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Abstract
In this paper, the measurement process is described as an interaction between two
quantum systems: the system to be measured and the measuring instrument. The time
evolution is determined only by the Schrödinger equation, i.e., there is no collapse
postulate. The description of themeasurement process is performed using the quantum
histories approach, which allows to express the correlation between the properties of
the measured system, before the measurement, and the properties of the pointer vari-
able of the instrument, after the measurement. From the point of view of this approach,
we explore the possibility of obtaining information of incompatible observables with
the same instrument, using different families of histories.

Keywords Consistent histories · Quantum histories · Quantum measurement ·
Quantum foundations

1 Introduction

In the standard formulation of quantummechanics, there are two types of physical pro-
cesses: ordinary physical processes and measurements processes [1,2]. Some authors
[3–8] consider that this distinction is not satisfactory from a theoretical point of view,
and it is desirable a quantum theory which describes both types of processes in the
same way, without appealing to the collapse postulate. These theoretical difficulties
led to consider the measurement process as an ordinary interaction. In the modern
view of quantum mechanics, a quantum measurement is described as an interaction
between two quantum systems: the system to be measured and the measuring appa-
ratus. This way of describing the measurement process seems to be a necessary step
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in order to have an interpretation of quantum mechanics independent of the notion of
external observer, suitable for dealing with quantum cosmology problems.

Since the measurement process establishes a relation between a property of the
measured system at one time and a property of the measuring instrument at a later
time, the quantum histories approach for quantum mechanics [5,7–18] seems to be an
appropriate tool for describing this process.

Three aspects of the quantum histories approach are of fundamental importance for
describing the quantummeasurement process. First, in this approach the measurement
process is considered as ordinary physical processes, i.e., as an interaction between
a system to be measured and a measuring device. Second, it is abandoned the idea
that the physical observables have a definite value only if the quantum state coincides
with some eigenvector of the observable. According to this approach, the quantum
state does not describe the actual properties of the system, but only their probabilities
of actualization. Finally, it extends the standard formalism of quantum mechanics in
order to be able to define logical operations between properties at different times.

In the quantum histories approach, the probability measure cannot be defined for all
quantumhistories. In order to have awell-defined probability, only subsets of histories,
which satisfy a consistency condition, can be considered. Different conditions have
been proposed in the literature, in this work, we will consider two of them: the weak
consistency condition, proposed by Griffiths [9], Gell-Mann and Hartle [5,16] and the
global consistency condition, proposed by Laura and Vanni [17]. The subsets of histo-
ries which satisfy any consistency condition are called consistent families of histories.

In this paper, we are going to apply this approach to the measurement process,
focusing on the possibility to obtain information of incompatible observables, using
different families of histories. In Sect. 2, we summarize the basic ideas of the quan-
tum histories approach and we present two possible consistency conditions: the weak
consistency condition and the global consistency condition. In Sect. 3, we describe
the quantum measurement process from the point of view of the quantum histories
approach, and we show the correlation between the properties of the pointer variable
and the measured properties of the system. In Sect. 4, we consider the possibility to
correlate incompatible observableswith the same pointer variable of an instrument.We
analyze this situationusing twoconsistency conditions: theweakconsistency condition
and the global consistency condition. Finally, in Sect. 5 we present some conclusions.

2 The quantum histories formalism

In this section, we review the quantum histories approach to quantum mechanics
[5,7,8,10,14,19]. The central idea of this approach is to represent quantum histories

of n times with orthogonal projectors defined on the Hilbert space H̆ = H⊗ n· · · ⊗H,
given by the tensor product of n Hilbert spaces of the physical system. A history
F̆ = P1 ⊗ · · · ⊗ Pn represents a sequence of properties P1, …, Pn , at times t1, …, tn .

In order to define probabilities for quantum histories, it is necessary to define a
family of histories. For this purpose, first we have to choose a basis of projectors of
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H at each time ti (1 ≤ i ≤ n), i.e., a set of projectors Bi = {Pki }ki∈σi (σi is a index
set) which sum the identity of H and which are mutually orthogonal:

Pki Pk′
i
= δki k′

i
Pki ,

∑

ki

Pki = I , ki , k
′
i ∈ σi , i = 1, . . . , n;

where I is the identity of the Hilbert space H.
Second, we define the product histories F̆k1,...,kn , choosing one projector Pki at each

time ti :

F̆k1,...,kn = Pk1 ⊗ · · · ⊗ Pkn , (k1, . . . , kn) ∈ σ̆ , σ̆ = σ1 × · · · × σn .

We also define the histories F̆� summing the histories F̆k1,...,kn with (k1, . . . , kn) ∈
� ⊆ σ̆ , i.e., F̆� = ∑

(k1,...,kn)∈� F̆k1,...,kn . These histories represent disjunctions of the

histories F̆k1,...,kn .
Finally, the set F of all histories F̆� is called a family of histories,

F =
{
F̆� ∈ P(H̆)

∣
∣
∣ F̆� = ∑

(k1,...,kn)∈� F̆k1,...,kn , � ⊆ σ̆
}

.

Since the family F is obtained from histories F̆k1,...,kn , we say that they generate the
family F , and we called them atomic histories.

Given a quantum system with an initial state ρ0 at time t0, the probability of a
product history F̆k1,...,kn = Pk1 ⊗ · · · ⊗ Pkn is given by

Prρ0(F̆k1,...,kn ) = Tr(Pkn (t0) · · · Pk1(t0)ρ0Pk1(t0) · · · Pkn (t0)).

where U (t ′, t) = e−i H(t ′−t)/� is the time-evolution operator from time t to t ′, and
Pi (t0) = U (t0, ti )PiU (ti , t0) are the time-translated projectors.

The probability of a general history F̆� is defined in the following way:

Prρ0(F̆�) = Tr{C†(F̆�)ρ0C(F̆�)}. (1)

We have introduced the chain operator C(F̆�) = ∑
(k1,...,kn)∈�C(F̆k1,...,kn ), where

C(F̆k1,...,kn ) = Pk1(t0)Pk2(t0) · · · Pkn (t0), and Pki (t0) = U (t0, ti )PkiU (ti , t0).

For n = 2, i.e., for histories of two times, we will use a simpler notation. The
indexes k1 and k2 are replaced by the indexes i and j , respectively. Therefore, the
product histories take the following form

F̆i, j = Pi ⊗ Pj , i ∈ σ1, j ∈ σ2.

The chain operator for a history F̆i, j is given by

C(F̆i, j ) = U (t0, t1)PiU (t1, t0)U (t0, t2)PjU (t2, t0), (2)
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and the probability of F̆i, j is

Prρ0(F̆i, j ) = Tr{C†(F̆i, j )ρ0C(F̆i, j )}. (3)

In general, the probability definition given in Eq. (1) does not satisfy the axiom of
additivity. Therefore, to have a well-defined probability, families of histories must sat-
isfy an additional condition, usually called consistency condition. A family of quantum
histories satisfying this additional condition is called a consistent family of histories.
It is worth noticing that different consistent families of histories can be considered for
a single physical system.

Several consistency conditions were proposed in the literature in order to have
well-defined probabilities of histories. In this paper, we consider two of them.

Weak consistency condition

Re
{
Tr

[
C†(F̆k1,...,kn )ρ0C(F̆k′

1,...,k
′
n
)
]}

= 0, ∀ (k1, . . . , kn) �= (k′
1, . . . , k

′
n). (4)

The weak consistency condition was proposed by Griffiths [9], Gell-Mann and Hartle
[5,16]. A family of histories satisfying this condition will be called aweakly consistent
family of histories.

In someworks, it was criticized for not being physically adequate [20] and in others
it was criticized for allowing to many families of histories and for not describing
satisfactorily quasi-classical domains [16,21,22]. Moreover, an important objection
was raised by Kent in [23]. He proved that this condition admits retrodictions of
contrary properties. For some proponents of the quantum histories approach, this is
not a problem of the theory, because retrodictions are obtained using different families
which cannot be considered simultaneously [24,25]. In any case, this fact is considered
by some authors as a serious failure of this approach [23,26–28]. In order to overcome
some of these difficulties, alternative consistent conditions have been proposed.

Global consistency condition

Re
{
Tr

[
C†(F̆k1,...,kn )ρ0C(F̆k′

1,...,k
′
n
)
]}

= 0, ∀ (k1, . . . , kn) �= (k′
1, . . . , k

′
n), ∀ ρ0.

(5)
The global consistency condition is equivalent to the weak consistency condition (4)
imposed for all the physical states. A family of histories satisfying this condition will
be called a globally consistent family of histories.

The global consistency condition was first proposed by Laura and Vanni [17,29] in
an equivalent form, consisting in the commutation of the time-translated projectors of
the histories of the family:

[Pki (t0), Pk j (t0)] = 0, ∀i, j = 1, . . . n, ∀ ki ∈ σi , ∀ k j ∈ σ j . (6)

The choice of the time t0 is arbitrary, we can choose any time.
In [29], it was proved that this condition is consistent with having families of

histories independent of the initial state of the system, in analogy with the basis of
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compatible properties of standard quantum mechanics [29]. Moreover, it was shown
that the global consistency condition does not allow contrary retrodictions [30–32] and
that it can be applied for describing single measurements and sequences of incom-
patible measurements [33,34]. Finally, the decay process [35] and the double slit
experiment [18] were described using this condition.

In the next section, we describe the measurement process from the point of view of
the quantum history approach, and we explore the possibility of obtaining information
of incompatible observables with the same measurement instrument.

3 Themeasurement process as a correlation in the quantum histories
approach

In this section, we follow the standard description of the measurement process as a
quantum interaction [1,36–38] and we show that it is possible to describe this process
using the quantum histories approach. The measurement process is considered as an
interaction between two quantum systems: the measured system S and the measuring
instrument M . Both systems compose the total system S + M . The time evolution is
determined only by the Schrödinger equation, and no collapse postulate is considered.

The Hilbert spaces of the system S and the measuring instrument M are HS and
HM , respectively. The Hilbert space of the total system is the tensor product of the
four Hilbert spaces, i.e.,H = HS ⊗ HM .

The measuring instrument measures an observable of the system S, represented by
the operator Q, with eigenvalues qi . In order to measure the observable Q, the mea-
surement instrument has a macroscopically distinguishable observable represented
by an operator A with eigenvalues a j , which is usually called the pointer variable.
Any vector of H can be written as a linear combination of the orthonormal vectors
|qi 〉 ⊗ |a j 〉, with |qi 〉 ∈ HS and |a j 〉 ∈ HM .

The interaction of the measured system with the measurement instrument is repre-
sented by a unitary transformation satisfying

U (t2, t1)|qi 〉 ⊗ |a0〉 = |φi 〉 ⊗ |ai 〉, (7)

where |φi 〉 is an arbitrary vector of the Hilbert spaceHS and |a0〉 is the reference state
of the pointer variable [38]. This expression shows the relation between the value a j

of the pointer variable at time t2 and the value q j of the measured observable Q at a
previous time t1.

To avoid a heavier notation, we do not consider the degrees of freedom of the
measurement instrument M different from the pointer variable, nor the variables of
the system S which are not involved in the measurement. However, these non-relevant
variables can be easily added into the description [33].

The measurement process is an interaction between quantum systems, which corre-
lates the properties of the measured system S at a time t1 with the observed properties
of the instrumentM at a time t2. In order to describe themeasurement process from the
point of view of the quantum histories approach, first we have to choose an appropriate
family of histories which includes the properties of the system S at a time t1 and the
properties of the instrument M at a time t2.
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In the Hilbert space of the composite systemH, the properties associated with the
values a j of the pointer variable are represented by the projectors

A j =
∑

i

|qi 〉〈qi | ⊗ |a j 〉〈a j | = IS ⊗ |a j 〉〈a j |,

where IS is the identity ofHS . It should be noted that
∑

j A j = I , with I the identity
of the whole Hilbert spaceH. In particular, the property associated with the reference
value a0 of the pointer variable is represented by the projector

A0 = IS ⊗ |a0〉〈a0|.

We also consider the negation of property A0, given by Ā0 = I − A0.
The properties associated with the values qi of observable Q are represented by the

projectors
Qi =

∑

j

|qi 〉〈qi | ⊗ |a j 〉〈a j | = |qi 〉〈qi | ⊗ IM ,

where IM is the identity ofHM . It would be useful to consider the conjunction between
projectors Qi and the projector A0,

Qi A0 = |qi 〉〈qi | ⊗ |a0〉〈a0|,

which represents the following property of the composite system: the observable Q
of the system S has the value qi and the pointer variable of the measuring instrument
M is in reference value a0.

Now we are going to choose a family of histories of two times. At time t1, we
consider the properties associated with the conjunction between projectors Qi and the
projector A0, i.e., the projectors Qi A0. Also, we consider the projector Ā0 to complete
the basis of projectors. Projectors Qi A0 and Ā0 are orthogonal to each other and they
sum the identity,

Qi A0 Ā0 = 0, Qi A0Qi ′ A0 = δi i ′ ,
∑

i

Qi A0 + Ā0 = I , (8)

therefore, B1 = {Qi A0, Ā0} is a basis of projectors for time t1.
At time t2, we consider the properties represented by projectors A j . They are

orthogonal to each other, and they sum the identity,

A j A j ′ = δ j j ′,
∑

j

A j = I . (9)

Hence, B2 = {A j } is a basis of projectors for time t2.
Finally, we define the family F , generated by the following atomic histories

F̆i, j = Qi A0 ⊗ A j , F̆0̄, j = Ā0 ⊗ A j . (10)
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In order to check that F is a globally consistent family, we have to prove that the
projectors of the basis for time t1, given in Eq. (8) and the projectors of the basis for
time t2, given in Eq. (9), commute when they are translated to a common time, see
Eq. (6).

If we choose to translate all the projectors to the time t2, the conditions given in (6)
take the form

[
U (t2, t1)Qi A0U (t1, t2), A j

] = 0,
[
U (t2, t1) Ā0U (t1, t2), A j

] = 0.

The projectors Qi A0 and Ā0 translated from time t1 to time t2, according to Eq. (7),
are given by

U (t2, t1)Qi A0U (t1, t2) = |φi 〉〈φi | ⊗ |ai 〉〈ai |,
U (t2, t1) Ā0U (t1, t2) = I −

∑

i

|φi 〉〈φi | ⊗ |ai 〉〈ai |.

Therefore, the commutation relations are satisfied, and F satisfies the global consis-
tency condition. Since this condition implies the weak consistency condition for all
states [29], F is also a weakly consistent family of histories.

Now, we are going to use the family of histories F to describe the correlation
between the observed properties of the instrument M at time t2 and the properties of
the measured system S at the time t1. In order to do that, we consider the histories
represented by Qi A0 ⊗ I and A0 ⊗ A j . It is easy to see that they belong to family F ,
because they are obtained adding atomic histories of F , i.e.,

Qi A0 ⊗ I =
∑

j

F̆i, j ∈ F ,

A0 ⊗ A j =
∑

i

F̆i, j ∈ F .

The projectors Qi A0 ⊗ I and A0 ⊗ A j represent the following histories:

Qi A0 ⊗ I −→ At time t1, the observable Q of the system S has the value qi and

the pointer variable of M is in reference value a0.

A0 ⊗ A j −→ At time t1, the pointer variable of M is in reference value a0 and,

at time t2, the pointer variable of M measures the value a j .

The correlation between the values of themeasured observable Q, at time t1, and the
values of the pointer variable, at time t2, can be obtained by computing the conditional
probability of histories Qi A0 ⊗ I , given histories A0 ⊗ A j . If Prρ(A0 ⊗ A j ) > 0, the
conditional probability is given by:
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Prρ0(Qi A0 ⊗ I |A0 ⊗ A j ) = Prρ0
[
(Qi A0 ⊗ I )(A0 ⊗ A j )

]

Prρ0(A0 ⊗ A j )
= Prρ0(Qi A0 ⊗ A j )

Prρ0(A0 ⊗ A j )
,

(11)

with ρ0 an arbitrary initial state of the composed system. In “Appendix A”, we prove
that the numerator is given by

Prρ0(Qi A0 ⊗ A j ) = δi, jPrρ0(Qi A0 ⊗ Ai ), (12)

Then, the denominator is given by

Prρ0(A0 ⊗ A j ) =
∑

i

Prρ0(Qi A0 ⊗ A j ) =
∑

i

δi, jPrρ0(Qi A0 ⊗ Ai )

= Prρ0(Q j A0 ⊗ A j ). (13)

Therefore, from Eqs. (11), (12) and (13), we obtain

Prρ0(Qi A0 ⊗ I |A0 ⊗ A j ) = δi, j . (14)

Equation (14) explicitly shows the correlation provided by the measurement pro-
cess: if the pointer variable is in its reference position a0 at time t1 and it is registered
the value a j at time t2, then the measured observable Q had the value q j at time
t1 < t2. Therefore, the conditional probability (14) describes the correlation between
the values of the pointer variable and the values of the measured observable.

It should be stressed that this result was obtained using the global consistency con-
dition. A similar result was obtained by Griffiths using the weak consistency condition
[39,40]. Since the global condition is stronger than the weak condition, our result is
also valid for the weak consistency condition.

Finally, it is worth noting that this result is valid for arbitrary initial states of the
composed system, even for states that before the measurement involve linear combi-
nations of vectors with different values of the variable to be measured. These initial
states are a problem for the standard interpretation of the quantum theory, but they
are not problematic for obtaining the correlation given by the conditional probability
equation. This is the way in which the quantum histories approach avoids the definite
outcome problem of quantum measurements.

4 Different correlations in quantummeasurements

The previous result was obtained considering the basis of projectorsB1 = {Qi A0, Ā0}
at time t1 and the basis of projectors B2 = {A j } at time t2. However, different basis
can be considered at each time. This freedom is responsible for what has been called
the preferred basis problem. In ordinary quantum mechanics, this problem refers to
a single time, but in the quantum histories approach, different basis can be chosen at
each time.
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Different solutions has been proposed to this problem. Some authors consider the
possibility of providing quantummechanicswith an additional postulate for a preferred
basis, as it is the case for the modal interpretations [41–44]. Another solution for the
problem is given byZurek [45], arguing that decoherence selects the basis of the pointer
of the measurement instrument. Moreover, there are some authors who consider that
the freedomof choice of the basis of properties is an essential characteristic of quantum
mechanics that should be accepted [8,39] and that this choice should bemade according
to the utility for describing a given physical process. These different opinions coexist
and the discussion on the subject is open.

In Sect. 3, the choice of the basis for time t2 was made taking into account the
utility for the description of the measurement process. The pointer variable should
be macroscopic and accessible to the observer [38]. As a defined value of the pointer
variable is obtained at the end of the measurement process, the basis for time t2
should include properties corresponding to well-defined values of the pointer variable.
However, a question can still be made for the possibility to choose a different basis for
time t1, which includes properties of the measured system which do not correspond
with the observable Q.

In what follows, we are going to analyze if it is possible to consider families of
histories with the basisB2 for time t2, but with a basisB′

1 for time t1, different from the
basis B1 already defined. In other words, we want to study the possibility of providing
information about incompatible observables with the same pointer variable of the
instrument.

4.1 Weak consistency condition

We are going to define an alternative basis B′
1 for time t1, different from B1 =

{Qi A0, Ā0}. For simplicity, we consider that the dimension of Hilbert space HS is
finite, and we call it s. Using the vectors |qi 〉, we define other basis of vectors |pi 〉,
given by

|pi 〉 =
s∑

l=1

αil |ql〉 with 〈pi |p j 〉 = δi j (15)

and we also define the projectors Pi = |pi 〉〈pi | ⊗ IM .
In order to define the basis B′

1, we use the product of projectors Pi and A0, and we
complete the basis with the projector Ā0 = I − A0, i.e.,

B′
1 = {

Pi A0, Ā0
}

is a basis of projectors.
Using basis B′

1 for time t1 and B2 for time t2, we define the family of histories G,
generated by the following atomic histories

Ği, j = Pi A0 ⊗ A j , Ğ 0̄, j = Ā0 ⊗ A j .
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We consider at time t1 an initial state

ρ = IS
s

⊗ |a0〉〈a0| = 1

s
A0.

In “Appendix B”, we prove that the family G is weakly consistent for the initial state
ρ.

Now, we are going to use the family of histories G to describe the correlation
between the observed properties of the instrument M at time t2 and the properties
of the system S represented by projectors Pi at the time t1. In order to do that, we
consider the histories represented by Pi A0 ⊗ I and A0 ⊗ A j . It is easy to see that they
belong to family G,

Pi A0 ⊗ I =
∑

j

Ği, j ∈ G,

A0 ⊗ A j =
∑

i

Ği, j ∈ G.

The two projectors Pi A0 ⊗ I and A0 ⊗ A j represent the following histories:

Pi A0 ⊗ I −→ At time t1, the system S has the property represented by Pi and

the pointer variable of M is in reference value a0.

A0 ⊗ A j −→ At time t1, the pointer variable of M is in reference value a0 and,

at time t2, the pointer variable of M measures the value a j .

Using family G, we can calculate the conditional probability of history Pi A0 ⊗ I ,
given A0 ⊗ A j . In “Appendix C”, we prove that this probability is given by

Pr(Pi A0 ⊗ I |A0 ⊗ A j ) = |αi j |2. (16)

Therefore, the weakly consistent family G allows to describe correlations between
properties A j of the pointer variable, given in basis B2, and properties Pi of the
measured system, given in basis B′

1.
On the other hand, inSect. 3,wehave considered the family of historiesF , generated

by the basis B1 at time t1 and B2 at time t2. We have proved that F satisfies the global
consistency condition, i.e., the weakly consistency condition for all states. Within this
family, in Eq. (14), we calculated the correlations between properties A j of the pointer
variable, and properties Qi of the measured system, given in B1 .

Both results evidence that the quantum histories approach, with the weak con-
sistency condition, allows that the measuring instrument provides information about
different incompatible properties, Qi and Pi , of the measured system. Since the prop-
erties Qi and Pi belong to different basis, the information obtained from the instrument
depends on the family of historieswhich is chosen. The empirical property A j revealed
by the measuring instrument is not enough to determine the properties of the system
at a previous time, it is also necessary to choose a family of histories.
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As it was said previously, in the quantum histories approach the choice of the basis
for time t2 is based on the utility for the description of the measurement process. As a
defined value of the pointer variable is obtained at the end of the measurement process,
the basis for time t2 should include properties corresponding to well-defined values of
the pointer variable. However, for time t1, the previous criterion does not determine
a unique basis. While basis B2 is chosen in order to describe the different pointer
values that are obtained after the measurement, there is freedom to choose the basis
for time t1. In the next section, we will show that this is not the case if we use the
global consistency condition.

4.2 Global consistency condition

We are going to show that it is not possible to consider a globally consistent family of
histories G , with basis B′

1 = {Pi A0, Ā0} for time t1 and B2 = {A j } for time t2.
If G is a globally consistent family of histories, then the corresponding projectors

from B′
1 and B2 must commute when translated to a common time. In particular,

[
U (t2, t1)Pi A0U (t1, t2), A j

] = 0,

or equivalently,

U (t2, t1)Pi A0U (t1, t2)A j = A jU (t2, t1)Pi A0U (t1, t2).

Ifwemultiply bothmembers by A j ′ , with j ′ �= j , we obtain A j ′U (t2, t1)Pi A0U (t1, t2)
A j = 0. Taken into account Eq. (22), we have

A j ′U (t2, t1)Pi A0U (t1, t2)A j = A j ′
s∑

l,m

αilα
∗
im |φl〉〈φm | ⊗ |al〉〈am |A j

= αi j ′α
∗
i j |φ j ′ 〉〈φ j | ⊗ |a j ′ 〉〈a j | = 0.

Then, αi j ′α∗
i j = 0 for j �= j ′. Therefore, for each index i , there is only one index

ji such that αi ji �= 0. This implies that |pi 〉 = αi ji |q ji 〉, for all 1 ≤ i ≤ s, which
is equivalently to say that B′

1 = B1. Then, it is not possible to consider a globally
consistent family G, with basis B2 at time t2 and basis B′

1 �= B1 at time t1. Once we
have chosen the basis B2 at time t2, there is no freedom to choose a basis at time t1
different from B1.

This implies that the measuring instrument M cannot provide information about
properties of the system Swhich do not belong to the basisB1. The empirical properties
A j , revealed by the measuring instrument at time t2, are enough to determine the
properties of the system at a previous time t1.

Therefore, in the quantum histories approach with the global consistency condi-
tion, the choice of the basis B2 at time t2 is based on the utility for the description
of the measurement process, and the basis B1 at time t1 is determined by the global
consistency condition itself. This is an important difference with the weak consistency
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condition, which allows the measuring instrument to provide information about dif-
ferent incompatible properties of the measured system and this information depends
on the family of histories which is chosen.

However, it should be noted that the quantum history approach, independently of
the consistency condition, does not provide with a criterion for choosing at time t2
the basis of properties of the pointer variable. This fact was considered as a limitation
for developing an interpretation of quantum mechanics independent of the notion of
external observer, suitable for dealing with quantum cosmology problems [46–48].

5 Conclusions

In this work, we analyzed the quantummeasurement process from the point of view of
the quantum histories approach, focusing on the possibility of correlating incompat-
ible observables of a system with the same measurement instrument, using different
families of histories.

In Sect. 2, we summarized the main ideas of the quantum histories approach. Three
aspects of the this approach are of fundamental importance for describing the quantum
measurement process. First, the measurement process is described as an ordinary
physical interaction between a measured system and a measuring instrument. Second,
the state vector does not describe the actual properties of the system, but determines
the probabilities that the possible properties will be updated. Third, it is possible to
define logical operations between properties at different times.

In the quantum histories approach, the probability measure cannot be defined for all
quantum histories. In order to have a well-defined probability, only consistent families
of histories can be considered. We considered two possible consistency conditions:
the weak consistency condition and the global consistency condition.

In Sect. 3, we applied the quantum histories approach to the measurement process.
We defined a family of historiesF , suitable for describing the correlations between the
value of themeasured observable and the value of the pointer variable of themeasuring
instrument. We proved that this family satisfies both consistency conditions, and we
obtained the expected correlations showing that the conditional probability is equal to
one.

Finally, inSect. 4,we analyzed the possibility of obtaining information about incom-
patible observables with the same pointer variable of the measurement instrument. In
the quantum histories approach, the choice of the basis for time t2 is based on the utility
for the description of the measurement process. Since at the end of the measurement
a definite value of the pointer variable is obtained, the basis for time t2 should be B2,
which includes properties corresponding to well-defined values of the pointer vari-
able. With respect to the basis for time t1, we considered two cases: weakly consistent
families and globally consistent families. In the first case, we found that the previ-
ous criterion does not determine a unique basis, there is freedom to choose the basis
for time t1. This implies that the measuring instrument provides information about
different incompatible properties of the measured system, depending on the chosen
basis. In the second case, we found that basis B1 is the only possible basis for time
t1, compatible with basis B2 at time t2. This implies that the same pointer variable of
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the instrument cannot provide information about properties of the system which do
not belong to basis B1, i.e., the pointer variable of the instrument can only measure
compatible observables of the system.

From a conceptual point of view, the fact that the same pointer variable of an
instrument could provide information about incompatible observables of a system is
not satisfactory. Therefore, in regard to this matter, the global consistency condition
seems to be in a better position than weak consistency condition.

Acknowledgements This research was founded by the Consejo Nacional de Investigaciones Científicas y
Técnicas (CONICET), the Universidad de Buenos Aires (UBA), and the Universidad Nacional de Rosario
(UNR).

A Deduction of Eq. (12)

We are going to show that

Prρ0(Qi A0 ⊗ A j ) = δi jPrρ0(Qi A0 ⊗ Ai ). (17)

First, we remember that

U (t2, t1)|qi , a0〉 = |φi 〉 ⊗ |ai 〉, (18)

Qi A0 =
∑

s,r

|qi , a0〉〈qi , a0|. (19)

Then, taken into account Eqs. (18) and (19), we obtain

U (t2, t1)Qi A0U (t1, t2) = |φi 〉〈φi | ⊗ |ai 〉〈ai |. (20)

In order to prove Eq. (17), we calculate the chain operator of the history Qi A0 ⊗ A j ,
see Eq. (2),

C(Qi A0 ⊗ A j ) = U (t0, t1)Qi A0U (t1, t0)U (t0, t2)A jU (t2, t0)

= U (t0, t1)U (t1, t2)U (t2, t1)Qi A0U (t1, t2)A jU (t2, t0)

= U (t0, t2)|φi 〉〈φi | ⊗ |ai 〉〈ai |A jU (t2, t0)

= δi jC(Qi A0 ⊗ Ai ),

where we have used U (t1, t2)U (t2, t1) = I and Eq. (20). Finally, taking into account
Eq. (3), we compute the probability of the history,

Prρ0(Qi A0 ⊗ A j ) = Tr
[
C†(Qi A0 ⊗ A j )ρ0C(Qi A0 ⊗ A j )

]

= δi jTr
[
C†(Qi A0 ⊗ Ai )ρ0C(Qi A0 ⊗ Ai )

]

= δi jPrρ0(Qi A0 ⊗ Ai ).
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B Weakly consistency of familyG
We are going to show that the family G, generated by the atomic histories

Ği, j = Pi A0 ⊗ A j , Ğ 0̄, j = Ā0 ⊗ A j ,

is a weakly consistent family, for an initial state ρ = 1
s A0 at time t1.

First, we consider histories Ği, j and Ği ′, j ′ , with i �= i ′ or j �= j ′, and we prove
that they satisfy the weak consistency condition given in Eq. (4):

Tr
[
C†(Ği, j )ρC(Ği ′, j ′)

]
= Tr

[

A jU (t2, t1)Pi A0
1

s
A0Pi ′ A0U (t1, t2)A j ′

]

= δi i ′δ j j ′

s
Tr

[
A jU (t2, t1)Pi A0U (t1, t2)A j

] = 0,

∀i �= i ′ or ∀ j �= j ′.

Second, we show that histories Ği, j and Ğ 0̄, j ′ satisfy the weak consistency condition:

Tr
[
C†(Ği, j )ρC(Ğ 0̄, j ′)

]
= 1

s
Tr

[
A jU (t2, t1)Pi A0A0 Ā0U (t1, t2)A j ′

]=0, ∀i, j, j ′.

where we have used that A0 Ā0 = 0. The same argument is valid for histories Ğ 0̄, j

and Ğ 0̄, j ′ . Therefore, family G is a weakly consistent family of histories.

C Deduction of Eq. (16)

The conditional probability of history Pi A0 ⊗ A j , given A0 ⊗ A j , is

Pr(Pi A0 ⊗ I |A0 ⊗ A j ) = Pr
[
(Pi A0 ⊗ I )(A0 ⊗ A j )

]

Pr(A0 ⊗ A j )
= Pr(Pi A0 ⊗ A j )

Pr(A0 ⊗ A j )
. (21)

Using Eq. (3), we obtain the numerator of expression (21)

Pr(Pi A0 ⊗ A j ) = Tr

[

A jU (t2, t1)Pi A0
1

s
A0Pi A0U (t1, t2)A j

]

= 1

s
Tr

[
A jU (t2, t1)Pi A0U (t1, t2)A j

]
.

Taking into account the definition of projectors Pi and A0, and Eq. (15), we obtain

Pi A0 = |pi 〉〈pi | ⊗ |a0〉〈a0|

=
s∑

l,m

αilα
∗
im |ql〉〈qm | ⊗ |a0〉〈a0|.
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Then, using the time evolution given in Eq. (7), we obtain

U (t2, t1)Pi A0U (t1, t2) =
s∑

l,m

αilα
∗
im |φl〉〈φm | ⊗ |al〉〈am |. (22)

Therefore,

Pr(Pi A0 ⊗ A j ) = 1

s

s∑

l,m

αilα
∗
imTr

[
A j |φl〉〈φm | ⊗ |al〉〈am |A j

]

= 1

s

s∑

l,m

αilα
∗
imδ jmδ jl = |αi j |2

s
. (23)

The denominator of expression (21) is given by

Pr(A0 ⊗ A j ) =
s∑

i=1

Pr(Pi A0 ⊗ A j ) =
s∑

i=1

|αi j |2
s

= 1

s
. (24)

Finally, from Eqs. (21), (23) and (24), we obtain

Pr(Pi A0 ⊗ I |A0 ⊗ A j ) = |αi j |2.
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