
superior acceleration than the classical one.
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1 Introduction

Machine learning refers to an area of computer science in which patterns are
derived (“learned”) from data with the goal to make sense of previously un-
known inputs. As part of both artificial intelligence and statistics, machine
learning algorithms process large amounts of information for tasks that come
naturally to the human brain, such as image recognition, pattern identification
and strategy optimization.

Machine learning tasks are typically classified into two broad categories [1],
supervised and unsupervised machine learning, depending on whether there
is a learning “signal” or “feedback” available to a learning system. In super-
vised machine learning, the learner is provided a set of training examples with
features presented in the form of high-dimensional vectors and with corre-
sponding labels to mark its category. On the contrary, no labels are given to
the learning algorithm, leaving it on its own to find structure in unsupervised
machine learning. The core mathematical task for both supervised and un-
supervised machine learning algorithm is to evaluate the distance and inner
products between the high-dimensional vectors, which requires a time propor-
tional to the size of the vectors on classical computers. As we know, it is “curse
of dimensionality” [2] to calculate the distance in high-dimensional condition.
One of the possible solutions is the dimension reduction [3], and the other is
the feature selection [4][5].

Relief algorithm is one of the most representative feature selection algo-
rithms, which was firstly proposed by Kira et al. [6]. The algorithm devises
a “relevant statistic” to weigh the importance of the feature which has been
widely applied in many fields, such as, hand gesture recognition [7], electricity
price forecasting [8] and power system transient stability assessment [9]. Re-
lief algorithm will occupy larger amount of computation resources while the
number of samples and features become huger, which restricts the application
of the algorithm.

Since the concept of quantum computer was proposed by the famous physi-
cist Feynman [10], a number of remarkable outcomes have been proposed. For
example, Deutsch’s algorithms [11][12] embody the superiority of quantum
parallelism calculation, Shor’s algorithm [13] solves the problem of integer fac-
torization in polynomial time, and Grover’s algorithm [14] has a quadratic
speedup to the problem of conducting a search through some unstructured
search space. With the properties of superposition and entanglement, quan-
tum computation has the potential advantage for dealing with high dimension
vectors which attract researchers to apply the quantum mechanics to solve
some classical machine learning tasks such as quantum pattern matching [15],
quantum probably approximately correct learning [16], feedback learning for
quantum measurement [17], quantum binary classifiers [18][19], and quantum
support vector machines [20].

Even in quantum machine learning, we still face with the trouble of “curse
of dimensionality”, thus dimension reduction or feature selection is a necessary
preliminary before training high-dimensional samples. Inspired by the idea of
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ALGORITHM 1: Relief(A, B, T , τ)

Init WT = (0, · · · , 0)T.
for t=1 to T do

Pick a sample u randomly.
Find the closest samples Near-hit and Near-miss in the two classes A and B.
for i=1 to N do

WT [i] = WT [i]−diff(i, u,Near-hit)2+diff(i, u,Near-miss)2.
end

end

Select the most relevant features according to WT and τ .

computing the inner product between two vectors [21][22], we propose a Relief-
based quantum parallel algorithm, also named quantum Relief algorithm, to
effectively perform the feature selection.

The outline of this paper is as follows. The classic Relief algorithm is briefly
reviewed in Sect. 2, the proposed quantum Relief algorithm is proposed in
detail in Sect. 3, and a simulation experiment based on IBM Q with a simple
example is given in Sect. 4. Subsequently, the efficiency of the algorithm is
analyzed in Sect. 5, and the brief conclusion and the outlook of our work are
discussed in the last section.

2 Review of Relief algorithm

Relief algorithm is a feature selection algorithm used in binary classification
(generalizable to polynomial classification by decomposition into a number
of binary problems) proposed by Kira and Rendell [6] in 1992. It is efficient
in estimating features according to how well their values distinguish among
samples that are near each other.

We can divide anM -sample set into two vector sets: A=
{

vj |vj ∈ R
N, j = 1, 2, · · ·M1

}

,

B=
{

wk|wk ∈ R
N, k = 1, 2, · · ·M2

}

, where vj , wk are N -feature samples: vj =

(vj1, vj2, · · · , vjN )T, wk = (wk1, wk2, · · ·wkN )T, vj1, · · · , vjN , wk1, · · · , wkN ∈
{0, 1}, and the weight vector of N features WT = (wt1, wt2, · · · , wtN )

T
is

initialized to all zeros. Suppose the upper limit of iteration is T , and the
relevance threshold (that differentiate the relevant and irrelevant features) is
τ(0 ≤ τ ≤ 1). The process of Relief algorithm is described in Algorithm 1.

At each iteration, pick a random sample u, and then select the samples
closest to u (by N -dimensional Euclidean distance) from each class. The closest
same-class sample is called Near-hit, and the closest different-class sample is
called Near-miss. Update the weight vector such that,

WT [i] =WT [i]−diff(i, u,Near-hit)
2
+diff(i, u,Near-miss)

2
, (1)

where the function diff(i, u, v) is defined as below,

diff(i, u, v) =

{

0 ui = vi
1 ui 6= vi

. (2)
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ALGORITHM 2: QRelief(A, B, T , τ)

Init WT = (0, · · · , 0)T.
Prepare the states for sample sets A and B through CMP and rotation operations,

|φA〉j = 1
√

N
|j〉

N−1
∑

i=0
|i〉 |1〉

(

√

1− |vji|
2 |0〉+ vji |1〉

)

|φB〉k = 1
√

N
|k〉

N−1
∑

i=0
|i〉 |1〉

(

√

1− |wki|
2 |0〉+ wki |1〉

) .

for t=1 to T do

Select a state |φ〉 randomly from the state set
{

|φA〉j

}

or
{

|φB〉k
}

.

Perform a swap operation on |φ〉 to get

|ϕ〉 = 1
√

N
|l〉

N−1
∑

i=0
|i〉

(

√

1− |ui|
2 |0〉 + ui |1〉

)

|1〉.

Get
|〈u | vj〉|

2 =
(

1− 2P
l(A)
j (1)

)

N2

|〈u | wk〉|
2 =

(

1− 2P
l(B)
k

(1)
)

N2
through swap test and measurement operation.

Obtain the maximum similarity: max
{

|〈u | vj〉|
2
}

and max
{

|〈u | wk〉|
2
}

.

if u belongs to class A then
Near-hit = vmax,Near-miss = wmax.

else
Near-hit = wmax,Near-miss = vmax.

end

for i = 1 to N do

wti = wti−1 − diff(i, u,Near-hit)2 + diff(i, u,Near-miss)2.
end

end

WT = (1/T )WT .
for i = 1 to N do

if (WT i ≥ τ) then
the i-th feature is relevant.

else
the i-th feature is not relevant.

end

end

Relief was also described as generalizable to polynomial classification by de-
composition into a number of binary problems. However, as the scale of samples
and the number of features increase, their efficiencies will drastically decline.

3 Quantum Relief Algorithm

In order to handle the problem of large samples and large features, we propose a
quantum Relief algorithm. Suppose the sample sets A = {vj , j = 1, 2, · · ·M1},
B = {wk, k = 1, 2, · · ·M2}, weight vector WT , the upper limit T and thresh-
old τ are the same as classical Relief algorithm defined in Sec. 2. Different
from the classical one, all the features of each sample are represented as a
quantum superposition state, and the similarity between two samples can be
calculated in parallel. Algorithm 2 shows the detailed procedure of quantum
Relief algorithm.
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3.1 State preparation

At the beginning of the algorithm, the classical information is converted into

quantum superposition states. Quantum superposition state sets
{

|φA〉j |j = 1, 2, · · · ,M1

}

and {|φB〉k |k = 1, 2, · · · ,M2}, which store all the feature values of vj ∈ A and
wk ∈ B, are prepared as below,

|φA〉j = 1√
N
|j〉

N−1
∑

i=0

|i〉 |1〉
(

√

1− |vji|2 |0〉+ vji |1〉
)

|φB〉k = 1√
N
|k〉

N−1
∑

i=0

|i〉 |1〉
(

√

1− |wki|2 |0〉+ wki |1〉
) , (3)

where vji and wki represent the i-th feature value of vector vj and wk , re-

spectively. Suppose the initial state is |j〉 |0〉⊗n |1〉 |0〉 (n = ⌈log2 (N)⌉) and
we want to prepare the state |φA〉j , its construction process consists of the
following three steps.

First of all, theH (i.e., Hadamard gate) and CMP operations are performed

on |0〉⊗n
to obtain the state 1

/√
N

N−1
∑

i=0

|i〉,

|0〉⊗n H and CMP operations−−−−−−−−−−−−−−−→ 1√
N

N−1
∑

i=0

|i〉. (4)

Fig. 1 depicts the detailed circuit of these operations, where the CMP oper-

ation is a key component which is used to tailor the state 1
/√

2n
2n−1
∑

i=0

|i〉 into

the target state 1
/√

N
N−1
∑

i=0

|i〉, and its definition is

CMP |i〉 |N〉 |0〉 =
{

|i〉 |N〉 |0〉 , i < N
|i〉 |N〉 |1〉 , i ≥ N

. (5)

After the CMP operation, the quantum state which greater than N (i.e., the
last qubit is |1〉) will be clipped off.

And then, an unitary rotation operation

Ry

(

2sin−1vji
)

=





√

1− |vji|2 −vji
vji

√

1− |vji|2



 (6)

is performed on the last qubit to obtain |φA〉j ,

1√
N

|j〉
N−1
∑

i=0

|i〉 |1〉 |0〉 Ry−→ 1√
N

|j〉
N−1
∑

i=0

|i〉 |1〉
(

√

1− |vji|2 |0〉+ vji |1〉
)

. (7)
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Fig. 1: The circuit of quantum operation performed on |0〉⊗n
to obtain the

state 1√
N

N−1
∑

i=0

|i〉 when the measurement outcome is 0. Here, the thick

horizontal line represents multiple qubits, while the thin horizontal line
represents one qubit, and H is the Hadamard gate, and CMP can be

implemented using the circuit in Fig. 2.

Fig. 2: The circuit for performing CMP illustrated for a single qubit inputs
|iq〉 and |Nq〉. Here, the third line is the auxiliary qubit, while the last one is

the result qubit which will contain |1〉 if i ≥ N , and be |0〉 if i < N .
.

3.2 Similarity calculation

The similarity is a coefficient that describes how close two samples are, and
it is obviously inversely related to the Euclidean distance. After the state
preparation, the main work of this phase is to calculate the similarity between

|φ〉 and other states in state sets
{

|φA〉j
}

and {|φB〉k }, where |φ〉 is a state

selected randomly from
{

|φA〉j
}

or {|φB〉k }. For simplicity, suppose |φ〉 is the

l-th state from
{

|φA〉j
}

,

|φ〉 =
1√
N

|l〉
N−1
∑

i=0

|i〉 |1〉
(

√

1− |ui|2 |0〉+ ui |1〉
)

, (8)

which corresponds to the chosen sample u from sample set A in the classical
scenario. The detailed process is as follows.

First, a swap operation is performed on the last two qubits of |φ〉 to obtain
a new state,

|ϕ〉 = 1√
N

|l〉
N−1
∑

i=0

|i〉
(

√

1− |ui|2 |0〉+ ui |1〉
)

|1〉. (9)
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Fig. 3: The circuit of swap test operation. Here H is the Hadamard gate, and
• represents the control qubit conditional being set to one.

Second, the swap test [23] operation (its circuit is given in Fig. 3) is applied

on
(

|ϕ〉 , |φA〉j
)

,

|0〉 |ϕ〉 |φA〉j
swap test−−−−−−→

[

1
2 |0〉 (|ϕ〉 |φA〉j + |φA〉j |ϕ〉) + 1

2 |1〉 (|ϕ〉 |φA〉j − |φA〉j |ϕ〉)
]

.

(10)
If we measure the first qubit with |1〉 〈1|⊗I⊗I, the probability of measurement
result to be |1〉 is

P l
j (1) =

[

1
2 〈0| (〈ϕ| 〈φA|j + 〈φA|j 〈ϕ|) + 1

2 〈1| (〈ϕ| 〈φA|j − 〈φA|j 〈ϕ|)
]

|1〉 〈1| ⊗ I ⊗ I
[

1
2 |0〉 (|ϕ〉 |φA〉j + |φA〉j |ϕ〉) + 1

2 |1〉 (|ϕ〉 |φA〉j − |φA〉j |ϕ〉)
]

=
[

1
2 〈1| (〈ϕ| 〈φA|j − 〈φA|j 〈ϕ|)

]

|1〉 〈1| ⊗ I ⊗ I
[

1
2 |1〉 (|ϕ〉 |φA〉j − |φA〉j |ϕ〉)

]

= 1
2 − 1

2

∣

∣

∣
〈ϕ | φA〉j

∣

∣

∣

2

,

(11)
As we know, the inner product between |ϕ〉 and prepared state |φA〉j can be
calculated as below,

〈ϕ | φA〉j = 1
N

∑

i

(ui)
∗vji =

1
N
〈u | vj〉 . (12)

From Eqs. (11) and(12), we can get the similarity between samples u and
vj ,

|〈u | vj〉|2 =
(

1− 2P
l(A)
j (1)

)

N2 . (13)

Finally, we can find out the max-similarity sample vmax ∈ A through the

classical maximum traversal search algorithm among the set
{

|〈u | vj〉|2
}

.

Through the above method, we can also find out the other max-similarity
sample wmax ∈ B. When having finished all these steps, the algorithm turns
to the next phase.
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3.3 Weight vector update

The first step is to determine the closest same-class sample Near-hit and the
different-class sample Near-miss, which obey the following rule,

{

Near-hit = vmax, Near-miss = wmax if u ∈ A
Near-hit = wmax, Near-miss = vmax if u ∈ B

. (14)

After determining Near-hit and Near-miss, we can update every element of
weight vector WT = (wt1, wt2, · · · , wtN )

T
with them,

wti = wti−1 − diff(i, u,Near-hit)2 + diff(i, u,Near-miss)2 , (15)

where 1 ≤ i ≤ N .

3.4 Feature selection

After iterating the similarity calculation and weight vector update T runs, the
algorithm jumps out of the loop with the final vector WT as output result.
The remainder of the algorithm is to select the “real” relevant features.

We firstly divide WT by T , and obtain its mean vector WT ,

WT =
1

T
WT. (16)

Then, we select relevant features according to the preset threshold τ . To be
specific, those features are selected if their corresponding values in WT are
greater than τ and discarded in the opposite case,

{

the i-th feature is relevant if WT i ≥ τ

the i-th feature is NOT relevant if WT i < τ
. (17)

4 Example and its experiment

Suppose there are four samples(see Tab. 1), S0 = (1, 0, 1, 0), S1 = (1, 0, 0, 0),
S2 = (0, 1, 1, 0), S3 = (0, 1, 0, 0), thus the n in Eq. (4) is 2, and they belong to
two classes: A = {S0, S1}, B = {S2, S3}, which is illustrated in Fig. 4.

First, the four initial quantum states are prepared as follows,


















|ψ〉S0
= |00〉 |0〉⊗2 |1〉 |0〉

|ψ〉S1
= |01〉 |0〉⊗2 |1〉 |0〉

|ψ〉S2
= |10〉 |0〉⊗2 |1〉 |0〉

|ψ〉S3
= |11〉 |0〉⊗2 |1〉 |0〉

. (18)

Taking |ψ〉S0
as an example, the H⊗2 operation is applied on the third and

fourth qubits,

|00〉 |0〉⊗2 |1〉 |0〉 H⊗2

−−−→ 1
2 |00〉

3
∑

i=0

|i〉 |1〉 |0〉 . (19)
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Table 1: The feature values of four samples. Each row represents all the
feature values of a certain sample, while each column denotes a certain

feature value of all the samples.

F0 F1 F2 F3

S0 1 0 1 0
S1 1 0 0 0
S2 0 1 1 0
S3 0 1 0 0

Fig. 4: The simple example with four samples in classes A and B.

Then we perform Ry rotation (see Eq. (6)) on the last qubit, where















Ry(2sin
−1v00) = Ry(2sin

−1v02) = −iY =

[

0 −1
1 0

]

Ry(2sin
−1v01) = Ry(2sin

−1v03)= I =

[

1 0
0 1

] , (20)

and can get

|φ〉S0
=

1

2
|00〉

3
∑

i=0

|i〉 |1〉
(

√

1−|v0i|2 |0〉+ v0i |1〉
)

. (21)

The other quantum states are prepared in the same way and they are listed
as below,















































|φ〉S0
= 1

2 |00〉
3
∑

i=0

|i〉 |1〉
(

√

1− |v0i|2 |0〉+ v0i |1〉
)

|φ〉S1
= 1

2 |01〉
3
∑

i=0

|i〉 |1〉
(

√

1− |v1i|2 |0〉+ v1i |1〉
)

|φ〉S2
= 1

2 |10〉
3
∑

i=0

|i〉 |1〉
(

√

1− |v2i|2 |0〉+ v2i |1〉
)

|φ〉S3
= 1

2 |11〉
3
∑

i=0

|i〉 |1〉
(

√

1− |v3i|2 |0〉+ v3i |1〉
)

. (22)

Second, we randomly select a sample (assume |φ〉S0
is that one), and per-

form similarity calculation with other samples (i.e., |φ〉S1
, |φ〉S2

, |φ〉S3
). Taking
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Table 2: The probabilities P l
j (1) of the first qubit being |1〉

Iteration times(T ) u Sample P l
j (1)

1 S0

S1 0.49023438
S2 0.49902344
S3 0.49121094

2 S1

S0 0.50097656
S2 0.52246094
S3 0.53417969

3 S2

S0 0.50683594
S1 0.50878906
S3 0.49218750

4 S3

S0 0.49804688
S1 0.49218750
S2 0.50195312

|φ〉S0
and |φ〉S1

as an example, we perform a swap operation between the last
two qubits of |φ〉S0

,

|φ〉S0

swap−−−→ |ϕ〉 = 1
2 |00〉

3
∑

i=0

|i〉
(

√

1−|v0i|2 |0〉+ v0i |1〉
)

|1〉 . (23)

After that, the swap test operation is applied on (|ϕ〉, |φ〉S1
),

|0〉 |ϕ〉 |φ〉S1

swap test−−−−−−→ 1
2 |0〉

(

|ϕ〉 |φ〉S1
+ |φ〉S1

|ϕ〉
)

+ 1
2 |1〉

(

|ϕ〉 |φ〉S1
− |φ〉S1

|ϕ〉
)

,

(24)
then, we measure the result shown in Eq.(24) and obtain the probability of
the first qubit being |1〉 is

P 0
1 (1) =

1
2 − 1

2

∣

∣〈ϕ | φ〉S1

∣

∣

2
. (25)

In terms of Eq. (12), the inner product between |ϕ〉 and |φ〉S1
can be repre-

sented as

〈ϕ | φ〉S1
=

1

4

∑

i

S0
∗
iS1i =

1

4
〈S0 | S1〉. (26)

From Eqs. (25) and (26), the similarity between |S0〉 and |S1〉 is

|〈S0 | S1〉|2 = 16(1− 2P 0
1 (1)), (27)

here, the value of P 0
1 (1) can be determined by measurement.

In order to obtain the measurement result and also verify our algorithm,
we choose the IBM Q [24] to perform the quantum processing (Fig. 5 gives
the schematic diagram of our experimental circuit)1. After the experiment, we
can get P 0

1 (1) which is shown in Tab. 2.

1 In the experiment, we program our algorithm based on the QISKit toolkit[25] and phyton
language, and remotely connect the online IBM QX5 device to execute quantum processing.
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Fig. 5: One of the ideal experiment circuits of QRelief algorithm running on
IBM Q platform. q[0]− q[5] represents the randomly selected quantum state
|φ〉S0

, q[6]− q[11] represents |φ〉S1
, and q[12] is the result qubit. H is the

Hadamard gate, X, Y are Pauli-X, Pauli-Y gates, the symbol of two crosses
connected by a line represents the swap operation, ◦ represents the control

qubit conditional being set to zero, and • represents the control qubit
conditional being set to one.

Table 3: Similarities between samples

S0 S1 S2 S3

S0 − 0.3125 0.03125 0.28125
S1 − 0.71875 1.09375
S2 − 0.25
S3 −

According to P 0
1 (1) (from Tab. 2) and Eq. (27), we can calculate the sim-

ilarity between |S0〉 and |S1〉,

|〈S0 | S1〉|2 = 16(1− 2P 0
1 (1))

= 16(1− 2 ∗ 0.49023438)
≈ 0.3125

. (28)

In the same way, the other two similarities (|S0〉, |S2〉), (|S0〉, |S3〉) can also
be obtained (which are illustrated in Tab. 3).

Third, From Tab. 3, it is easy to find Near-hit is S1 and Near-miss is S3 (as
shown in Fig. 6). Then, the weight vector is updated by applying Eq.(15), and
the result of WT is listed in the second row of Tab. 4 for the first iteration.

The algorithm iterates T times (in our example, T=4) as above steps, and
obtains all the WT results shown in Tab. 4. After T -th iterations, WT =
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Fig. 6: Finding Near-hit and Near-miss.

Table 4: The update result of WT

Iterationtimes(T ) Weightvector(WT )

1 [1 1 0 0]
2 [2 2 -1 0]
3 [3 3 -1 0]
4 [4 4 -2 0]

[4, 4,−2, 0], then WT = [1, 1,−1/2, 0]. Since the threshold τ = 0.5, so the
selected features are F0 and F1, i.e., the first and second features.

5 Efficiency analysis

In classical Relief algorithm, it takes O(N) times to calculate the Euclidean
distance between u and each of the M samples, the complexity of finding its
Near-hit and Near-miss is related to M , and the loop iterates T times, so the
computational complexity of classical Relief algorithm is O(TMN). Since T
is a constant which affects the accuracy of relevance levels, but it is chosen
independently of M and N , so the complexity can be simplified to O(MN). In
addition, an N -dimensional vector in the Hilbert space is represented by N
bits in the classical computer, and there areM samples (i.e.,M N -dimensional
vectors) needed to be stored in the algorithm, so the classical Relief algorithm
will consume O(MN) bits storage resources.

In our quantum Relief algorithm, all the features of each sample are su-
perposed on a quantum state |φA〉j or |φB〉k, then the similarity calculation
between two states, which is shown in Eq. (13), is just required to be taken
O(1) time. As same as Relief algorithm, the similarity between the selected
state |ϕ〉 and each state in {|φA〉}, {|φB〉} is calculated, taking O(M) times, to
obtain Near-miss and Near-hit, and the loop iterates T times, so the proposed
algorithm totally takes O(TM) times. Since T is a constant, the computational
complexity can be rewritten as O(M). On the viewpoint of resource consump-

tion, each quantum state in state sets
{

|φA〉j
}

and {|φB〉k} is represented
as

|φA〉j =
1√
N

|j〉
N−1
∑

i=0

|i〉 |1〉
(

√

1− |vji|2 |0〉+ vji |1〉
)
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Table 5: Efficiency comparison between classical Relief and quantum Relief
algorithms

Complexity resource consumption

Relief Algorithm O(MN) O(MN) bits
Quantum Relief Algorithm O(M) O(MlogN) qubits

or

|φB〉k =
1√
N

|k〉
N−1
∑

i=0

|i〉 |1〉
(

√

1− |wki|2 |0〉+ wki |1〉
)

,

and it consists of O(log2N) qubits. Since j = 1, 2, · · · ,M1, k = 1, 2, · · · ,M2

and M =M1+M2, that means that there are such M quantum states needed
to be stored in our algorithm, so it will consume O(MlogN) qubits storage
resources.

Tab. 5 illustrates the efficiency comparison, including the computational
complexity and resource consumption, between classical Relief and our quan-
tum Relief algorithms. As shown in the table, the computational complexity of
our algorithm is O(M), which is obviously superior than O(MN) in classical
Relief algorithm. On the other hand, the resource that our algorithm needs to
consume is O(MlogN) qubits, while the classical Relief algorithm consumes
O(MN) bits.

6 Conclusion and Discussion

With quantum computing technologies nearing the era of commercialization
and quantum supremacy, recently machine learning seems to be considered as
one of the ”killer” applications. In this study, we utilize quantum computing
technologies to solve a simple feature selection problem (just used in binary
classification), and propose the quantum Relief algorithm, which consist of
four phases: state preparation, similarity calculation, weight vector update,
and features selection. Furthermore, we verify our algorithm by performing
quantum experiments on the IBM Q platform. Compared with the classical
Relief algorithm, our algorithm holds lower computation complexity and less
resource consumption (in terms of number of resource). To be specific, the
complexity is reduced from O(MN) to O(M), and the consumed resource is
shortened from O(MN) bits to O(MlogN) qubits.

Although this work just focuses on the feature selection problem (even the
simple binary classification), but the method can be generalized to implement
the other Relief-like algorithms, such as ReliefF [26], RReliefF [27]. Besides,
we are interested in utilizing quantum technologies to deal with some clas-
sic high-dimension massive data processing, such as text classification, video
stream processing, data mining, computer version, information retrieval, and
bioinformatics.
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