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In this letter we study thermal quantum correlations as quantum discord and entanglement in

bipartite system imposed by external magnetic field with Herring-Flicker coupling ie.

J(R) =

1.642¢ 2 R5/2 4 O(R2672R). The Herring-Flicker coupling strength is the function of R, which is
the distance between spins and systems carry XXX Heisenberg interaction. By tuning the coupling
distance R, temperature and magnetic field quantum correlations can be scaled in the bipartite
system. We find the long sustainable behaviour of quantum discord in comparison to entanglement
over the coupling distance R. We also investigate the situations, where entanglement totally dies but
quantum discord exist in the system. The present findings in the letter may be useful for designing
quantum wires, data bus, solid state gates and quantum processors.

I. INTRODUCTION

Entanglement [1] is the back bone for quantum in-
formation processing tasks, such as teleportation, quan-
tum cryptography, quantum games and many others [2].
Fundamental role of entanglement in developing quan-
tum computer has significant importance. As far as the
quantum computer architecture is concerned, the quan-
tum bus [3] have important role which is used to connect
the quantum devices over the bus and routing the infor-
mation. However there is no perfect model for quantum
computer architecture as yet. Quantum bus based on
spin chains [4, 5] play the role to transport the data over
the bus among quantum registers and the flow of data
can be controlled by tuning the relative coupling among
spins. So, in this direction it becomes very important
to study the quantum correlations and their variations
through coupling distance in spin chains. Varieties of
spin chains have been studied by various authors with-
out assuming the coupling strength as function of po-
sition in various configurations like XXX, XYZ, XXZ.
Very few studies have been done for the effect of cou-
pling distance on quantum correlations. In 1988, Hal-
dane and Shastry have studied the spin chains for long
range interactions [6, 7], in which the coupling strength
follow the inverse square law. Relatively in the same
direction, XXZ Heisenberg spin chain with long range
interactions has been studied by BO. Li[8], XX Heisen-
berg spin chain with Calogero Moser type interaction has
been studied by MA XiaoSan [9]. Very recent studies for
the same has been found in literature [10-13]. In 2005,
Zhen Huang and Sabre Kais have shown the dependency
of entanglement on Herring-Flicker (HF) coupling dis-
tance [14] of XY spin chain governed by Ising modal [15].
The authors have found, the increasing amount of mag-
netic field decreases the entanglement over the HF cou-
pling distance. HF coupling has its importance in deter-
mining the energy difference between triplet and singlet
state of the Hydrogen molecule [14], which is given by
J(R) = Etripiet — Esingier = 1.642¢ 2ER5/2 1 O(R?e21).
So by tuning the coupling distance R, the energy differ-

ence can be scaled. By taking the motivations from the
above studies in continuation of Zhen Huang and Sabre
Kais study [15], we study the effect of HF coupling dis-
tance on thermal quantum correlations in XXX configu-
ration of Hisenberg bipartite system and investigated that
thermal quantum discord [16-18] sustain over the larger
range of R in comparison to thermal entanglement [19-
21]. Further we find the parameter values of temperature
and magnetic field over which entanglement vanish in the
system but thermal quantum discord exists over R. Here
we mention that quantum information processing com-
munity is always interested to search such systems which
can persist long quantum correlations and avoid the phe-
nomenon of entanglement sudden death [22-29] for prac-
tical applicability of the system. Finding the properties of
thermal quantum correlations through HF coupling dis-
tance can be useful to construct the quantum buses, solid
state quantum gates and quantum processors. To the
best of our knowledge, this study present the first out-
come of thermal quantum discord over the HF coupling
distance R.

The Plan of the paper is as follows in section 2, we dis-
cusses the Hamiltonian, thermal density matrix and con-
currence. In Section 3, we study the dynamics of thermal
quantum discord and entanglement with the varying val-
ues of parameters temperature and magnetic field over
the coupling distance R. In the last with Section 4, we
present the conclusion of the paper.

II. HAMILTONIAN, THERMAL DENSITY
MATRIX, CONCURRENCE AND DISCORD

In this section we give the Hamiltonian of the bipar-
tite spin system, thermal density matrix and concurrence.
The Hamiltonian of bipartite system is given as below,

H = J,o705 + Jyoioy + J.0i05 + B(o] +035) (1)

In this letter we consider the case with (J, = J, = J, =
J > 0) for XXX configuration of Heisenberg spin chain.
Further we assume the coupling J is HF coupling ie.J(R),
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The plot of the function J(R) is shown in the Figure 1.
In order to study the thermal behaviour of entanglement

we need to calculate the thermal density matrix of the
7 system, which can be obtained as,
0.15}
J [ e—H/KT
010 PT = T (e—H/KT) (4)
0.05f ) ) )
[ The matrix form of p” can be obtained by calculating
[ the eigenspectrum of the Hamiltonian given in Eq.3, this
0.00 6 matrix is obtained below,
FIG. 1: Herring-Flicker copuling strength J w.r.t R pr = lc1,¢2, 3, ¢4 (5)
given as, with,
J(R) = 1.642¢ 2R R5/2 + O(R?e2R) (2)
1 = [a11,0,0,01",  ¢2 = [0, a2, a32,0]" (6)
So the modified Hamiltonian for XXX configuration with c3 = [0, as3,a33,0]", ¢4 =10,0,0,a4)" (7)
HF coupling can be obtained as below,
H = J(R)[o{o5 +oioy + 0705+ B(c] +03] (3)  with,
J
2B+ J(R) J(R) 3J(R)
€ T 2KT e~ 2KT + e2KT
011 = ——Jm—_2s ~ 2B1J(R) J(R 57 0322 = s 3B 2B1J(R) 7 3I(R) ’ (8)
e KT + € KT -+ 2e” 2KT + 2e2KT e KT + € KT + 2e” 2KT + 2e2KT
(9)
J(R) 3J(R) J(R) 3J(R)
e 2KT — @ 2KT e 2KT — @ 2KT (10)
a3 = - ’ agz2 = T(R)— R
e~ J(ISI)(T2B + 8_2BQ+KJT(R) + 2e~ 2KT + 2637&1’;) e~ ](I;I)(T2B + e~ 2B2+K]1ER) + 2e~ 2KT + 2e 32%?

J(R) 3J(R)
e 2KT +4 e2KT
33 = ~— Jm 2B _2B1J(R) 3J(R)

e KT + ¢ KT + 2e” 2KT + 2e72KT

Further the format of thermal density matrix gives the
clue to obtain the concurrence in 4 x 4 dimensional ma-
trix. Here we mention that concurrence is a good measure
of entanglement for bipartite system. The concurrence is
4 x 4 dimensional matrix is given by

C(p) q—r1r—s} (13)

where (p > ¢ > r > s) with (p = VA1,q¢ = VA, r =
VAs,8 = V/Ag). Here (A1, A2, A3, \4) are the eigenvalues
of the matrix pp/. Where p/ is the spin flip matrix given
as,

= maz{0,p —

p = (oy®a,)p* (0, ®0,) (14)

Here p* is the complex conjugate of the density matrix.
Here we calculate the concurrence in the thermal density

44 = — () 28

J(R)—2B
e~ 2KT

2B+J(R) 3J(R)
e KT  + e~ ~ 2KkT  + 2¢~ 2KT + 2e72KT

matrix given in Eq. 5. In this case the concurrence is the
function of three parameters (KT, B, R).

Here we mention another quantum correlation so called
quantum discord. The quantum discord is measurement
based quantum correlation, for bipartite system AB, it is
mathematically defined as below,

Q') = S(p") = S(p"?) + min S(pP1Ax).  (15)

Where S(pAP) is the Von Neumann entropy in bi-
partite density matrix, S(p4) is Von Neumann en-
tropy in marginal density matrix p? and the term
ming 4,3 S(pP|Ax is the minimization of Von Neumann
entropy in marginal density matrix p® when the POVM
{Ay} is performed on subsystem A. Fore more details and
Mathematica code to calculate quantum discord, one can
follow Ref[16-18, 26].
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FIG. 2: Plot of entanglement and quantum discord over the HF coupling distance R. Here red color (A) is entanglement and

black color (A) is quantum dicord

KI=0.7 B=0.2

0.05
0.04
0.03
0.02
0.01

0 1 23 1 5 6
KT=0.9 B=0.2
Corr

0.02
0.01

7

0.05

0.04

0.03
0

1 23 4 5 6

7

R

KI=0.7 B=0.5

0.05
0.04
0.03
0.02
0.01

01 2 3 4 5
KT=0.9 B=0.5
Corr

0.02
0.01

6

7

0.05

0.04

0.03
0

R

KI=0.7 B=0.8

0.05
0.04
0.03
0.02
0.01
R

01 2 3 42 5 6 7
KT=0.9 B=0.8
Corr

0.05

0.04

0.03
0

0.02
0.01

534 5 ¢ 7 ¢

FIG. 3: Plot of entanglement and quantum discord over the HF coupling distance R. Here red color (A) is entanglement and

black color (A) is quantum dicord

IIT. THERMAL QUANTUM CORRELATIONS
OVER HF COUPLING

In this section we present the dynamics of thermal

over the HF coupling distance R with the varying pa-

rameters of temperature and magnetic field. The results

have shown in Fig.2.

For a fixed value of parameter

KT = 0.2, as the value of magnetic field B increases,

quantum correlations (quantum discord, entanglement),

the amplitude of entanglement and quantum discord de-



creases. It is observed that as HF coupling distance ad-
vances, both entanglement and quantum discord slowly
vanish after a certain range of R. It is interesting to ob-
serve that quantum discord sustain over the large range
of HF coupling distance R, while entanglement dies at
R = 3.2. As the value of KT increases with (KT = 0.4),
the amplitude of both quantum correlations decrease and
sustainable range of entanglement also decrease, how-
ever quantum discord sustain over the large range of R
and slowly surpass over the entanglement. Further with
KT = 0.6, we again find the amplitude of quantum cor-
relations decrease, and sustainable range of entanglement
also decrease than previous cases. With the same value
KT = 0.6, quantum discord completely cover the entan-
glement and even present in the absence of entanglement
in the system. Here we mention that quantum discord is
strong quantum correlation and has the long range sus-
tain ability over the entanglement. Next we find with the
parameter value KT > 0.7 and VB, the entanglement
totally vanish in the system but quantum discord still
exist. These results have been shown in Fig.3. The value
(KT > 0.7) is the threshold value at which the drastic
change takes place in the system.

IV. CONCLUSION

In this present article, we have studied thermal quan-
tum correlations in bipartite system with the existence of
Herring-Flicker coupling. The system carry XXX Heisen-
berg interaction and imposed by external magnetic field.
We have found for the fixed value of temperatures with in-

creasing amount of magnetic field, the amplitude of quan-
tum correlations decrease. Further it is observed that
quantum discord sustain over the large range of HF cou-
pling distance R in comparison to entanglement. The in-
creasing values of the temperature decrease the amplitude
of quantum correlations and increasing values of magnetic
field effect the sustainable range of entanglement. While
sustainable range of quantum discord has less influenced
by increasing magnetic field. At the parameter value of
temperature (KT = 0.6), quantum discord become dom-
inant over the entanglement and totally surpass it. We
also have found that, increasing values of the parameters
with (KT > 0.7) and VB, kill the entanglement, while
quantum discord still exist in the system. So quantum
discord is more robust quantum correlation in comparison
to entanglement, which is generally predicted behaviour
of quantum discord. We have found long range sustain
ability of the quantum discord over the entanglement as
the coupling distance increases with increasing amount
of magnetic field. The present study can be improved in
another spin chain configurations like XXZ, XYZ, XXZ
etc. to know the behaviour of quantum discord and en-
tanglement with Herring-Coupling, and can be useful for
quantum information processing.
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