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Abstract: We investigate the non-Markoviandynamics of a qubit-oscillator system embedded in

a noisy environment by employing the hierarchical equations of motion approach. It is found that

the decoherence rate of the whole qubit-oscillator-bath system can be significantly suppressed

by enhancing the coupling strength between the qubit and the harmonic oscillator. Moreover, we

find that the non-Markovian memory character of the bath is able to facilitate a robust quantum

coherent dynamics in this qubit-oscillator-bath system. Our findings may be used to engineer

some tunable coherent manipulations in mesoscopic quantum circuits.
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1. Introduction

The rapid development of nanotechnology has opened the possibility to realize some quantum

optics and quantum information tasks at an atomic scale in experiments. Many current exper-

iments are based on some quantum resources [1, 2], such as the quantum entanglement [3],

the quantum correlation [4] and the quantum coherence [5, 6]. Unfortunately, such quantum

resources are quite fragile in the presence of a surrounding environment which destroys the

coherence and induces decoherence [7, 8]. The dissipation-induced decoherence in a quantum

microscopic system can be effectively modeled by the famous spin-boson model, which de-

scribes the interaction between a two-level system and a dissipative bosonic bath [7, 8]. The

spin-boson model has attracted considerable attention in past decades because it provides a

universal model for numerous physical and chemical processes [9–11]. Due to the fact that the

coupling with the surroundingbath is unavoidable, how to fight against the decoherence becomes

a very important research field. Various strategies have been proposed to reduce the decoherence

in a quantum dissipative system, for example, applying a train of decoupling pulses [12–15],

introducing non-linear coupling between the qubit system and its surrounding bath [16–21], and

adding an auxiliary degree of freedom to change the effective bath density spectral function

which is responsible for the decoherence behavior [22,23]. Each scheme has its own regimes of

validity depending on the qubit-bath coupling strength, temperature of the bath, as well as the

bath density spectral function.

In this paper, motivated by Refs. [22, 23], we try to achieve a tunable coherent dynamics of

a biased qubit-bath model by introducing an auxiliary single-mode harmonic oscillator which

acts as a controllable degree of freedom. A similar qubit-oscillator-bath system is also studied

in Ref. [24], it maybe connect to some photosynthetic pigment-protein complexes. Although

the particular configuration of the qubit-oscillator-bath system looks like some non-linear-bath

systems proposed in Refs. [16, 18–20, 25], it is necessary to point out that the system discussed

in this paper is completely different from that of Refs. [16, 18–20, 25] in which the qubit is

designed to be not directly coupled to the multi-mode bosonic environment (the dissipation

also enters the qubit dynamics via the intermediate single-mode harmonic oscillator), while, in

our study, the qubit is directly embedded in the multi-mode bath and the auxiliary single-mode

harmonic oscillator only interacts with the qubit. We also want to emphasize that our study

is a nontrivial extension of Refs. [22, 23] in the following two aspects: first, we consider the

nonzero bias effect and use a different bath density spectral function. Second, we adopt the

hierarchical equations of motion (HEOM) approach [17,26,27] rather than a perturbative theory

to investigate the coherent dynamics of the qubit-oscillator-bath system. The HEOM is a set of



time-local differential equations for the reduced density matrix of the quantum subsystem, which

was originally proposed by Tanimura and his co-workers [26]. This numerical treatment includes

all the orders of the system-bath interactions and is beyond the usual Markovian approximation,

the rotating-wave approximation, and the perturbative approximation. Although there exists a

spectrum of numerical techniques for dealing with non-Markovian dynamics in quantum open

systems, including the quasiadiabatic path integral method [28], the real-time path integral Monte

Carlo technique [29], the multilayer multiconfiguration time-dependent Hartree theory [30], the

time-dependent numerical and density matrix renormalization-group approaches [31], as well

as the Dirac-Frenkel time-dependent variational principle [32], HEOM is a well-accepted and

highly-efficient numerical formulation. In this sense, compared with the perturbative theory used

in Refs. [22, 23], the conclusion obtained by the HEOM method should be more convincing.

During the past years, there has been an increasing interest to study the memory effect of

the bath in quantum dissipative dynamics; this memory effect, which is also called as the non-

Markovianity, is a very important characteristic of a quantum open system [10, 33]. How to

rigorously define and measure the non-Markovianity has become a hot topic recently. Different

theories and physical quantities for detecting the degree of non-Markovian memory effect

during a dynamical process are proposed in the previous literatures, for example, the trace

distance [33], the quantum Fisher information [34], the quantum mutual information [35], the

quantum fidelity [36], the quantum channel capacity [37], and the k divisibility [38]. Using the

trace distance to characterize the non-Markovian quantum behavior is one of the most popular

computable schemes. Trace distance is a metric of the distinguishability between two quantum

states [1, 10, 33]; the change in the trace distance can be interpreted as a flow of information

between the quantum subsystem and the environment [10, 33]. A Markovian process tends to

continuously reduce the value of trace distance or, equivalently, the distinguishability between

a pair of quantum states, which means that the information flows from the quantum subsystem

to its environment. On the other hand, the increase of the distinguishability means a reversed

flow of information from the environment back to the quantum subsystem, which is the typical

character of a non-Markovian quantum process.

The non-Markovianity is not just a mathematical concept, but has many applications in realistic

physical studies [10,39,40]. In Ref. [40], Huelga et al. demonstrated that the non-Markovianity

is a crucial property that leads to a steady state entanglement, while, a purely Markovian noise

would result in the complete destruction of entanglement. A steady state entanglement is a very

valuable resource from the view of the experiment, their result implies that the non-Markovianity

may be very beneficial to certain quantum optics and quantum information tasks. Considering

that fact that the quantum coherence and the quantum entanglement have a close connection,

for example, in Ref. [41], the authors have proven that any degree of quantum coherence with

respect to some reference basis can be converted to entanglement via incoherent operations.

Some interesting questions arise naturally here: what is influence of the non-Markovianity

on the dynamics of the qubit-oscillator-bath system considered in this paper? Does the non-

Markovianity favor the coherent dynamics? In this paper, we try to address this question by

connecting the dynamics of the qubit-oscillator-bath system with the rigorous measure of its

non-Markovianity in term of trace distance.

This paper is organized as follows. In Sec.2, we present the qubit-oscillator-bath model which

may be feasible in current experiments and briefly outline the general formalism of the HEOM

approach. In Sec.3, we study the non-Markovian dynamics of the qubit-oscillator-bath model

and discuss how to the control coherent dynamics by tuning the parameters of the single-mode

harmonic oscillator. The main conclusion of this paper is drawn in Sec.4. Moreover, in Appendix

A, we provide some additional details to obtain the steady value of the population difference. In

Appendix B, we briefly show how to measure the non-Markovianity in a numerical simulation.



Fig. 1. Schematic representation of a possible candidate to realize the qubit-oscillator-bath

model in experiments: a double quantum dot couples to an electromagnetic resonator. The

biased qubit system can be achieved by the double quantum dot, in which two electrons are

confined in a double-well potential created by a two-dimensional electron gas (say a GaAs

semiconductor material). By tuning the externally applied voltage and the magnetic field,

the two electrons can form one effective spin-qubit. The single-mode harmonic oscillator

can be modeled by a transmission line whose frequency is of the order of GHZ in current

experiments. In our study, the qubit-oscillator system is embedded in a noisy bosonic

environment, the double quantum dot interacts with the multi-mode bosonic bath via the

interdot tunnel gate.

2. Model and methodology

We first consider a qubit-oscillator system, in which a biased qubit interacts with a single-mode

harmonic oscillator. The Hamiltonian of the qubit-oscillator system is given by

Ĥqo =
1

2
ǫσ̂z +

1

2
∆σ̂x + ω0â

†
â + g0σ̂x(â† + â), (1)

where σ̂x,z are Pauli matrices to describe the qubit system, ǫ is the bias field and ∆ denotes the

bare tunneling parameter. Operators â† (â) is the creation (annihilation) operator of the single-

mode harmonic oscillator whose frequency is given by ω0. The coupling strength between the

qubit and the single-mode harmonic oscillator is characterize by the parameter g0. It is easy to

check that Ĥqo is equivalent to the standard biased Rabi model [42], by a simple rotation around

the y axis.

Such an artificial two-level atom coupled to a harmonic oscillator is one of the most funda-

mental models for the quantum optics and the quantum information sciences [43]. Recently, the

joint development of artificial atoms and high finesse microwave resonators in nanotechnology

has brought the realization of the qubit-oscillator model considered in this paper on a chip. As

illustrated in Fig. 1, the biased qubit can be achieved by making use of a superconducting quan-

tum circuit [44] or a semiconductor double quantum dot [45], while the single-mode harmonic

oscillator can be simulated by an electromagnetic transmission line resonator [46]. Thus, the

qubit-oscillator system considered in this paper is not merely of academic interest, but it is a

realistic setup in current experiments.

Additionally, we also consider the qubit experiences a dissipative bath which is consists of a

set of non-interacting harmonic oscillators. The Hamiltonian of the multi-mode bosonic bath is



given by Ĥb ≡ ∑

k ωk b̂
†
k
b̂k and the qubit-bath interacting term is described by

Ĥqb = σ̂z

∑

k

gk(b̂†k + b̂k), (2)

where b̂
†
k

and b̂k are creation and annihilation operators of the kth bosonic mode with frequency

ωk , respectively. The qubit-bath coupling constant is labeled by the parameter gk . Then the total

Hamiltonian is written as Ĥ = Ĥqo+ Ĥb+ Ĥqb. One can find that, the qubit-oscillator-bath system

recovers the biased spin-boson model, which has been extensively investigated in many previous

articles (see Refs. [47–49] and Appendix A), by dropping the single-mode harmonic oscillator.

Before moving on, we shall introduce our initial-state conditions: we assume the initial state of

the whole qubit-oscillator-bath system is a product state: ρ̂(0) = ρ̂q(0) ⊗ ρ̂o(0) ⊗ ρ̂b(0). Operator

ρ̂q(0) = |e〉〈e| is the initial state of the qubit, where |e〉 denotes the excited state of the Pauli

z operator, i.e., σ̂z |e〉 = |e〉. Operator ρ̂o(0) = |α〉〈α| denotes initial state of the single-mode

harmonic oscillator, where |α〉 ≡ exp[α(â† − â)]|0a〉 with â|0a〉 = 0 is the harmonic oscillator’s

coherent state, the dimensionless parameter α denotes the amount of displacement. The multi-

mode bosonic bath is initially prepared in its Fock vacuum state ρ̂b(0) = |0b〉〈0b |, where |0b〉
is defined by |0b〉 ≡ ∏

k |0k〉 with b̂k |0k〉 = 0. In our study, we assume that the multi-mode

bosonic bath is always in the equilibrium state, i.e., ρ̂b(t) = ρ̂b(0) = ρ̂b.

Generally, it is convenient to encode the frequency dependence of the interaction strengths in

the bath density spectral function J(ω) ≡ ∑

k g
2
k
δ(ωk − ω), in this paper, we assume the bath

density spectral function J(ω) has the Lorentz form:

J(ω) = 1

2π

γλ2

(ω − ∆)2 + λ2
,

where λ defines the spectral width of the coupling and γ can be approximately interpreted as

the qubit-bath coupling strength. The reason why we choose the Lorentz spectral function is

twofold: firstly, for a Lorentzian bath density spectral function J(ω), the bath correlation function,

C(t) ≡ trb[ĝb(t)ĝb(0)ρ̂b] with ĝb(t) ≡
∑

k gk(b̂†keiωk t + b̂ke−iωk t ), is given by [8]

C(t) =
∫

dωJ(ω)e−iωt

=

1

2
γλe

−(λ+i∆)t .
(3)

This is an Ornstein-Uhlenbeck-type bath correlation function which is the key requirement to

perform a HEOM simulation [17,26,27]. Secondly, the Lorentzian spectral function has a clear

boundary between Markovian and non-Markovian regimes [8]. More specifically speaking, the

parameter λ is connected to the bath correlation time τb by the relation τb ≃ λ−1, while the time

scale τs, on which the state of the system changes, is given by τs ≃ γ−1. In this sense, the boundary

between Markovian regimes and non-Markovian regimes can be approximately specified by the

ratio of τb/τs = γ/λ. When γ/λ is very small, which means the bath correlation time τb is much

smaller than the relaxation time of the quantum subsystem τs, the decoherence mechanics is

Markovian. When γ/λ is large, the memory effect of the bath should be taken into account and

the dynamics in this case is then non-Markovian. In fact, the hierarchical equations are equivalent

to the common Markovian Lindblad-type master equation when λ ≪ γ, due to the fact that the

bath correlation function reduces to the Dirac δ function, i.e., C(t − t ′) → const. × δ(t − t ′)
in this situation. This feature of the Lorentz spectral function is very helpful for us to build

the connect between the non-Markovianity and the coherent dynamics of the qubit-oscillator-

bath system. However, we also want to point out that a more rigorous way to distinguish the

Markovian or non-Markovian regimes in parameter space should consider not only the bath



density spectral function J(ω) but also the realistic decoherence channel. Thus, we also adopt

the scheme proposed by Breuer et al. [33] to measure the degree of non-Markovian in this

qubit-oscillator-bath system (see Appendix B for more details). The rigorous result obtained by

the trace distance is in good agreement with our above analysis.

In this paper, we adopt the HEOM method to investigate the non-Markovain coherent dynam-

ics. For the Ornstein-Uhlenbeck-type bath correlation function given by Eq.3, the hierarchical

equations can be derived from the ordinary SchrÜodinger equation ∂t |ψ(t)〉 = −iĤ |ψ(t)〉 or the

quantum Liouville equation ∂t ρ̂(t) = −i[Ĥ, ρ̂(t)] by making use of the Feynman-Vernon in-

fluence functional approach [26, 27] or stochastic perspectives [17, 50]. Following procedures

shown in Refs. [17, 50], one can obtain the hierarchy equations of the reduced qubit-oscillator

system (the degrees of freedom of the multi-mode bosonic bath has been partially traced out) as

follows:

d

dt
ρ̂ ®ℓ(t) =(−iĤ

×
qo − ®ℓ · ®µ)ρ̂ ®ℓ(t) + Φ̂

2
∑

p=1

ρ̂ ®ℓ+®ep (t) +
2
∑

p=1

ℓpΨ̂p ρ̂ ®ℓ−®ep (t), (4)

where vector ®ℓ = (ℓ1, ℓ2) is a two-dimensional index, ®e1 = (1, 0), ®e2 = (0, 1), and ®µ = (λ+ i∆, λ−
i∆) are two-dimensional vectors, the superoperators Φ̂ and Ψ̂p are defined as follows:

Φ̂ = −iσ̂×
z , Ψ̂p =

i

4
γλ[(−1)pσ̂◦

z − σ̂×
z ],

with X̂×Ŷ ≡ [X̂, Ŷ ] = X̂Ŷ − Ŷ X̂ and X̂◦Ŷ ≡ {X̂, Ŷ } = X̂Ŷ + Ŷ X̂ .

The initial-state conditions of the auxiliary matrices are ρ̂ ®ℓ=®0(0) = ρ̂q(0)⊗ ρ̂o(0) and ρ̂ ®ℓ,®0(0) =
0, where ®0 = (0, 0) is a two-dimensional zero vector. In our numerical simulations, we need

to truncate the size of Hilbert space of the single-mode harmonic oscillator as well as number

of the hierarchical equations. Unless otherwise stated, we restrict Ĥqo in a 16 × 16 matrix (8

bosonic modes of the bath are involved). We also set a sufficiently large integer L as the cutoff

order of the HEOM, which means all the terms of ρ̂ ®ℓ(t) with ℓ1 + ℓ2 > L are set to be zero,

and all the terms of ρ̂ ®ℓ(t) with ℓ1 + ℓ2 ≤ L form a closed set of differential equations. All these

differential equations can be easily solved directly by using the traditional Runge-Kutta method.

One can keep on increase the hierarchy order L until the final result converges. The reduced

density matrix of the qubit can be obtained by simply partially tracing out of the degrees of

freedom of the single-mode harmonic oscillator: ρ̂q(t) = tro[ρ̂ ®ℓ=®0(t)].

3. Results and discussions

In this section, the numerical results of the coherent dynamics of the qubit-oscillator-bath system

are presented, we focus on the dynamics of the population difference 〈σ̂z(t)〉 ≡ trq[ρ̂q(t)σ̂z],
which is a quantity of interest in experiments.

We start with the zero bias case, i.e., ǫ = 0. As one can see from Fig.2(a), without the

single-mode harmonic oscillator (g0 = 0), the population difference 〈σ̂z(t)〉 decays to zero very

fast, which indicates the multi-mode bosonic bath destroys the quantum coherence. While, in

the present of the single-mode harmonic oscillator, a visible oscillating enhancement is found in

the dynamics of the population difference 〈σ̂z(t)〉. Though the oscillation amplitude of 〈σ̂z(t)〉
becomes small as the time evolution, the coherent oscillations persist out to very long times

despite the interference of the multi-mode bosonic bath. We also find that such an oscillating

enhancement becomes more obvious with the increase of the parameter ζ = g0/ω0 (one can

increase the qubit-oscillator coupling g0 with a fixed ω0, or decrease the frequency of the

oscillator with a fixed g0). This result coincides with previous studies [22, 23]. Our finding

implies that the coherent dynamics of the qubit becomes more robust in the dissipative bath by
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Fig. 2. (a) The dynamics of the population difference 〈σ̂z (t)〉with zero bias ǫ = 0 for different

parameters: ζ = 0 (red solid line), ζ = 1 (blue dashed line) and ζ = 4 (magenta dotted line).

(b) The same with (a), but the range of the time evolution becomes t ∈ [60ps, 100ps]. (c) The

dynamics of the population difference 〈σ̂z(t)〉 with nonzero bias ǫ = 0.1GHZ for different

parameters: ζ = 0 (red solid line), ζ = 2 (blue dashed line) and ζ = 4 (magenta dotted

line). (d) The same with (c), but the range of the time evolution becomes t ∈ [60ps, 100ps].
Other parameters are chosen as α = 2, γ = 0.5GHZ, ∆ = 0.5GHZ, g0 = 0.02GHZ and

λ = 0.25GHZ.

introducing the auxiliary single-mode harmonic oscillator and the coherent dynamics is tunable

by adjusting the controllable parameters of the single-mode harmonic oscillator.

For the nonzero bias case, i.e., ǫ , 0, the population difference decays to a nonzero steady

state value 〈σ̂z(t → ∞)〉 ≃ −ǫ/
√
ǫ2
+ ∆2 with no single-mode harmonic oscillator presents.

This numerical result is in agreement with that of Ref. [47, 48]. In the present of the single-

mode harmonic oscillator, aparting from the coherent enhancement phenomenon, we observe

the steady state value of 〈σ̂z(t → ∞)〉 moves away from−ǫ/
√
ǫ2
+ ∆2 and shifts to a larger value

with the increase of ζ . This result can be explained by the frequency renormalization effect: the

introducing the auxiliary single-mode harmonic oscillator renormalizes the original bias field’s

frequency, i.e., ǫ → ηǫ , where η is the renormalized factor, and results in a larger steady state

value (see Appendix A for more details). These result demonstrate that the exist of the single-

mode harmonic oscillator can avoid the fast loss of the quantum coherence in a dissipative bath,

which is one of basic prerequisites for many tasks in quantum information processing.

Next we explore the influence of the non-Markovian of the multi-mode bath on the coherent

dynamics of the qubit. Many previous literatures have shown that the non-Markovianity has

significant effects on the decoherence dynamics of a quantum open system [8, 10, 11, 51]. Does

the non-Markovianity favor quantum coherence? Different studies give distinctly different con-

clusions. For example, in Refs. [17, 52, 53], the authors showed that the non-Markovianity may

suppress the decoherence dynamics in the spin-boson model and its extensions. According to

their valuations, the Markovain approximation seems result in too much quantum coherence by

neglecting the memory effect of the dissipative bath. On the contrary, it has been reported that the

non-Markovian effect may favor the quantum coherence dynamics in the three-level system [54].
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Fig. 3. (a) The coherent dynamics of the population difference 〈σ̂z(t)〉 with zero bias ǫ = 0

for different spectral widthes: λ = 2γ (red solid line), λ = 0.3γ (blue dashed line) and

λ = 0.1γ (magenta dotted line). (b) The same with (a), but ǫ = 0.3GHZ. (c) The non-

Markovianity N as the function of the spectral width with zero bias ǫ = 0. (d) The same

with (c), but ǫ = 0.3GHZ. Other parameters are chosen as γ = 0.5GHZ, ∆ = 2GHZ,

g0 = 0.02GHZ, α = 2 and ζ = 0.1.

Thus, whether the non-Markovianity favor the coherent dynamics or not is still an open issue,

different physical systems may lead to different results. From the view of the experiment, it

would be very helpful if one can find a quantum system in which the non-Markovianity favors

coherent dynamics, because the realistic bath has memory effect, Markovian approximation is

just a rough assumption when rigorous results can not achieved.

For the qubit-oscillator-bath system considered in this paper, as we discussed in Sec.2, the

non-Markovianity of the dissipative bath can be simply tuned by changing the ratio of λ/γ: the

non-Markovianity becomes weak as the the ratio of λ/γ increases. This conclusion is carefully

checked by using the trace distance as the measure of non-Markovianity, see Appendix B for

more details. As shown in Fig.3, in the non-Markovian regimes, (say λ/γ = 0.1 in Fig.3), the

oscillation amplitude is clearly larger than that of the Markovian regime (say λ/γ = 2 in Fig.3).

This result demonstrates that the coherent dynamics can be remarkably enhanced by increasing

the value of Markovianity and suggests that the non-Markovian character of the bath can be

viewed as a valuable quantum resource that favors the coherent dynamics.

4. Conclusion

In our theoretical formalism, the inclusion of the single-mode harmonic oscillator complicates

the coherent dynamics considerably, and the ratio of ζ = g0/ω0 plays a crucial role in this

treatment. How to achieve a large value of ζ is the main difficulty in realizing the coherent

control scheme considered in this paper. Thanks to the rapid development in experiments,

researchers are able to simulate the Rabi model in the ultra-strong coupling (g0 ≥ 0.1ω0) and

the deep-strong coupling (g0 ∼ ω0 and g0 > ω0) regimes [55, 56]. For example, by making

use of a superconducting flux qubit and an LC oscillator via Josephson junctions, Yoshihara



et al. have realized the quantum circuits with the ratio g0/ω0 ranging from 0.72 and 1.34 [56].

As we displayed in Fig.2(a), when the ratio g0/ω0 = 1, the effect of the quantum coherence

enhancement is very evident.

In summary, we investigate the non-Markovian dynamics of a qubit-oscillator system, built

of a biased qubit and a single-mode harmonic oscillator, in a noisy environment by employing

HEOM approach.Different from that of Refs. [16–21], the qubit is directly couples to the bosonic

bath and the single-mode harmonic oscillator is introduced as a controllable degree of freedom.

We find that the decoherence of the qubit can be reduced by tuning the ratio of g0/ω0 which means

the interplay between the combined single-mode harmonic oscillator and the qubit can expand

the coherent regime. Moreover, by using the trace distance as the measure of the non-Markovian

character of the bath, we find that the non-Markovianity is able to facilitate a robust quantum

coherence in this qubit-oscillator-bath system. This result suggests that the non-Markovianity

may be utilized as a tool to suppress the decoherence in quantum dissipative systems. In this

sense, the non-Markovianity is not just a mathematical concept, but a meaningful quantum

resource in quantum manipulations, a similar conclusion also reported in Ref. [57]. Finally, due

to the generality of the qubit-oscillator model, we expect our results to be of interest for a wide

range of experimental applications in quantum optics and quantum information science.

5. Appendix A: The population difference in the long-time limit

In this appendix, we briefly show how to approximately obtain the equilibrium steady value

of the population difference, i.e., 〈σ̂z(t → ∞)〉, by making use of the unitary transformation

method which is extensively used in the studies of the Rabi model [58] and the spin-boson

model [16, 23, 47, 48].

First, we apply a unitary transformation to the original Hamiltonian Ĥ as Ĥ ′
= eŜ Ĥe−Ŝ ,

where the generator Ŝ is given by Ŝ = ζσ̂x (â† − â) with a undetermined parameter ζ . By using

the Baker-Campbell-Hausdorff formula, the transformed Hamiltonian Ĥ ′ can be exactly derived

as follows

Ĥ
′
=

1

2
ǫ{cosh[2ζ(â† − â)]σ̂z − i sinh[2ζ(â† − â)]σ̂y}

+

1

2
∆σ̂x + ω0â

†
â + (g0 − ζω0)σ̂x(â† + â) + ζ(ζω0 − 2g0)

+

∑

k

ωk b̂
†
k
b̂k + {cosh[2ζ(â† − â)]σ̂z − i sinh[2ζ(â† − â)]σ̂y}

∑

k

gk(b̂†k + b̂k).

(5)

If we choose ζ = g0/ω0 [23, 58], the qubit-oscillator coupling term vanishes, in this case, the

transformed Hamiltonian can be rewritten as Ĥ ′
= Ĥ ′

0
+ Ĥ ′

1
, where

Ĥ
′
0 =

1

2
ηǫσ̂z +

1

2
∆σ̂x +

∑

k

ωk b̂
†
k
b̂k + ησ̂z

∑

k

gk(b̂†k + b̂k) + ω0 |α|2 −
g

2
0

ω0

, (6)

Ĥ
′
1 =

1

2
ǫ{cosh[2ζ(â† − â)] − η}σ̂z + {cosh[2ζ(â† − â)] − η}σ̂z

∑

k

gk(b̂†k + b̂k)

+ ω0â
†
â − iǫ sinh[2ζ(â† − â)]σ̂y − i sinh[2ζ(â† − â)]σ̂y

∑

k

gk(b̂†k + b̂k) − ω0 |α|2.
(7)

In this unitary transformation treatment, the parameter η is constructed such that 〈Ĥ ′
1
〉o =

0 [47, 48, 59], where 〈Ĥ ′
1
〉o ≡ tro(ρ̂oĤ ′

1
)/tro(ρ̂o) denotes the thermodynamic average value with

respect to the equilibrium state of the single-mode harmonic oscillator. In an approximate

estimation, one can regard ρ̂o = ρ̂o(0) = |α〉〈α|, then the condition 〈Ĥ ′
1
〉o = 0 reduces to



〈α|Ĥ ′
1
|α〉 = 0. It is easy to demonstrate that

〈α| sinh[2ζ(â† − â)]|α〉 = 0; 〈α|â†â|α〉 = |α|2.

Then, if we choose the parameter η as follows

η =〈0a |e−α(â
†−â) cosh[2ζ(â† − â)]eα(â†−â) |0a〉

=〈0a | cosh[2ζ(â† − â)]|0a〉

= exp

[

− 2
(

g0

ω0

)2

]

,

(8)

one can find that the condition 〈α|Ĥ ′
1
|α〉 = 0 automatically statisfied. In a perturbative treatment,

Ĥ ′
1

can be neglected, then the effective system is given by Ĥ ′
eff
= Ĥ ′

0
. It is quite clear to see the

effect of the parameter η is a renormalization factor of ǫ which renormalizes ǫ to a smaller value,

because η is a real number and smaller than one.

Then, the effective system Ĥ ′
eff

reduces to the well-known biased spin-boson model and has

been widely studied by a variety of different methods. Due to the fact that the last two terms in

Eq.6 are constant which have no influences on the dynamical results, one can safely drop them.

Following the detailed exposition in Refs. [47, 48, 59], one can obtain the equilibrium steady

value of the population difference of the biased spin-boson model that is given by

〈σ̂z(t → ∞)〉 ≃ − ηǫ
√

∆2
+ (ηǫ)2

= −
ǫ

√

(∆

η

)2

+ ǫ2

. (9)

From the above expression, it is easy to check that a larger value of ζ makes a larger steady value

of the population difference 〈σ̂z(t → ∞)〉 which is in agreement with our numerical simulation

in Fig.2.

6. Appendix B: The measure of non-Markovianity

In this appendix, we would like to show how to characterize the non-Markovianity in a quantum

open system by making use of the trace distance. According to Ref. [33], the most important

feature of the non-Markovianity is the emergence of the recoherence or the information backflow

which can be described by the rate of the trace distance between two physical initial states. The

trace distance of two quantum states ρ̂1 and ρ̂2 is defined by D(ρ̂1, ρ̂2) ≡ 1
2
‖ ρ̂1 − ρ̂2‖1, where

‖ X̂ ‖1 ≡ tr
√

X̂† X̂ is the trace norm or the Schatten one-norm of an arbitrary operator X̂ . For

a initial-state pair ρ̂1,2(0) and a given dynamical map Λ̂t that generates the time-evolution

ρ̂(t) = Λ̂t [ρ̂(0)], one can define the rate of change of the trace distance as follows̟[t; ρ̂1,2(0)] ≡
d
dt

D[ρ̂1(t), ρ̂2(t)]. When̟[t; ρ̂1,2(0)] < 0, ρ̂1(t) and ρ̂2(t) become indistinguishable, and this can

be understoodas the quantum informationflows from the quantum subsystem to the environment;

when ̟[t; ρ̂1,2(0)] > 0, ρ̂1(t) and ρ̂2(t) become distinguishable, and this can be interpreted as

the quantum information flows back to the quantum subsystem. Under this spirit, a measure for

the non-Markovianity of a quantum process can be defined by

N ≡ max
ρ̂1,2(0)

∫

̟>0

dt̟[t; ρ̂1,2(0)], (10)



where the time-integration is extended over all time intervals t ∈ [0,+∞) during which

̟[t; ρ̂1,2(0)] is positive, and the maximum runs over all possible initial-state pairs ρ̂1,2(0).
The definition of non-Markovianity in Eq.10 is not suitable for a numerical simulation, thus

some slight modifications are needed. First, we only focus on the non-Markovianityaccumulated

during a finite time interval t ∈ [0, tc], where tc is the upper bound of the time-integration,

because it is impossible to numerically simulate the dynamics of the qubit from zero to +∞.

Second, we change the original integrand and its corresponding integrating intervals in Eq.10

by a simple algebra that would not change the value of the non-Markovianity, by doing so, one

can avoid estimating whether or not ̟[ti; ρ̂1,2(0)] is positive or not at each given time t = ti .

Finally, a equivalent expression of the non-Markovianity can be written as follows

N ≡ max
ρ̂1,2(0)

1

2

∫ tc

0

dt
{

|̟[t; ρ̂1,2(0)]| +̟[t; ρ̂1,2(0)]
}

. (11)

It is neceaasry to point out that these modifications are also widely adopted in many previous

studies [60, 61].

According to Refs. [10,25,60–62], the calculation of the non-MarkovianityN can be further

simplified by choosing a pair of initial state as two orthogonal states that lie on the boundary

of the space of physical states. For the qubit-system case, this orthogonality implies that both

of the two initial states must be pure states. Thus, in our numerical simulations, we assume the

expressions of these initial-state pairs of the qubit are given by ρ̂q1(0) = |ϕq(0)〉〈ϕq(0)| and

ρ̂q2(0) = |ϕ⊥q (0)〉〈ϕ⊥q (0)| with

|ϕq(0)〉 = cos
( θ

2

)

|e〉 + e
iφ sin

( θ

2

)

|g〉, (12)

and

|ϕ⊥q (0)〉 = sin
( θ

2

)

|e〉 − e
iφ cos

( θ

2

)

|g〉, (13)

where |e〉 and |g〉 are the excited and the ground states of Pauli z operator σ̂z , respectively, the

ranges of the two initial-state parameters are given by θ ∈ [0, π] and φ ∈ [0, 2π]. By randomly

generating a sufficiently large sample of initial-state parameter combinations (θi, φi), one can

find the optimal initial-state pair for the non-Markovianity. According to the definition in Eq.10,

the measure N is non-negative, and we have N = 0 if and only if the process is Markovian. A

nonzero value N > 0, implies a non-Markovian process. In our simulation, the upper bound

of the time integration is tc = 50ps, and the single-mode harmonic oscillator is approximately

regarded as a 4 × 4 matrix due to the limitation of our computation resources.
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