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We present an explicit family of two-qubit X states with entanglement-preserving unitary (EPU)
equivalence to the set of general states; that is, for any spectrum-entanglement combination achiev-
able by general states, this family contains an X state of the same spectrum and entanglement.
This idea was originally conjectured by the author and supported with strong numerical evidence
in arXiv:1310.7038. Then, in Ann. Phys. 351 (2014) 79, the authors proved the existence of such
two-qubit unitary transformations, but found the parameters to be transcendental, eluding explicit
solution. Here, by a different method, we prove the existence of such transformations, obtain a com-
pact implicit solution for them, and provide an exact, explicit form of the desired X-state family.

I. INTRODUCTION

Quantum entanglement [1, 2] is a special kind of non-
local correlation that is much stronger than the typical
correlations observed in everyday human experience. We
have come to see it as a powerful resource for achieving
many tasks better than what is classically possible, such
as in quantum encryption [3–5], quantum teleportation
[6–8], and certain quantum-computing algorithms [9–16].

However, many of the benefits of entanglement rely on
our ability to reduce sources of noise, and one strategy for
this is to reduce the complexity of a given system. To this
end, others have shown benefits from preparing systems
in certain special states, for which many density-matrix
elements are zero [17–20]. Furthermore, such states are
easier to handle mathematically as well.

One important special state family is the X states, for
which all potentially nonzero density-matrix elements are
located on the main diagonal and antidiagonal as

ρ =

 ρ1,1 0 0 ρ1,4
0 ρ2,2 ρ2,3 0
0 ρ3,2 ρ3,3 0
ρ4,1 0 0 ρ4,4

, (1)

where ρa,b ≡ 〈a|ρ|b〉 in a generic computational basis
{|1〉, . . . , |4〉}, and ket labels in our convention start on
1 and do not imply the Fock basis [21]. The density op-
erator is ρ =

∑
j pjρj , with probabilities pj ∈ [0, 1] such

that
∑
j pj = 1, and pure states ρj ≡ |ψj〉〈ψj | such that

tr(ρj) ≡
∑n
k=1(ρj)k,k = 1, where n= 4 for two qubits.

The most important property of two-qubit X states re-
garding entanglement is that they are related to all pure
and mixed states by an entanglement-preserving unitary
(EPU) transformation such that the transformed state
has the same entanglement as the input state, a property
called EPU equivalence, as conjectured and supported
with strong numerical evidence in [22], and later proven
by [23]. For systems larger than two qubits, [22] pro-
posed the true-generalized X (TGX) states, which are
actually nonX-shaped in general, and are so-named for
their ability to generalize the EPU-equivalence property
of two-qubit X states to larger systems.

However, while the conjecture of EPU equivalence from
[22] was proven true by [23], that proof did not yield

an explicit form for the EPU operator UEPUX
despite

proving its existence, where we define general (and not
necessarily local) EPU transformations as

UEPU ≡ U, s.t.

{
U† = U−1

E(UρU†) = E(ρ),
(2)

for valid entanglement measure E(ρ). Thus, UEPUρU
†
EPU

has the same entanglement and spectrum as ρ.
The main result of this paper is an explicit form for

an X-state family that is EPU-equivalent to all general
states, thus proving the conjecture of [22] by an alterna-
tive method, and finally providing an explicit solution to
achieve this transformation.

To quantify the entanglement of all two-qubit mixed
states, we will use the concurrence [24, 25],

C(ρ) ≡ max{0, ξ1 − ξ2 − ξ3 − ξ4}, (3)

where ξ1 > · · · > ξ4 are the eigenvalues of the Hermitian
matrix

√√
ρρ̃
√
ρ (or square roots of the eigenvalues of

nonHermitian matrix ρρ̃), where ρ̃ ≡ (σ2⊗σ2)ρ∗(σ2⊗σ2)
with σ2 ≡

(
0 −i
i 0

)
. If ρ is an X state, (3) simplifies to

C(ρ) = 2 max{0, |ρ3,2| −
√
ρ4,4ρ1,1, |ρ4,1| −

√
ρ3,3ρ2,2 },

(4)
valid for all X states, both mixed and pure [26, 27].

II. X STATES OF EXACT EPU EQUIVALENCE
TO ALL STATES

Given a general two-qubit state ρ with eigenvalues
λ1 > · · · > λ4 and concurrence C ≡ C(ρ) obtained from
(3), an X state of the same spectrum and concurrence is

ρX ≡
1

2


λ1 +λ3 +

√
Ω · ·

√
(λ1−λ3)2−Ω

· 2λ2 · ·
· · 2λ4 ·√

(λ1−λ3)2−Ω · · λ1 +λ3−
√

Ω

,
(5)

where dots represent zeros and Ω ≡ max{0, Q}, where

Q ≡ (λ1 − λ3)2 − (C + 2
√
λ2λ4)2. (6)

As given in [22], an exact EPU converting ρ to ρX is

UEPUX
= ερX

ε†ρ, (7)
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where εA is a unitary eigenvector matrix of A such that
ε†AAεA = Λ is the diagonal matrix of eigenvalues a1 >
· · · > a4 of A (the columns of εA are eigenvectors of A).
Use singular value decompositions of ρX and ρ to ensure
that ερX

and ερ are unitary so that UEPUX
is also unitary.

Typically, ερX
and ερ will be numerically evaluated,

even though they could be found analytically since n =
4. Thus, although this proves that UEPUX can be found
explicitly from (7) via explicit spectral decompositions of
ρ and ρX, it will be easier just to get it numerically, as
seen in Fig. 1. In practice, (5) gives us the explicit answer
we seek without the need to use UEPUX at all. Thus, given
the spectrum and C of any ρ, (5) is the exact result of
the desired EPU X transformation.

C(ρ) = 0.569158811493426 C(ρ′) = 0.569158811493418
C(ρX) = 0.569158811493427

ρ
ρ′ ≡ UEPUX

ρU†
EPUX

UEPUX
I

row
s→

col
um

ns
→

row
s→

col
um

ns
→

FIG. 1: (color online) Example of an arbitrary mixed two-
qubit state ρ transformed by UEPUX from (7) to get the EPU-
equivalent X state ρ′ ≡UEPUXρU

†
EPUX

(phases not shown).
Technically, ρ′ = ρX exactly, where ρX is from (5), but in
numerical implementations, (5) has a slightly more accurate
match of the spectrum and concurrence C of ρ since it involves
fewer calculations. Typically, ρX matches C to 10 digits of
precision, while ρ′ matches C to 9 digits. For proof that ρX
of (5) has exactly the same C and spectrum as ρ, see Sec. III.

III. PROOF OF THE MAIN RESULTS

Here, it is useful to start by expanding (5) as

ρX≡



1
2


λ1+λ3+

√
Q · · C+2

√
λ2λ4

· 2λ2 · ·
· · 2λ4 ·

C+2
√
λ2λ4 · · λ1+λ3−

√
Q

; Q>0

1
2

λ1+λ3 · · λ1−λ3
· 2λ2 · ·
· · 2λ4 ·

λ1−λ3 · · λ1+λ3

; Q<0,

(8)
where we used the definition of Q in (6) to alter the off-
diagonals in the Q > 0 case. As we will prove soon,
C = 0 in the Q < 0 case, so we could have used the
diagonal state diag{λ1, λ2, λ4, λ3} to achieve the same
goal with even more simplicity; however the form in (8)
allows the continuity between the Q cases that permits
their unification to the compact form in (5).

To prove that ρX of (8) is a universal family of X states
for entanglement, we must show that ρX contains all com-
binations of spectrum, concurrence, and Q value (ΛCQ)
that exist for the set of general two-qubit quantum states.

The spectrum matching will permit unitary equiva-
lence, which, combined with the concurrence preserva-
tion, will enable the EPU-equivalence property. Then, if
we show that each Q case in (8) permits all ΛC combina-
tions for that Q value, that will complete the proof that
ρX is EPU-equivalent to all states ρ, also proving that
(7) is the form of such an EPU transformation.

Here, we start with a top-down proof in Sec. III A, sim-
ply verifying that ρX satisfies the above properties. Then,
Sec. III B shows how ρX was obtained in the first place.

A. Proof that ρX is EPU-Equivalent to All States

To prove that this transformation works on all states,
simply put (8) into (4). If ρX is EPU-equivalent to the set
of all two-qubit states, then calculating its concurrence
should yield C for all possible spectrum-concurrence
(ΛC) combinations for each Q case, where λ1 > · · · > λ4.
We also need to show that the Q cases are exhaustive for
all ρ and that each Q case covers all ΛC combinations,
but we will address that after treating spectrum and con-
currence preservation.

Proof that Spectrum is Preserved: In both cases of
(8), det(λI−ρX) = (λ−λ1)(λ−λ2)(λ−λ3)(λ−λ4) = 0,
proving that ρX has the same spectrum as ρ, and that
they are unitarily equivalent.

Proof that Concurrence is Preserved: In the Q > 0
case, putting (8) into (4) gives

C(ρX) = 2 max{0,−√ρX4,4ρX1,1,
C+2

√
λ2λ4

2 −
√
λ2λ4}

= 2 max{0, C2 }
= C,

(9)
which shows that ρX is indeed EPU-equivalent to ρ when
Q > 0, since C was computed from ρ to get (8), and
because (8) allows all combinations of eigenvalues (in de-
scending order, which does not reduce the generality).

In the Q < 0 case, ρ is always separable (which we
prove soon), so C = 0, and putting (8) into (4) gives

C(ρX) = max{0, λ1 − λ3 − 2
√
λ2λ4}; Q < 0

= 0
= C,

(10)

where we used the fact that λ1 − λ3 − 2
√
λ2λ4 < 0 when

Q < 0, which we will also prove soon.
Thus, both Q cases of ρX preserve spectrum and con-

currence of all ρ that have those Q values (where we still
need to prove (10) and show that the Q cases are exhaus-
tive and that C = 0 for all states when Q < 0).

Proof that the Q Cases Are ΛC-Exhaustive: Here,
we need to show that (i) all states ρ only fall into the
two Q cases in (8), and that (ii) both of those forms
of ρX admit all spectrum-concurrence combinations for
those Q cases (which requires that we prove C = 0 ∀ρ
when Q < 0). For these proofs, we use the notation that
Λ≡diag{λk} where {λk}≡{λk}|k=4

k=1≡{λ1, λ2, λ3, λ4}.
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i. Proof that All ρ Qualify as One of the Q Cases:
Given the dependence of Q as

Q ≡ Q(λ1, λ2, λ3, λ4, C)
≡ (λ1 − λ3)2 − (C + 2

√
λ2λ4)2,

(11)

and the fact that{
Q Case 1: Q > 0
Q Case 2: Q < 0,

(12)

then we can make the following conclusions:

a. The fact that Q is real for every combination of
{λk} and C, meaning Q∗ = Q ∀C, {λk}, proves
that the two mutually exclusive Q cases are ex-
haustive values of Q since the two cases cover all
possibilities for Q.

b. Since every ρ has a spectrum {λk} and concur-
rence value C (even if zero), then for every ρ, there
exists a value of Q, meaning ∃Q ∀ ρ.

c. Therefore, due to Conclusion a and Conclusion b,
every ρ falls into exactly one of the two Q cases.

Here, we have only shown that Q is not limited by
its input arguments and that all ρ fall into one of
the two Q cases, but now we need to show that the
cases of Q in (12) do not limit the ΛC combinations.
Specifically, does the form of ρX for each Q case in
(8) allow all possible C values for a given spectrum?

ii. Proof that Each Q-Case ρX Admits All ΛC
Combinations:

a. For Q > 0, the result in (9) that C(ρX) = C
∀ {λk} proves that this Q-case ρX admits all ΛC
combinations.

b. For Q < 0, consider the following facts:

1. At the edge of the Q > 0 case, if Q = 0, then
according to (6), C + 2

√
λ2λ4 = λ1 − λ3, so

then ρX becomes (still in the Q > 0 case)

ρX = 1
2

λ1+λ3 · · λ1−λ3
· 2λ2 · ·
· · 2λ4 ·

λ1−λ3 · · λ1+λ3

, (13)

which is a maximally entangled mixed state
(MEMS) [28–30] with respect to (wrt) a given
spectrum, as proven in [31, 32] up to a local-
unitary permutation by

(
0 1
1 0

)
⊗
(
1 0
0 1

)
on (13),

and actually has this same form for all Q.
2. Putting (13) into (4) gives the exact concur-

rence of any MEMS wrt spectrum as

CMEMSΛ
≡ max{0, λ1 − λ3 − 2

√
λ2λ4}, (14)

(also valid for any Q), which means that

c ≡ λ1 − λ3 − 2
√
λ2λ4 (15)

is the minimum average preconcurrence [25] of
a MEMS wrt spectrum, and can be negative
(for example, when all eigenvalues are 1

4 ).

3. No state can have a larger C than CMEMSΛ
;

0 6 C(ρ) 6 CMEMSΛ ∀ ρ, ∀Q. (16)

4. Focusing now on the Q < 0 case, solve for any
conditions that Q < 0 implies for C:

Q<0
(λ1−λ3)2− (C+2

√
λ2λ4)2<0

C+2
√
λ2λ4>λ1−λ3

C>λ1−λ3−2
√
λ2λ4

C>c,
(17)

which means that

(Q < 0)⇒ (C > c)⇒
{
C > CMEMSΛ ; c > 0
C > c; c < 0,

(18)
since c = CMEMSΛ when c > 0 by (14–15).

5. The c > 0 case of (18) means that Q < 0 im-
plies that C > CMEMSΛ , which is never possible
because max(C) = CMEMSΛ from (16). There-
fore, the only case of (18) that can apply to
physical states is the c < 0 case, which yields

(Q < 0)⇒ (C > c)⇒ (c < 0) ∀ ρ. (19)

6. From (14–15), we know that

(c < 0)⇒ (CMEMSΛ
= 0). (20)

7. Then, putting CMEMSΛ
= 0 from (20) into (16),

0 6 C(ρ) 6 0 ∀ ρ, when c < 0. (21)

8. By (19) and (21), we obtain

(Q < 0)⇒ (C(ρ) = 0) ∀ ρ. (22)

9. From the fact in (19) that Q < 0 implies that
c < 0, then by (15), λ1−λ3−2

√
λ2λ4 < 0, which

proves the claim in (10) that C(ρX) = 0 for all
spectra Λ for which Q < 0. Thus, comparing
the now-proven result in (10) with the result of
(22) regarding general states ρ proves that:

The Q < 0 case of ρX in (8) does
exhaust all possible ΛC combina-
tions when Q < 0.

(23)

Therefore, since (a) and (b) prove that ρX admits all
possible spectrum and concurrence combinations for
all possible Q cases, the claim of (ii) is proven true.

Finally, since Claims (i) and (ii) have both been proven
true, this completes the proof that the state family ρX in
(8) (and thus in (5)) is fully EPU-equivalent to the set
of all states ρ, since the set of all possible ΛCQ combi-
nations achievable by ρ is also achievable by ρX.

Note that throughout this paper, by “all C values,”
we mean physical C, meaning that we only consider C ∈
[0,max{0, λ1 − λ3 − 2

√
λ2λ4}], as indicated in (16).
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B. Motivation of ρX as an Ansatz Prior to Proof

Now that we have proven the EPU equivalence of ρX
of (5) to general states ρ, our task here is to show how
that state family was obtained in the first place.

1. Finding an EPU-Compatible Spectral X Decomposition

First, note that X states ρX of a given spectrum Λ ≡
diag{λ1, . . . , λ4} where λ1 > · · · > λ4 can be made as

ρX = ερXΛε†ρX
, (24)

where ερX
is a unitary eigenvector matrix whose columns

are X states. Since any relative phase of ρX can be ab-
sorbed into the total EPU transformation, we only need
to consider real-valued ρX and ερX . Therefore, the gen-
eral set of eigenstates we need are X-form θ states [33], cα

·
·
sα

,
 sα
·
·
−cα

,
 ·
cβ
sβ
·

,
 ·
sβ
−cβ
·

, (25)

where cθ ≡ cos(θ), sθ ≡ sin(θ), and α, β ∈ [0, π2 ]. Each
state in (25) can assume any entanglement, but note that
it consists of two pairs of related states, due to the simul-
taneous conditions of X form and unitarity.

Since Λ already fully specifies the spectrum in (24),
and the X form of the states in (25) already enforces the
X form of ρX, the parameters α and β are the freedom
with which we will ensure entanglement preservation to
achieve C(ρX) = C(ρ). However, we must ask, is there
a preferred way to assign the eigenvectors of (25) to the
eigenvalues? In fact, there is a preferred choice, since
some choices can cause unacceptable restrictions on the
spectrum-concurrence combinations.

The key to finding an X state capable of all ΛC com-
binations lies in comparing the MEMS of (13) (for all Q
here) to the eigenvectors of (25). The positions and co-
efficients of eigenvalues in (13) yield the desired order as

|ε1〉≡

 cα
·
·
sα

, |ε2〉≡
 ·
cβ
sβ
·

, |ε3〉≡
 sα
·
·
−cα

, |ε4〉≡
 ·
sβ
−cβ
·

,
(26)

where the second and third states of (25) have been
swapped, and ket labels have subscripts that match their
respective eigenvalues. Thus, for the MEMS of (13), set-
ting α = π

4 and β = 0 in (26) would produce a proper
set of eigenvectors for those states.

For the most general ρX, we simply leave α and β free
(at first), and define its eigenvector matrix as

ερX
≡

4∑
k=1

|εk〉〈k|, (27)

which, when put into (24), yields

ρX =
λ1c

2
α+λ3s

2
α · · (λ1−λ3)sαcα

· λ2c
2
β+λ4s

2
β (λ2−λ4)sβcβ ·

· (λ2−λ4)sβcβ λ2s
2
β+λ4c

2
β ·

(λ1−λ3)sαcα · · λ1s
2
α+λ3c

2
α

.
(28)

To motivate using (26) (and thus (28)) instead of (25),
Fig. 2 plots some necessary (but not sufficient) tests for
EPU equivalence to general ρ as numerical explorations.

rank

1:

2:

3:

4:

general ρ ρX by ρX by

co
n
cu

rr
en

ce
C

I

purity P I

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1
4 1 1

4 1 1
4 1

1
4 1 1

4 1 1
4 1

1
4 1 1

4 1 1
4 1

1
4 1 1

4 1 1
4 1

(25) (26)

FIG. 2: (color online) Plot of concurrence C versus purity P
for 106 arbitrary states for each rank for each state family;
general ρ, X states with the eigenvector order of (25), and
X states with the eigenvector order of (26) (used in ρX of
(28)). The black curves are for the MEMS of (13) (for all Q
here), as in [22]. The apparent inability of rank-2 (and maybe
ranks 3 and 4) X states based on (25) to achieve the same
CP combinations as general ρ may be evidence that X states
based on (25) cannot achieve EPU equivalence with general ρ
since there are general rank-2 ρ with C too high for that family
of X states to achieve. The ρX of (28) based on (26) have
no such limitation, so there is no reason to disqualify them
based on this (limited) test. (This is merely an exploratory
numerical motivation leading to an ansatz, but it paid off
since the ansatz was proven correct as shown in Sec. III A.)

The most general test of which eigenvector ordering to
use would be to analytically check all possible combina-
tions of ordered eigenvalues and C and see if any limi-
tations occur when comparing their performance to that
of general states ρ, and furthermore, to extend the can-
didate eigenvector sets beyond the two considered here.
However, since explicit solution of C for general states
is extremely complicated, and since even approximating
such a test numerically with a grid search would be al-
most intractable, we instead limit ourselves to approxi-
mations of the following necessary test.
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As seen in Fig. 2, we merely plot concurrence C against
purity P ≡ tr(ρ2) for many arbitrary states in each of
three families; general states ρ, spectral X states with
ordered eigenvectors as in (25), and spectral X states
with the eigenvectors of (26). If any family does not
cover the same area as ρ under the CP curve for any
rank, then such a family may lack EPU equivalence to
general ρ. Again, a necessary and sufficient test for
EPU equivalence would analytically check all combina-
tions of C with all nontrivial power sums simultane-
ously (Pm ≡

∑4
k=1 λ

m
k for m = 2, 3, 4), not merely purity

P = P2 = λ21 + λ22 + λ23 + λ24, but here we are merely ap-
proximating a necessary test to motivate an ansatz. This
was an effective strategy because we were then able to
prove that ansatz to be true from a top-down approach.

Since the states made by (25) appear to have a defi-
ciency for rank 2 (and maybe ranks 3 and 4), they do
not likely have EPU equivalence to general ρ. (Since the
test is numerical this is not conclusive, but it is enough
to motivate an ansatz.) Meanwhile, the ρX of (28), based
on (26), appears to have no limitations in covering the
same CP area as general states for each rank. Again, we
would need to (analytically) check C for all power sums
of eigenvalues simultaneously, not merely purity, but this
test gave us a good reason to prefer (26) over (25), and
showed that there is at least no apparent reason not to
suspect (26) of being the desired order. Therefore, the ρX
of (28) is the family we chose as a general starting point.
(Note that in Fig. 2, states of rank R have minimum pu-
rity Pmin = 1

R which accounts for vertical “walls” of data
in the plots, and all states with purity less than 1

n−1 = 1
3

are guaranteed to be separable [34], corresponding to the
horizontal portions of data with CMEMSΛ

= 0.)
At this stage, the states in (28) are still a bit too gen-

eral to be useful, so we now seek values of α and β to
enable the EPU equivalence of ρX to general ρ.

2. Finding the Entanglement-Preserving Parameters

Here, we want to investigate the effects of α and β in
(28) on its ability to achieve EPU equivalence to general
states. First, putting (28) into (4) gives

C(α, β) ≡ 2 max
{

0,
λ2−λ4

2 s2β −
√

(λ1s2α + λ3c2α)(λ1c2α + λ3s2α),
λ1−λ3

2 s2α −
√

(λ2s2β + λ4c2β)(λ2c2β + λ4s2β)
}
.

(29)
To get a feel for (29), we do numerical exploration as
follows. From a given arbitrary input state ρ, we harvest
its spectrum Λ and concurrence C, then use Λ to get
C(α, β) from (29) with a grid search over α and β, while
using C to plot the plane of the correct value. The places
where C(α, β) intersects the C plane show us what values
of α and β allow ρX to preserve the entanglement of ρ.

As Fig. 3 shows, α and β do not generally have the
same roles (due to the ordered eigenvalues). Further-
more, all states tested with C > 0 had the property that

C(α, β) always intersected the C plane at β = 0 or π
2 .

This suggested that, in our ansatz, we may be able to set

β = 0, (30)

which, when put into (29) and setting C(α, 0) = C, gives

C = max{0, (λ1 − λ3)s2α − 2
√
λ2λ4}. (31)

Solving (31) for α when (λ1−λ3)s2α−2
√
λ2λ4 > 0 yields

α =

{
1
2 sin−1(C+2

√
λ2λ4

λ1−λ3
); λ1 6= λ3

π
4 ; λ1 = λ3,

(32)

where the λ1 = λ3 case was found by observing that since
λ1 > · · · > λ4 > 0 and

∑4
k=1 λk = 1, then λ1 = λ3 and

(λ1−λ3)s2α−2
√
λ2λ4 > 0 imply that λ1 = λ2 = λ3 = 1

3 and

λ4 = 0, which causes λ1−λ3−2
√
λ2λ4 = 0, which by (14)

and (16) implies C = 0. Since α is free when λ1 = λ3 and
(λ1−λ3)s2α−2

√
λ2λ4 > 0, then for continuity, we can put

C = 0 and 2
√
λ2λ4 = λ1−λ3 in the λ1 6= λ3 case solution

to get α= 1
2 sin−1(λ1−λ3

λ1−λ3
) = π

4 for the λ1 = λ3 case by
using l’Hôpital’s rule on lim

x→0
(s2α) with x≡ λ1−λ3.

C(α, β)

C

Cpred

α

π
2

π
4

0
β

π
2

π
4

0

1.0

0.5

0.0

FIG. 3: (color online) Example of approximation of C(α, β)
from (29) for a particular arbitrary rank-4 spectrum and tar-
get concurrence C (which would be inputs to (5)). The value
Cpred predicted by using (30) and (32) in (29) is shown as the
red dot, and the planar surface shows the target C. If the red
dot always lies on an intersection of the plane C and the sur-
face C(α, β), then the predicted concurrence Cpred is correct.
Repeating this test over 1000 times for arbitrary input states
showed no failures, which provided strong motivation to use
(30) and (32) as part of the ansatz for ρX in (5) (which was
then proven to be a full solution, as shown in Sec. III A).

3. Applying Parameters to Get ρX

Now we simply need to plug our values of α and β
from (32) and (30) into (28) to get ρX in terms of C
as well as spectrum. Solving (32) for s2α and putting
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that and (30) into (28) with the help of the identity s2θ =
1
2 (1−

√
1− s22θ) for θ ∈ [0, π2 ], we obtain

ρX =
1

2


λ1+λ3+

√
Q · · C+2

√
λ2λ4

· 2λ2 · ·
· · 2λ4 ·

C+2
√
λ2λ4 · · λ1+λ3−

√
Q

, (33)

where the cases of (32) united in this process, and

Q ≡ (λ1 − λ3)2 − (C + 2
√
λ2λ4)2. (34)

However, the physicality of ρX requires that the radicand
Q in (33) must be nonnegative, so we get the condition
that (33) and thus (32) only apply when Q > 0.

So what happens when Q < 0? In fact, the answer lies
in the proof in (ii.b) of Sec. III A; since Q < 0 implies
that λ1 − λ3 − 2

√
λ2λ4 < 0 which means that all MEMS

with spectra that satisfy λ1 − λ3 − 2
√
λ2λ4 < 0 have

CMEMSΛ
= 0, then all states ρmust have C = 0 whenever

Q < 0, as concluded in (22).
Thus, we are free to use any separable X state of the

same spectrum for the Q < 0 case, so for the sake of
continuity with the Q > 0 case, we chose the MEMS X
state of (13), since as explained above, its concurrence is
zero whenever λ1−λ3−2

√
λ2λ4 < 0, which is guaranteed

when Q < 0. The continuity of the off-diagonal elements
between Q cases in (8) is preserved since in the Q = 0
case, C = λ1 − λ3 − 2

√
λ2λ4 (put Q = 0 into (34)), so

C + 2
√
λ2λ4 = λ1 − λ3, showing that the off-diagonal

elements have equivalent values at the edge case.
Therefore, all of this motivates the form of ρX in (8).

Then, the Q cases can be united by defining

Ω ≡ max{0, Q}, (35)

which allows us to replace
√
Q in (8) (or (33)) with

√
Ω

since that causes no change when Q > 0, and allows us
to add ±

√
Ω to ρX1,1 and ρX4,4 of the Q < 0 case in

(8) since that is merely adding zero. The off-diagonal
elements are unified by solving (34) for C + 2

√
λ2λ4 as

C + 2
√
λ2λ4 =

√
(λ1 − λ3)2 −Q, (36)

and then replacing Q by Ω as

C + 2
√
λ2λ4 =

√
(λ1 − λ3)2 − Ω, (37)

since in the Q > 0 case, Ω = Q which makes (37) agree
with (36) and can be directly substituted into (5) to get
back the Q > 0 case in (8), while in the Q < 0 case,
Ω = 0 which makes (37) simplify to λ1−λ3 which causes
(5) to simplify to the Q < 0 case of (8).

Therefore, we have now shown how the state family
ρX in (5) was derived, and more importantly, we showed
in Sec. III A an explicit proof that ρX in (5) does indeed
have EPU equivalence with all general states ρ. The ex-
planations in the present section are merely the prelim-
inary work for proposing a candidate family of X states
as an ansatz, while the proofs in Sec. III A conclusively
verify that ρX in (5) is necessary and sufficient to achieve
universal EPU equivalence.

IV. CONCLUSIONS

The main result of this paper is the explicit family of X
states ρX given in (5) with the property of entanglement-
preserving unitary (EPU) equivalence to the set of gen-
eral two-qubit states ρ. This means that for every ρ, it
is possible to find a unitary operation that converts ρ to
an X state of the same entanglement as ρ.

The family ρX in (5) gives us the explicit result of such
an EPU transformation, given only the spectrum of ρ and
its concurrence C. The unitary transformation itself can
then be found implicitly from (7), though it is unneces-
sary since (5) gives the desired result. Explicit solution
of the EPU is possible, but not nearly as practical as (5).

The proof that ρX of (5) is EPU-equivalent to general
states was given in Sec. III A, while the motivation for us-
ing (5) as an ansatz prior to proof was given in Sec. III B.
This method of finding a useful ansatz may be helpful for
investigating EPU equivalence in larger systems.

It was already proven in [35], in agreement with [22],
that in qubit-qutrit (2× 3) systems, literal X states can-
not achieve EPU equivalence to general states. How-
ever, the more general special state family called true-
generalized X (TGX) states proposed in [22] may indeed
have EPU equivalence with general states, though a proof
for that is still unknown for 2× 3 or larger systems.

A particularly useful application of (5) is that it lets
us parameterize mixed states of any spectrum and con-
currence; that is, given some desired spectrum and C,
plug them into (5) to get a state with the desired proper-
ties. However, for this purpose, the physical values of C
are limited by the eigenvalues as shown in (14) and (16),
so for a free parameterization, we can rewrite (6) as

Q ≡ (λ1 − λ3)2 − (Cη + 2
√
λ2λ4)2, (38)

where Cη is the guaranteed-physical concurrence,

Cη ≡ ηmax{0, λ1 − λ3 − 2
√
λ2λ4}, (39)

where η ∈ [0, 1] is free, and (39) ensures that we al-
ways generate C ∈ [0,max{0, λ1−λ3− 2

√
λ2λ4}]. Then,

by using (38) in (5), we can choose any combination of
spectrum (parameterizable as squared hyperspherical co-
ordinates [36] s.t.λ1 > · · · > λ4) and η (which scales
the physically achievable entanglement), and be guaran-
teed to generate a physical ρX. Alternatively, just choose
C ∈ [0,max{0, λ1−λ3−2

√
λ2λ4}]. (Note that this is not

a concern in the other direction, since given a general ρ,
its physicality guarantees that its spectrum and C are a
physically valid combination to use in (5) and (6).)

One area of future research is to find a general form of
the UEPUX connecting ρX of (5) to general ρ. As shown
in [33], for two qubits, pure X states are EPU equivalent
to all pure general states by an EPU of the form

UEPU = (U (1) ⊗ U (2))D, (40)

where U (m) for m = 1, 2 are unitary operators on the lo-
cal subsystems, but D is any diagonal unitary operator,
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and is not necessarily local, as proven in [22], and D must
be adjacent to ρX, such as ρ = UEPUρXU

†
EPU. However,

for mixed two-qubit states, there may be a more general
form for U†EPUX

(we speak of the adjoint of (7) because
here we are applying it in the opposite direction as a pa-
rameterization of general states rather than a simplifying
transformation away from them as it was defined, while
(40) is defined in the parameterization context). Thus,
while this paper proves that it is possible to parameterize
all two-qubit states ρ in terms of spectrum and concur-
rence as, inversely to Fig. 1,

ρ = U†EPUX
ρXUEPUX

, (41)

for some general UEPUX
, we can only hypothesize that

U†EPU of (40) is the form of that general UEPUX
at this

time. One reason that (40) may not be the general EPU
we seek is that technically, the form of UEPUX

is already
specified in (7), but (7) generally depends on the eigen-
values and concurrence when written fully explicitly due
to its construction from eigenvectors, while (40) can be
chosen completely independent of spectrum or concur-
rence. It may be that such dependencies cancel in (7),
resulting in the adjoint of (40), but at the present time,
the complexity of the problem prevents a clear answer.

Interestingly, ρX of (5) is only a subset of X states.

Taking advantage of this fact, if we apply the local EPU

UL ≡
(
0 1
1 0

)
⊗
(
1 0
0 1

)
to ρX to get ρ′X ≡ ULρXU

†
L as

ρ′X ≡
1

2


2λ4 · · ·
· λ1 +λ3−

√
Ω

√
(λ1−λ3)2−Ω ·

·
√

(λ1−λ3)2−Ω λ1 +λ3 +
√

Ω ·
· · · 2λ2

,
(42)

where Ω is defined as in (5), it may then be more robust
against certain types of noise [26], and its general EPU
equivalence means that any intended ρ can be unitarily
converted to such an initial form, if ρ is known.

In closing, the state family ρX of (5) (and ρ′X of (42))
provides an explicit result that proves the conjecture of
[22], and also validates the proof of the existence of EPU
transformations from [23]. These states are likely to have
a wide range of useful applications in both technology
and theoretical work, and it is especially hoped that they
will give us insight to entanglement in larger systems,
where similar simple forms may help us find computable
entanglement measures for mixed states.
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