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Abstract

The construction of unextendible maximally entangled bases is tightly related to quantum
information processing like local state discrimination. We put forward two constructions of
UMEBs in Cpd⊗Cqd(p ≤ q) based on the constructions of UMEBs in Cd⊗Cd and in Cp⊗Cq,
which generalizes the results in [Phys. Rev. A. 94, 052302 (2016)] by two approaches. Two
different 48-member UMEBs in C6 ⊗ C9 have been constructed in detail.

1 Introduction

It is well known that the quantum states are divided into two parts: separable states and

entanglement states. Quantum entanglement, as a potential resource, is widely applied into

many quantum information process, such as quantum computation [1], quantum teleportation

[2], quantum cryptography [3] as well as nonlocality [4]. Nonlocality is a very useful concept in

quantum mechanics [4, 5, 6] and is tightly related to entanglement. However, it is proved that

the unextendible product bases (UPBs) reveal some nolocality without entanglement [7, 8]. The

UPB is a set of incomplete orthogonal product states in bipartite quantum system Cd ⊗ Cd′

consisting of fewer than dd′ vectors which have no additional product states orthogonal to each

element of the set [9].

In 2009, S. Bravyi and J. A. Smolin [10] first proposed the notion of unextendible maximally

entangled basis(UMEB): a set of incomplete orthogonal maximally entangled states in Cd ⊗Cd′

consisting of fewer than dd′ vectors which have no additional maximally entangled vectors that

are orthogonal to all of them. These incomplete bases have some special properties. In bipartite

space Cd⊗Cd, one can get a state on the UMEB’s complementary subspace, whose entanglement

of assistance (EoA) is strictly smaller than logd, the asymptotic EoA [10]. As for in Cd ⊗ Cd′ ,
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one can also get a state on the complementary subspace of UMEB, corresponding to a quantum

channel, which would not be unital. Besides, it cannot be convex mixtures of unitary operators

too [11]. In addition, for a given mixed state, its Schmidt number is hard to calculate. If we can

get a n-member UMEB {|φi〉} in Cd ⊗ Cd′ , the Schmidt number of the following state

ρ⊥ =
1

dd′ − n
(I −

n
∑

i=1

|φi〉〈φi|),

is smaller than d [12]. Therefore, different UMEBs can be used to construct different mixed

entangled states with limited Schmidt number, even state with different Schmidt number.

In [11], B. Chen and S. M. Fei provided a way to construct UMEBs in some special cases

of bipartite system. Then H. Nan et al. [13], M. S. Li et al. [14], Y. L. Wang et al. [15, 16],

Y. Guo [17], G. J. Zhang et al. [18] developed some new results of UMEB in bipartite system.

Later, Y.J. Zhang et al. [19] and Y. Guo et al. [20] generalized the notion of UMEB from

bipartite systems to multipartite quantum systems. In [20], Y. Guo showed that if there exists

an N−member UMEB {|ψj〉} in Cd ⊗ Cd, then there exists a qd2 − q(d2 −N)-member UMEB

in Cqd ⊗ Cqd for any q ∈ N. Y. Guo et al. [21] also proposed the definition of entangled bases

with fixed Schmidt number.

In this paper, we study UMEBs in bipartite system Cpd ⊗Cqd (p ≤ q). A systematic way of

constructing UMEBs in Cpd ⊗Cqd from that in Cd ⊗Cd is presented firstly, and a construction

of 48-member UMEB in C6 ⊗ C9 is given as an example. Furthermore, a explicit method to

construct UMEBs containing pqd2−d(pq−N) maximally entangled vectors in Cpd⊗Cqd from an

N -member UMEB in Cp⊗Cq is presented. Moreover, another construction of 48-member UMEB

in C6 ⊗ C9 is obtained, thus generalized the results in Yu Guo[phys.Rev.A.94,052302(2016)] by

two approaches.

2 Preliminaries

Throughout the paper, we denote [d]′ = {0, 1, · · · , d− 1} and [d]∗ = {1, 2, · · · , d}.

A pure state |ψ〉 is said to be a maximally entangled state in Cd ⊗Cd′(d ≤ d′) if and only if

for a arbitrary given orthonormal basis {|i〉} of Cd, there exists an orthonormal basis {|i′〉} of

Cd′ such that |ψ〉 can be written as |ψ〉 = 1√
d

∑d−1
i=0 |i〉 ⊗ |i′〉[6].

A set of pure states {|φi〉}n−1
i=0 ∈ Cd ⊗ Cd′ with the following conditions is called an unex-
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tendible maximally entangled bases(UMEB) [10]:

(i)|φi〉, i ∈ [n]′ are all maximally entangled states,

(ii)〈φi|φj〉 = δij , i, j ∈ [n]′,

(iii)n < dd′, and if a pure state |ψ〉 meets that 〈φi|ψ〉 = 0, i ∈ [n]′, then |ψ〉 can not be

maximally entangled.

LetMd′×d be the Hilbert space of all d
′×d complex matrices equipped with the inner product

defined by 〈A|B〉 = Tr(A†B) for any A,B ∈ Md′×d. If {Ai}dd
′−1

i=0 constitutes a Hilbert-Schmidt

basis of Md′×d, where 〈Ai|Aj〉 = dδij , then there is a one-to-one correspondence between an

orthogonal basis in Cd ⊗ Cd′ {|φi〉} and {Ai} as follows [20, 21]:

|φi〉 =
1√
d

d−1
∑

k=0

d′−1
∑

ℓ′=0

a
(i)
ℓ′k|k〉|ℓ′〉 ∈ Cd ⊗ Cd′ ⇔ Ai = [a

(i)
ℓ′k] ∈ Md′×d,

Sr(|φi〉) = rank(Ai), 〈φi|φj〉 =
1

d
Tr(A†

iAj), (1)

where Sr(|φi〉) denotes the Schmidt number of |φi〉. Obviously, |φi〉 is a maximally entangled

pure state in Cd ⊗Cd′ iff Ai is a d
′ × d singular-value-1 matrix (a matrix whose singular values

all equal to 1). Specially, Ai is a unitary matrix when d = d′.

For simplicity we adopt the following definitions [17]. We call a Hilbert-Schmidt basis Ω =

{Ai}d
2−1

i=0 in Md×d a unitary Hilbert-Schmidt basis (UB) of Md×d if Ais are unitary matrices,

and a Hilbert-Schmidt basis Ω = {Ai}dd
′−1

i=0 in Md′×d a singular-value-1 Hilbert-Schmidt basis

(SV1B) of Md×d if Ais are singular-value-1 matrices. A set of d × d unitary matrices Ω =

{Ai}n−1
i=0 (n < d2) is called an unextendible unitary Hilbert-Schmidt basis (UUB) of Md×d if (i)

Tr(A†
iAj)=dδij ; (ii) if Tr(A

†
iX)=0, i ∈ [n]′, then X is not unitary.

[Definition] A set of d× d′ (d < d′) singular-value-1 matrices Ω = {Ai}dd
′

i=1 (n < dd′) is called

an unextendible singular-value-1 Hilbert-Schmidt basis (USV1B) of Md×d if (a) Tr(A†
iAj)=dδij ;

(b) if Tr(A†
iX)=0, i ∈ [n]′, then X is not a singular-value-1 matrix.

According to the Eq.(1), it is obvious that Ω = {Ai}d
2−1

i=0 is a UB iff {|φi〉} is a maximally

entangled basis (MEB) of Cd⊗Cd while Ω = {Ai}dd
′−1

i=0 is a SV1B iff {|φi〉} is a MEB of Cd⊗Cd′ .

And Ω = {Ai}n−1
i=0 (n < d2) is a UUB iff {|φi〉} is a UMEB of Cd⊗Cd while Ω = {Ai}n−1

i=0 (n < dd′)

is a USV1B iff {|φi〉} is a UMEB of Cd ⊗ Cd′ [17].
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3 UMEBs in Cpd ⊗ Cqd (p ≤ q) from UMEBs in Cd ⊗ Cd

Theorem 1. If there is an N-member UMEB {|ψj〉} in Cd ⊗ Cd, then there exists a

pqd2 − p(d2 −N)-member UMEB in Cpd ⊗ Cqd(p≤q).

Proof. Let {Wj = [wj
i′i]}N−1

j=0 be a UUB of Md×d corresponding to {|ψj〉},

|ψj〉 =
1√
d

d−1
∑

i=0

d−1
∑

i′=0

wj
i′i|i〉 ⊗ |i′〉, j ∈ [N ]′.

Denote

Unm =

d−1
∑

a=0

e
2πna

√
−1

d |a⊕dm〉〈a|,

Vkl =

p−1
∑

a=0

e
2πka

√
−1

p |a⊕ql〉〈a|,

where m,n ∈ [d]′; l ∈ [q]′; k ∈ [p]′; j ∈ [N ]′, and

Bj
k0 = Vk0⊗Wj, k ∈ [p]′; j ∈ [N ]′,

Bnm
kl = Vkl⊗Unm, k ∈ [p]′; l ∈ [q − 1]∗;m,n ∈ [d]′.

Set C1 = {Bj
k0} and C2 = {Bnm

kl }. Then C1∪C2 is exactly a USV1B in Mqd×pd.

Firstly, all Bj
k0 and Bnm

kl are qd× pd singular-value-1 matrices, which satisfy the conditions

in the Definition:

(a) Tr[(Bj
k0)

†Bj′

k′0] = pdδkk′δjj′ , Tr[(B
nm
kl )†Bn′m′

k′l′ ] = pdδkk′δll′δnn′δmm′ and Tr[(Bnm
kl )†Bj

k′0] =

0, where j, j′ ∈ [N ]′; k, k′ ∈ [p]′; l, l′ ∈ [q − 1]∗; n, n′,m,m′ ∈ [d]′.

(b) Denote S the matrix space of (Ip, Op×(q−p))
t ⊗ R, where t stands for matrix transpose,

Ip is the p×p identity matrix, Op×(q−p) is the p× (q−p) zero matrix and R ∈ Md×d. Obviously

the dimension of S⊥ is p(q − 1)d2. Thus C2 is an SV1B of S⊥ with p(q − 1)d2 elements.

Assume that D is a singular-value-1 matrix in Mqd×pd, which is orthogonal to all matrices

in C1 ∪C2. Since C2 is a SV1B of S⊥, then D ∈ S. No loss of generality, set

D =

(

A
O1

)

, A = diag(A1, A2, · · · , Ap), O1 = O(q−p)d×pd,

where Ah(h ∈ [p]∗) are all d× d matrices. Note that D is orthogonal to each Bj
k0 in C1, i.e.,

Tr(D†Bj
k0) = 0, k = [p]′; j ∈ [N ]′.
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Then

Tr

[

(

A† O†
1

)

pd×qd
·
(

G
O1

)

qd×pd

]

= 0,

where G = diag(ω0k
p Wj, ω

1k
p Wj, · · · , ω(p−1)k

p Wj), i.e.,

ω0k
p Tr(A

†
1Wj) + ω−1k

p Tr(A†
2Wj) + · · ·+ ω(1−p)k

p Tr(A†
pWj) = 0.

Hence,

HXj = 0,

where

H =















1 1 1 . . . 1

1 ωp−1
p ωp−2

p . . . ω1
p

1 ωp−2
p ωp−4

p . . . ω2
p

...
...

...
. . .

...

1 ω1
p ω2

p . . . ωp−1
p















, Xj =

















Tr(A†
1Wj)

Tr(A†
2Wj)

Tr(A†
3Wj)
...

Tr(A†
pWj)

















.

Obviously, Xj = O for j ∈ [N ]′ since detH 6= 0. That is to say, Tr(A†
hW0) = Tr(A†

hW1) =

· · · = Tr(A†
hWN−1) = 0, h ∈ [p]∗. As every An is orthogonal to each Wj , whereas {Wj} is

a UUB in Md×d, none of Ah is unitary. Moreover, all the singular values of Ahs are also the

singular values of D. Therefore, D is not a singular-value-1 matrix, which contradicts to the

assumption. Thus, C1 ∪ C2 is a USV1B in Mqd×pd. ✷

Example 1. A 48-member UMEB in C6 ⊗ C9 from a 6-member UMEB in C3 ⊗C3.

A 6-member UMEB in C3 ⊗ C3 from Ref.[10] is as follows:

Wj = I − (1− e
√
−1θ)|ψj〉〈ψj |, j = [6]′,

where

|ψ0,1〉 =
1

√

1 + φ2
(|0〉 ± φ|1〉),

|ψ2,3〉 =
1

√

1 + φ2
(|1〉 ± φ|2〉),

|ψ4,5〉 =
1

√

1 + φ2
(|2〉 ± φ|0〉),

with φ = (1 +
√
5)/2.

Then, denote

Unm =





0 0 1
1 0 0
0 1 0





m

·





1 0 0
0 ω3 0
0 0 ω2

3





n

, m, n ∈ [3]′,
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Vkl =





0 0 1
1 0 0
0 1 0





l

·





1 0
0 1
0 0



 ·
(

1 0
0 −1

)k

, k ∈ [2]′; l ∈ [3]′,

where ω3 = e
2π

√
−1

3 .

Let

Bnm
01 =





0 0
Unm 0
0 Unm



 , Bnm
11 =





0 0
Unm 0
0 −Unm



 ,

Bnm
02 =





0 Unm

0 0
Unm 0



 , Bnm
12 =





0 Unm

0 0
−Unm 0



 ,

Bj
00 =





Wj 0
0 Wj

0 0



 , Bj
10 =





Wj 0
0 −Wj

0 0



 ,

where n,m ∈ [3]′; j ∈ [6]′. Set C1 = {Bj
k0}, C2 = {Bnm

kl }, for k ∈ [2]′; j ∈ [6]′; l ∈
[2]∗; n,m ∈ [3]′. According to Theorem 1, we have that C1 ∪ C2 is a 48-number UMEB in

C6 ⊗ C9.

Remark 1. Theorem 1 in Ref.[15] is a special case of the above Theorem 1 for p = q.

4 UMEBs in Cpd ⊗ Cqd(p≤q) from UMEBs in Cp ⊗ Cq

Next, we will present a general approach to construct UMEBs in Cpd ⊗ Cqd from UMEBs

in Cp ⊗Cq.

Theorem 2. If there is an N-member UMEB {|ψj〉} in Cp ⊗Cq, then there exists a pqd2 −
d(pq −N)-member UMEB in Cpd ⊗ Cqd(p ≤ q).

Proof. Let {Wj = [wj
i′i]}N−1

j=0 be a USV1B of Mq×p corresponding to {|ψj〉}, then

|ψj〉 =
1√
d

d−1
∑

i=0

d′−1
∑

i′=0

wj
i′i|i〉 ⊗ |i′〉, j ∈ [N ]′.

Denote

Unm =
d−1
∑

a=0

e
2πna

√
−1

d |a⊕dm〉〈a|,

Vkl =

p−1
∑

a=0

e
2πka

√
−1

p |a⊕ql〉〈a|,
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where m,n ∈ [d]′; l ∈ [q]′; k ∈ [p]′; j ∈ [N ]′. Let

Bj
n0 = Un0⊗Wj, n ∈ [d]′; j ∈ [N ]′,

Bkl
nm = Unm⊗Vkl, m ∈ [d− 1]∗;n ∈ [d]′; l ∈ [q]′; k ∈ [p]′,

and

C1 = {Bj
n0}, C2 = {Bkl

nm}.

then, C1∪C2 is exactly a USV1B in Mqd×pd.

Firstly, all Bj
n0 and Bkl

nm are qd× pd singular-value-1 matrices, satisfying the conditions in

the Definition:

(a) Tr[(Bj
n0)

†Bj′

n′0] = qdδnn′δjj′ , Tr[(B
kl
nm)†Bk′l′

n′m′ ] = qdδnn′δmm′δkk′δll′ and Tr[(B
kl
nm)†Bj

n′0] =

0, where j, j′ ∈ [N ]′; k, k′ ∈ [q]′; l, l′ ∈ [p]′; n, n′ ∈ [d]′; m,m′ ∈ [d− 1]∗.

(b) Denote S the matrix space of Id ⊗R, where R ∈ Mq×p. Obviously, the dimension of S⊥

is pq(d− 1)d.

Setting C1 = {Bj
n0} and C2 = {Bkl

nm}, we have that C2 with pq(d− 1)d elements is an SV1B

of S⊥, and C1∪C2 is just a USV1B in Mqd×pd.

Assume that D is a singular-value-1 matrix in Mqd×pd, which is orthogonal to all matrices

in C1 ∪C2. Since C2 is a SV1B of S⊥, then D ∈ S. No loss of generality, set

D = diag(A1, A2, · · · , Ad)qd×pd,

where Ah(h ∈ [d]∗) are all q× p matrices. Similar to the proof of Theorem 1, we can prove that

none of Ah is singular-value-1 matrices. Moreover, all the singular values of all Ahs are also

the singular values of D, namely, D is not a singular-value-1 matrix, which contradicts to the

assumption. Thus, C1 ∪ C2 is a USV1B in Mqd×pd. ✷

Example 2. A 48-member UMEB in C6 ⊗C9 from a 4-member UMEB in C2 ⊗ C3.

A 4-member UMEB in C2 ⊗ C3 is as follows:

W0,1 = |0′〉〈0| ± |1′〉〈1|,

W2,3 = |0′〉〈1| ± |1′〉〈0|.

Denote

Unm =





0 0 1
1 0 0
0 1 0





m

·





1 0 0
0 ω3 0
0 0 ω2

3





n

, m, n ∈ [3]′,
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Vkl =





0 0 1
1 0 0
0 1 0





l

·





1 0
0 1
0 0



 ·
(

1 0
0 −1

)k

, k ∈ [3]′; l ∈ [2]′,

where ω3 = e
2π

√
−1

3 . Let

Bkl
01 =





0 0 Vkl
Vkl 0 0
0 Vkl 0



 , Bkl
11 =





0 0 ω2
3Vkl

Vkl 0 0
0 ω3Vkl 0



 , Bkl
21 =





0 0 ω3Vkl
Vkl 0 0
0 ω2

3Vkl 0



 ,

Bkl
02 =





0 Vkl 0
0 0 Vkl
Vkl 0 0



 , Bkl
12 =





0 ω3Vkl 0
0 0 ω2

3Vkl
Vkl 0 0



 , Bkl
22 =





0 ω2
3Vkl 0

0 0 ω3Vkl
Vkl 0 0



 ,

Bj
00 =





Wj 0 0
0 Wj 0
0 0 Wj



 , Bj
10 =





Wj 0 0
0 ω3Wj 0
0 0 ω2

3Wj



 , Bj
20 =





Wj 0 0
0 ω2

3Wj 0
0 0 ω3Wj



 ,

where k ∈ [3]′; l ∈ [2]′; j ∈ [4]′. Set C1 = {Bj
n0}, C2 = {Bkl

nm}, for k ∈ [3]′; l ∈ [2]′; j ∈
[4]′; n ∈ [3]′; m ∈ [2]∗. Then according to Theorem 2, C1∪C2 is a 48-member UMEB in C6⊗C9.

Remark 2. The Constructions of UMEB in Theorem 1 and Theorem 2 are different, which

can be easily seen from the Examples 1 and 2. We can give a state with Schmidt number 4

in the subspace of the UMEB in Example 1. While what we can get in the subspace of the

UMEB in Example 2 are the states with Schmidt number no more than 3. In fact, according to

Theorem 2, one can construct a UMEB in C4 ⊗ C6 from the UMEB in C2 ⊗ C3, while one can

not do this way from the Theorem 1. Here Theorem 1 in [15] is a also special case of the above

Theorem 2 for p = q.

Remark 3. By using Theorem 2 in [18], we can give a p(q− r)-member UMEB in Cp⊗Cq.

According to Theorem 2 in this paper, we can obtain a pd(qd− r)-member UMEB in Cpd⊗Cqd,

in whose subspace we can get some states with Schmidt number dr. We can also get a pd(qd−r)-
member UMEB directly by Theorem 2 in [18], nevertheless, in the associated subspace, one can

only attain the states with Schmidt number no greater than r. Therefore, they are different

constructions. Actually, there are many N -number UMEBs in Cp ⊗ Cq, where p ∤ N . In this

case, it doesn’t hold that pd|(pqd2 − d(pq − N)). Namely, we can not even get a UMEB with

the same number of members by Theorem 2 in [18].
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5 Conclusion

We have provided an explicit way of constructing a pqd2 − p(d2 − N)-member UMEB in

Cpd⊗Cqd from an N -member UMEB in Cd⊗Cd, and constructed a 48-number UMEB in C6⊗C9

as a detailed example. We have also established a method to construct a pqd2 − d(pq − N)-

member UMEB in Cpd ⊗ Cqd from an N -member UMEB in Cp ⊗ Cq, and presented another

48-member UMEB in C6 ⊗ C9. These results may highlight the further investigations on the

construction of unextendible bases and the theory of quantum entanglement.
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