Unextendible Maximally Entangled Bases in $\mathbb{C}^{pd} \otimes \mathbb{C}^{qd}$

Gui-Jun Zhang¹, Yuan-Hong Tao¹*, Yi-Fan Han¹, Xin-Lei Yong¹, Shao-Ming Fei^{2,3}

- 1 Department of Mathematics College of Sciences, Yanbian University, Yanji 133002, China
 - 2 School of Mathematics Sciences, Capital Normal University, Beijing 100048, China
 - 3 Max-Planck-Institute for Mathematics in the Science, 04103 Leipzig, Germany

* Correspondence to taoyuanhong12@126.com

* Abstract

The construction of unextendible maximally entangled bases is tightly related to quantum information processing like local state discrimination. We put forward two constructions of UMEBs in \$\mathbb{C}^{pd} \otimes \mathbb{C}^{qd}(p \leq q)\$ based on the constructions of UMEBs in \$\mathbb{C}^{qd} \otimes \mathbb{C}^{q}\$ and in \$\mathbb{C}^{\otimes} \mathbb{C}^{q}\$, which generalizes the results in [Phys. Rev. A. 94, 052302 (2016)] by two approaches. Two different 48-member UMEBs in \$\mathbb{C}^{6} \otimes \mathbb{C}^{g}\$ have been constructed in detail.

Introduction

It is well known that the quantum states are divided into two parts: separable states and entanglement states. Quantum entanglement, as a potential resource, is widely applied into many quantum information process, such as quantum computation [1], quantum teleportation [2], quantum cryptography [3] as well as nonlocality [4]. Nonlocality is a very useful concept in quantum mechanics [4, 5, 6] and is tightly related to entanglement. However, it is proved that the unextendible product bases (UPBs) reveal some nolocality without entanglement [7, 8]. The UPB is a set of incomplete orthogonal product states in bipartite quantum system \$\mathbb{C}^{d} \otimes \mathbb{C}^{d'}\$. Consisting of fewer than \$dd'\$ vectors which have no additional product states orthogonal to each element of the set [9].

In 2009, S. Bravyi and J. A. Smolin [10] first proposed the notion of unextendible maximally entangled basis (UMEB): a set of incomplete orthogonal maximally entangled states in \$\mathbb{C}^{d} \otimes \mathbb{C}^{d'}\$.

entangled basis (UMEB): a set of incomplete orthogonal maximally entangled states in $\mathbb{C}^d \otimes \mathbb{C}^{d'}$ consisting of fewer than dd' vectors which have no additional maximally entangled vectors that are orthogonal to all of them. These incomplete bases have some special properties. In bipartite space $\mathbb{C}^d \otimes \mathbb{C}^d$, one can get a state on the UMEB's complementary subspace, whose entanglement of assistance (EoA) is strictly smaller than logd, the asymptotic EoA [10]. As for in $\mathbb{C}^d \otimes \mathbb{C}^{d'}$,

one can also get a state on the complementary subspace of UMEB, corresponding to a quantum channel, which would not be unital. Besides, it cannot be convex mixtures of unitary operators too [11]. In addition, for a given mixed state, its Schmidt number is hard to calculate. If we can get a n-member UMEB $\{|\phi_i\rangle\}$ in $\mathbb{C}^d\otimes\mathbb{C}^{d'}$, the Schmidt number of the following state

$$\rho^{\perp} = \frac{1}{dd' - n} (I - \sum_{i=1}^{n} |\phi_i\rangle\langle\phi_i|),$$

is smaller than d [12]. Therefore, different UMEBs can be used to construct different mixed entangled states with limited Schmidt number, even state with different Schmidt number.

In [11], B. Chen and S. M. Fei provided a way to construct UMEBs in some special cases of bipartite system. Then H. Nan et al. [13], M. S. Li et al. [14], Y. L. Wang et al. [15, 16], Y. Guo [17], G. J. Zhang et al. [18] developed some new results of UMEB in bipartite system. Later, Y.J. Zhang et al. [19] and Y. Guo et al. [20] generalized the notion of UMEB from bipartite systems to multipartite quantum systems. In [20], Y. Guo showed that if there exists an N-member UMEB $\{|\psi_j\rangle\}$ in $\mathbb{C}^d\otimes\mathbb{C}^d$, then there exists a $qd^2-q(d^2-N)$ -member UMEB in $\mathbb{C}^{qd}\otimes\mathbb{C}^{qd}$ for any $q\in\mathbb{N}$. Y. Guo et al. [21] also proposed the definition of entangled bases with fixed Schmidt number.

In this paper, we study UMEBs in bipartite system $\mathbb{C}^{pd}\otimes\mathbb{C}^{qd}$ $(p\leq q)$. A systematic way of constructing UMEBs in $\mathbb{C}^{pd}\otimes\mathbb{C}^{qd}$ from that in $\mathbb{C}^d\otimes\mathbb{C}^d$ is presented firstly, and a construction of 48-member UMEB in $\mathbb{C}^6\otimes\mathbb{C}^9$ is given as an example. Furthermore, a explicit method to construct UMEBs containing $pqd^2-d(pq-N)$ maximally entangled vectors in $\mathbb{C}^{pd}\otimes\mathbb{C}^{qd}$ from an N-member UMEB in $\mathbb{C}^p\otimes\mathbb{C}^q$ is presented. Moreover, another construction of 48-member UMEB in $\mathbb{C}^6\otimes\mathbb{C}^9$ is obtained, thus generalized the results in Yu Guo[phys.Rev.A.94,052302(2016)] by two approaches.

2 Preliminaries

Throughout the paper, we denote $[d]' = \{0, 1, \dots, d-1\}$ and $[d]^* = \{1, 2, \dots, d\}$.

A pure state $|\psi\rangle$ is said to be a maximally entangled state in $\mathbb{C}^d\otimes\mathbb{C}^{d'}(d\leq d')$ if and only if for a arbitrary given orthonormal basis $\{|i\rangle\}$ of \mathbb{C}^d , there exists an orthonormal basis $\{|i'\rangle\}$ of $\mathbb{C}^{d'}$ such that $|\psi\rangle$ can be written as $|\psi\rangle=\frac{1}{\sqrt{d}}\sum_{i=0}^{d-1}|i\rangle\otimes|i'\rangle[6]$.

A set of pure states $\{|\phi_i\rangle\}_{i=0}^{n-1}\in C^d\otimes C^{d'}$ with the following conditions is called an unex-

tendible maximally entangled bases(UMEB) [10]:

 $(i)|\phi_i\rangle, i \in [n]'$ are all maximally entangled states,

$$(ii)\langle\phi_i|\phi_i\rangle=\delta_{ij}, i,j\in[n]',$$

(iii)n < dd', and if a pure state $|\psi\rangle$ meets that $\langle \phi_i | \psi \rangle = 0, i \in [n]'$, then $|\psi\rangle$ can not be maximally entangled.

Let $\mathcal{M}_{d'\times d}$ be the Hilbert space of all $d'\times d$ complex matrices equipped with the inner product defined by $\langle A|B\rangle = Tr(A^{\dagger}B)$ for any $A, B \in \mathcal{M}_{d'\times d}$. If $\{A_i\}_{i=0}^{dd'-1}$ constitutes a Hilbert-Schmidt basis of $\mathcal{M}_{d'\times d}$, where $\langle A_i|A_j\rangle = d\delta_{ij}$, then there is a one-to-one correspondence between an orthogonal basis in $\mathbb{C}^d \otimes \mathbb{C}^{d'}$ $\{|\phi_i\rangle\}$ and $\{A_i\}$ as follows [20, 21]:

$$|\phi_{i}\rangle = \frac{1}{\sqrt{d}} \sum_{k=0}^{d-1} \sum_{\ell'=0}^{d'-1} a_{\ell'k}^{(i)} |k\rangle |\ell'\rangle \in \mathbb{C}^{d} \otimes \mathbb{C}^{d'} \iff A_{i} = [a_{\ell'k}^{(i)}] \in \mathcal{M}_{d' \times d},$$

$$Sr(|\phi_{i}\rangle) = rank(A_{i}), \quad \langle \phi_{i} | \phi_{j} \rangle = \frac{1}{d} Tr(A_{i}^{\dagger} A_{j}), \tag{1}$$

where $Sr(|\phi_i\rangle)$ denotes the Schmidt number of $|\phi_i\rangle$. Obviously, $|\phi_i\rangle$ is a maximally entangled pure state in $C^d \otimes C^{d'}$ iff A_i is a $d' \times d$ singular-value-1 matrix (a matrix whose singular values all equal to 1). Specially, A_i is a unitary matrix when d = d'.

For simplicity we adopt the following definitions [17]. We call a Hilbert-Schmidt basis $\Omega = \{A_i\}_{i=0}^{d^2-1}$ in $\mathcal{M}_{d\times d}$ a unitary Hilbert-Schmidt basis (UB) of $\mathcal{M}_{d\times d}$ if A_i s are unitary matrices, and a Hilbert-Schmidt basis $\Omega = \{A_i\}_{i=0}^{dd'-1}$ in $\mathcal{M}_{d'\times d}$ a singular-value-1 Hilbert-Schmidt basis (SV1B) of $\mathcal{M}_{d\times d}$ if A_i s are singular-value-1 matrices. A set of $d\times d$ unitary matrices $\Omega = \{A_i\}_{i=0}^{n-1}$ $(n < d^2)$ is called an unextendible unitary Hilbert-Schmidt basis (UUB) of $\mathcal{M}_{d\times d}$ if (i) $\operatorname{Tr}(A_i^{\dagger}A_i) = d\delta_{ij}$; (ii) if $\operatorname{Tr}(A_i^{\dagger}X) = 0$, $i \in [n]'$, then X is not unitary.

[Definition] A set of $d \times d'$ (d < d') singular-value-1 matrices $\Omega = \{A_i\}_{i=1}^{dd'}$ (n < dd') is called an unextendible singular-value-1 Hilbert-Schmidt basis (USV1B) of $\mathcal{M}_{d \times d}$ if (a) $\operatorname{Tr}(A_i^{\dagger}A_j) = d\delta_{ij}$; (b) if $\operatorname{Tr}(A_i^{\dagger}X) = 0$, $i \in [n]'$, then X is not a singular-value-1 matrix.

According to the Eq.(1), it is obvious that $\Omega = \{A_i\}_{i=0}^{d^2-1}$ is a UB iff $\{|\phi_i\rangle\}$ is a maximally entangled basis (MEB) of $\mathbb{C}^d \otimes \mathbb{C}^d$ while $\Omega = \{A_i\}_{i=0}^{dd'-1}$ is a SV1B iff $\{|\phi_i\rangle\}$ is a MEB of $\mathbb{C}^d \otimes \mathbb{C}^{d'}$. And $\Omega = \{A_i\}_{i=0}^{n-1}$ $(n < d^2)$ is a UUB iff $\{|\phi_i\rangle\}$ is a UMEB of $\mathbb{C}^d \otimes \mathbb{C}^d$ while $\Omega = \{A_i\}_{i=0}^{n-1}$ (n < dd') is a USV1B iff $\{|\phi_i\rangle\}$ is a UMEB of $\mathbb{C}^d \otimes \mathbb{C}^{d'}$ [17].

3 UMEBs in $\mathbb{C}^{pd} \otimes \mathbb{C}^{qd}$ $(p \leq q)$ from UMEBs in $\mathbb{C}^d \otimes \mathbb{C}^d$

Theorem 1. If there is an N-member UMEB $\{|\psi_j\rangle\}$ in $\mathbb{C}^d\otimes\mathbb{C}^d$, then there exists a $pqd^2-p(d^2-N)$ -member UMEB in $\mathbb{C}^{pd}\otimes\mathbb{C}^{qd}(p\leq q)$.

Proof. Let $\{W_j = [w_{i'i}^j]\}_{j=0}^{N-1}$ be a UUB of $\mathcal{M}_{d\times d}$ corresponding to $\{|\psi_j\rangle\}$,

$$|\psi_j\rangle = \frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} \sum_{i'=0}^{d-1} w_{i'i}^j |i\rangle \otimes |i'\rangle, \quad j \in [N]'.$$

Denote

$$U_{nm} = \sum_{a=0}^{d-1} e^{\frac{2\pi na\sqrt{-1}}{d}} |a \oplus_d m\rangle\langle a|,$$

$$V_{kl} = \sum_{a=0}^{p-1} e^{\frac{2\pi ka\sqrt{-1}}{p}} |a \oplus_q l\rangle\langle a|,$$

where $m, n \in [d]'$; $l \in [q]'$; $k \in [p]'$; $j \in [N]'$, and

$$B_{k0}^{j} = V_{k0} \otimes W_{j}, \quad k \in [p]'; \quad j \in [N]',$$

$$B_{kl}^{nm} = V_{kl} \otimes U_{nm}, \quad k \in [p]'; l \in [q-1]^*; m, n \in [d]'.$$

Set $C_1 = \{B_{k0}^j\}$ and $C_2 = \{B_{kl}^{nm}\}$. Then $C_1 \cup C_2$ is exactly a USV1B in $\mathcal{M}_{qd \times pd}$.

Firstly, all B_{k0}^j and B_{kl}^{nm} are $qd \times pd$ singular-value-1 matrices, which satisfy the conditions in the Definition:

- (a) $Tr[(B_{k0}^j)^{\dagger}B_{k'0}^{j'}] = pd\delta_{kk'}\delta_{jj'}, Tr[(B_{kl}^{nm})^{\dagger}B_{k'l'}^{n'm'}] = pd\delta_{kk'}\delta_{ll'}\delta_{nn'}\delta_{mm'} \text{ and } Tr[(B_{kl}^{nm})^{\dagger}B_{k'0}^j] = 0, \text{ where } j, j' \in [N]'; \ k, k' \in [p]'; \ l, l' \in [q-1]^*; \ n, n', m, m' \in [d]'.$
- (b) Denote S the matrix space of $(I_p, O_{p \times (q-p)})^t \otimes R$, where t stands for matrix transpose, I_p is the $p \times p$ identity matrix, $O_{p \times (q-p)}$ is the $p \times (q-p)$ zero matrix and $R \in \mathcal{M}_{d \times d}$. Obviously the dimension of S^{\perp} is $p(q-1)d^2$. Thus C_2 is an SV1B of S^{\perp} with $p(q-1)d^2$ elements.

Assume that D is a singular-value-1 matrix in $\mathcal{M}_{qd \times pd}$, which is orthogonal to all matrices in $C_1 \cup C_2$. Since C_2 is a SV1B of S^{\perp} , then $D \in S$. No loss of generality, set

$$D = \begin{pmatrix} A \\ O_1 \end{pmatrix}, \quad A = diag(A_1, A_2, \cdots, A_p), \quad O_1 = O_{(q-p)d \times pd},$$

where $A_h(h \in [p]^*)$ are all $d \times d$ matrices. Note that D is orthogonal to each B_{k0}^j in C_1 , i.e.,

$$Tr(D^{\dagger}B_{k0}^{j}) = 0, \quad k = [p]'; \quad j \in [N]'.$$

Then

$$Tr\left[\left(\begin{array}{cc}A^{\dagger} & O_{1}^{\dagger}\end{array}\right)_{pd\times qd}\cdot\left(\begin{array}{c}G \\ O_{1}\end{array}\right)_{qd\times pd}\right]=0,$$

where $G = diag(\omega_p^{0k} W_j, \omega_p^{1k} W_j, \cdots, \omega_p^{(p-1)k} W_j)$, i.e.,

$$\omega_p^{0k} Tr(A_1^{\dagger} W_j) + \omega_p^{-1k} Tr(A_2^{\dagger} W_j) + \dots + \omega_p^{(1-p)k} Tr(A_p^{\dagger} W_j) = 0.$$

Hence,

$$HX_i = 0,$$

where

$$H = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega_p^{p-1} & \omega_p^{p-2} & \dots & \omega_p^1 \\ 1 & \omega_p^{p-2} & \omega_p^{p-4} & \dots & \omega_p^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_p^1 & \omega_p^2 & \dots & \omega_p^{p-1} \end{pmatrix}, \quad X_j = \begin{pmatrix} Tr(A_1^{\dagger}W_j) \\ Tr(A_2^{\dagger}W_j) \\ Tr(A_3^{\dagger}W_j) \\ \vdots \\ Tr(A_p^{\dagger}W_j) \end{pmatrix}.$$

Obviously, $X_j = O$ for $j \in [N]'$ since $detH \neq 0$. That is to say, $Tr(A_h^{\dagger}W_0) = Tr(A_h^{\dagger}W_1) = \cdots = Tr(A_h^{\dagger}W_{N-1}) = 0$, $h \in [p]^*$. As every A_n is orthogonal to each W_j , whereas $\{W_j\}$ is a UUB in $\mathcal{M}_{d\times d}$, none of A_h is unitary. Moreover, all the singular values of A_h s are also the singular values of D. Therefore, D is not a singular-value-1 matrix, which contradicts to the assumption. Thus, $C_1 \cup C_2$ is a USV1B in $\mathcal{M}_{qd\times pd}$. \square

Example 1. A 48-member UMEB in $\mathbb{C}^6 \otimes \mathbb{C}^9$ from a 6-member UMEB in $\mathbb{C}^3 \otimes \mathbb{C}^3$.

A 6-member UMEB in $\mathbb{C}^3 \otimes \mathbb{C}^3$ from Ref.[10] is as follows:

$$W_j = I - (1 - e^{\sqrt{-1}\theta})|\psi_j\rangle\langle\psi_j|, j = [6]',$$

where

$$|\psi_{0,1}\rangle = \frac{1}{\sqrt{1+\phi^2}}(|0\rangle \pm \phi|1\rangle),$$

$$|\psi_{2,3}\rangle = \frac{1}{\sqrt{1+\phi^2}}(|1\rangle \pm \phi|2\rangle),$$

$$|\psi_{4,5}\rangle = \frac{1}{\sqrt{1+\phi^2}}(|2\rangle \pm \phi|0\rangle),$$

with $\phi = (1 + \sqrt{5})/2$.

Then, denote

$$U_{nm} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^m \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega_3 & 0 \\ 0 & 0 & \omega_3^2 \end{pmatrix}^n, \quad m, n \in [3]',$$

$$V_{kl} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{l} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^{k}, \quad k \in [2]'; \quad l \in [3]',$$

where $\omega_3 = e^{\frac{2\pi\sqrt{-1}}{3}}$.

Let

$$B_{01}^{nm} = \begin{pmatrix} 0 & 0 \\ U_{nm} & 0 \\ 0 & U_{nm} \end{pmatrix}, \quad B_{11}^{nm} = \begin{pmatrix} 0 & 0 \\ U_{nm} & 0 \\ 0 & -U_{nm} \end{pmatrix},$$

$$B_{02}^{nm} = \begin{pmatrix} 0 & U_{nm} \\ 0 & 0 \\ U_{nm} & 0 \end{pmatrix}, \quad B_{12}^{nm} = \begin{pmatrix} 0 & U_{nm} \\ 0 & 0 \\ -U_{nm} & 0 \end{pmatrix},$$

$$B_{00}^{j} = \begin{pmatrix} W_{j} & 0 \\ 0 & W_{j} \\ 0 & 0 \end{pmatrix}, \quad B_{10}^{j} = \begin{pmatrix} W_{j} & 0 \\ 0 & -W_{j} \\ 0 & 0 \end{pmatrix},$$

where $n, m \in [3]'$; $j \in [6]'$. Set $C_1 = \{B_{k0}^j\}$, $C_2 = \{B_{kl}^{nm}\}$, for $k \in [2]'$; $j \in [6]'$; $l \in [2]^*$; $n, m \in [3]'$. According to Theorem 1, we have that $C_1 \cup C_2$ is a 48-number UMEB in $\mathbb{C}^6 \otimes \mathbb{C}^9$.

Remark 1. Theorem 1 in Ref. [15] is a special case of the above Theorem 1 for p=q.

4 UMEBs in $\mathbb{C}^{pd} \otimes \mathbb{C}^{qd}(p \leq q)$ from UMEBs in $\mathbb{C}^p \otimes \mathbb{C}^q$

Next, we will present a general approach to construct UMEBs in $\mathbb{C}^{pd} \otimes \mathbb{C}^{qd}$ from UMEBs in $\mathbb{C}^p \otimes \mathbb{C}^q$.

Theorem 2. If there is an N-member UMEB $\{|\psi_j\rangle\}$ in $\mathbb{C}^p\otimes\mathbb{C}^q$, then there exists a $pqd^2-d(pq-N)$ -member UMEB in $\mathbb{C}^{pd}\otimes\mathbb{C}^{qd}(p\leq q)$.

Proof. Let $\{W_j = [w_{i'i}^j]\}_{j=0}^{N-1}$ be a USV1B of $\mathcal{M}_{q \times p}$ corresponding to $\{|\psi_j\rangle\}$, then

$$|\psi_j\rangle = \frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} \sum_{i'=0}^{d'-1} w_{i'i}^j |i\rangle \otimes |i'\rangle, \quad j \in [N]'.$$

Denote

$$U_{nm} = \sum_{a=0}^{d-1} e^{\frac{2\pi na\sqrt{-1}}{d}} |a \oplus_d m\rangle\langle a|,$$

$$V_{kl} = \sum_{a=0}^{p-1} e^{\frac{2\pi k a \sqrt{-1}}{p}} |a \oplus_q l\rangle \langle a|,$$

where $m, n \in [d]'$; $l \in [q]'$; $k \in [p]'$; $j \in [N]'$. Let

$$B_{n0}^{j} = U_{n0} \otimes W_{j}, \quad n \in [d]'; \quad j \in [N]',$$

$$B_{nm}^{kl} = U_{nm} \otimes V_{kl}, \quad m \in [d-1]^*; n \in [d]'; l \in [q]'; k \in [p]',$$

and

$$C_1 = \{B_{n0}^j\}, \quad C_2 = \{B_{nm}^{kl}\}.$$

then, $C_1 \cup C_2$ is exactly a USV1B in $\mathcal{M}_{qd \times pd}$.

Firstly, all B_{n0}^{j} and B_{nm}^{kl} are $qd \times pd$ singular-value-1 matrices, satisfying the conditions in the Definition:

- (a) $Tr[(B_{n0}^j)^{\dagger}B_{n'0}^{j'}] = qd\delta_{nn'}\delta_{jj'}, Tr[(B_{nm}^{kl})^{\dagger}B_{n'm'}^{k'l'}] = qd\delta_{nn'}\delta_{mm'}\delta_{kk'}\delta_{ll'} \text{ and } Tr[(B_{nm}^{kl})^{\dagger}B_{n'0}^j] = 0, \text{ where } j, j' \in [N]'; \ k, k' \in [q]'; \ l, l' \in [p]'; \ n, n' \in [d]'; \ m, m' \in [d-1]^*.$
- (b) Denote S the matrix space of $I_d \otimes R$, where $R \in \mathcal{M}_{q \times p}$. Obviously, the dimension of S^{\perp} is pq(d-1)d.

Setting $C_1 = \{B_{n0}^j\}$ and $C_2 = \{B_{nm}^{kl}\}$, we have that C_2 with pq(d-1)d elements is an SV1B of S^{\perp} , and $C_1 \cup C_2$ is just a USV1B in $\mathcal{M}_{qd \times pd}$.

Assume that D is a singular-value-1 matrix in $\mathcal{M}_{qd \times pd}$, which is orthogonal to all matrices in $C_1 \cup C_2$. Since C_2 is a SV1B of S^{\perp} , then $D \in S$. No loss of generality, set

$$D = diag(A_1, A_2, \cdots, A_d)_{qd \times pd},$$

where $A_h(h \in [d]^*)$ are all $q \times p$ matrices. Similar to the proof of Theorem 1, we can prove that none of A_h is singular-value-1 matrices. Moreover, all the singular values of all A_h s are also the singular values of D, namely, D is not a singular-value-1 matrix, which contradicts to the assumption. Thus, $C_1 \cup C_2$ is a USV1B in $\mathcal{M}_{qd \times pd}$. \square

Example 2. A 48-member UMEB in $\mathbb{C}^6 \otimes \mathbb{C}^9$ from a 4-member UMEB in $\mathbb{C}^2 \otimes \mathbb{C}^3$.

A 4-member UMEB in $\mathbb{C}^2 \otimes \mathbb{C}^3$ is as follows:

$$W_{0,1} = |0'\rangle\langle 0| \pm |1'\rangle\langle 1|,$$

$$W_{2,3} = |0'\rangle\langle 1| \pm |1'\rangle\langle 0|.$$

Denote

$$U_{nm} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^m \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega_3 & 0 \\ 0 & 0 & \omega_3^2 \end{pmatrix}^n, \quad m, n \in [3]',$$

$$V_{kl} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{l} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^{k}, \quad k \in [3]'; \quad l \in [2]',$$

where $\omega_3 = e^{\frac{2\pi\sqrt{-1}}{3}}$. Let

$$B_{01}^{kl} = \begin{pmatrix} 0 & 0 & V_{kl} \\ V_{kl} & 0 & 0 \\ 0 & V_{kl} & 0 \end{pmatrix}, B_{11}^{kl} = \begin{pmatrix} 0 & 0 & \omega_3^2 V_{kl} \\ V_{kl} & 0 & 0 \\ 0 & \omega_3 V_{kl} & 0 \end{pmatrix}, B_{21}^{kl} = \begin{pmatrix} 0 & 0 & \omega_3 V_{kl} \\ V_{kl} & 0 & 0 \\ 0 & \omega_3^2 V_{kl} & 0 \end{pmatrix},$$

$$B_{02}^{kl} = \begin{pmatrix} 0 & V_{kl} & 0 \\ 0 & 0 & V_{kl} \\ V_{kl} & 0 & 0 \end{pmatrix}, B_{12}^{kl} = \begin{pmatrix} 0 & \omega_3 V_{kl} & 0 \\ 0 & 0 & \omega_3^2 V_{kl} \\ V_{kl} & 0 & 0 \end{pmatrix}, B_{22}^{kl} = \begin{pmatrix} 0 & \omega_3^2 V_{kl} & 0 \\ 0 & 0 & \omega_3 V_{kl} \\ V_{kl} & 0 & 0 \end{pmatrix},$$

$$B_{00}^{j} = \begin{pmatrix} W_{j} & 0 & 0 \\ 0 & W_{j} & 0 \\ 0 & 0 & W_{j} \end{pmatrix}, B_{10}^{j} = \begin{pmatrix} W_{j} & 0 & 0 \\ 0 & \omega_{3}W_{j} & 0 \\ 0 & 0 & \omega_{3}^{2}W_{j} \end{pmatrix}, B_{20}^{j} = \begin{pmatrix} W_{j} & 0 & 0 \\ 0 & \omega_{3}^{2}W_{j} & 0 \\ 0 & 0 & \omega_{3}W_{j} \end{pmatrix},$$

where $k \in [3]'; l \in [2]'; j \in [4]'$. Set $C_1 = \{B_{n0}^j\}, C_2 = \{B_{nm}^{kl}\}, \text{ for } k \in [3]'; l \in [2]'; j \in [4]'; n \in [3]'; m \in [2]^*$. Then according to Theorem 2, $C_1 \cup C_2$ is a 48-member UMEB in $\mathbb{C}^6 \otimes \mathbb{C}^9$.

Remark 2. The Constructions of UMEB in Theorem 1 and Theorem 2 are different, which can be easily seen from the Examples 1 and 2. We can give a state with Schmidt number 4 in the subspace of the UMEB in Example 1. While what we can get in the subspace of the UMEB in Example 2 are the states with Schmidt number no more than 3. In fact, according to Theorem 2, one can construct a UMEB in $\mathbb{C}^4 \otimes \mathbb{C}^6$ from the UMEB in $\mathbb{C}^2 \otimes \mathbb{C}^3$, while one can not do this way from the Theorem 1. Here Theorem 1 in [15] is a also special case of the above Theorem 2 for p = q.

Remark 3. By using Theorem 2 in [18], we can give a p(q-r)-member UMEB in $\mathbb{C}^p \otimes \mathbb{C}^q$. According to Theorem 2 in this paper, we can obtain a pd(qd-r)-member UMEB in $\mathbb{C}^{pd} \otimes \mathbb{C}^{qd}$, in whose subspace we can get some states with Schmidt number dr. We can also get a pd(qd-r)-member UMEB directly by Theorem 2 in [18], nevertheless, in the associated subspace, one can only attain the states with Schmidt number no greater than r. Therefore, they are different constructions. Actually, there are many N-number UMEBs in $\mathbb{C}^p \otimes \mathbb{C}^q$, where $p \nmid N$. In this case, it doesn't hold that $pd|(pqd^2-d(pq-N))$. Namely, we can not even get a UMEB with the same number of members by Theorem 2 in [18].

5 Conclusion

We have provided an explicit way of constructing a $pqd^2 - p(d^2 - N)$ -member UMEB in $\mathbb{C}^{pd} \otimes \mathbb{C}^{qd}$ from an N-member UMEB in $\mathbb{C}^d \otimes \mathbb{C}^d$, and constructed a 48-number UMEB in $\mathbb{C}^6 \otimes \mathbb{C}^9$ as a detailed example. We have also established a method to construct a $pqd^2 - d(pq - N)$ -member UMEB in $\mathbb{C}^{pd} \otimes \mathbb{C}^{qd}$ from an N-member UMEB in $\mathbb{C}^p \otimes \mathbb{C}^q$, and presented another 48-member UMEB in $\mathbb{C}^6 \otimes \mathbb{C}^9$. These results may highlight the further investigations on the construction of unextendible bases and the theory of quantum entanglement.

References

- [1] A. Barenco, A. K. Ekert. Dense Coding Based on Quantum Entanglement[J]. Journal of Modern Optics, 1995, 42(6): 1253-1259
- [2] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81: 865-942
- [3] W. Tittel, J. Brendel, H. Zbinden, N. Gisin. Quantum cryptography using entangled photons in energy-time bell states[J]. Physical Review Letters, 2000, 84(20): 4737
- [4] S. B. Zheng. Quantum nonlocality for a three-particle nonmaximally entangled state without inequalities[J]. Physical Review A, 2002, 66(1): 90-95
- [5] W. J. Guo, D. H. Fan, L. F. Wei. Experimentally testing Bells theorem based on Hardys nonlocal ladder proofs[J]. Science China Physics, Mechanics Astronomy. 2015, 58: 024201.
- [6] H. X. Meng, H. X. Cao, W. H. Wang, L. Chen, Y. J. Fan. Continuity of the robustness of contextuality and the contextuality cost of empirical models[J]. Science China Physics, Mechanics & Astronomy. 2016, 59(4): 640303
- [7] D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, B. M. Terhal. Unextendible product bases, uncompletable product bases and bound entanglement[J]. Commun. Math. Phys. 2013, 238, 379
- [8] S. D. Rinaldis. Distinguishability of complete and unextendible product bases[J]. Phys. Rev. A. 2004, 70: 022309

- [9] C. H. Bennett et al. Unextendible product bases and bound entanglement[J]. Phys. Rev. Lett. 1999, 82: 5385
- [10] S. Bravyi, J. A. Smolin. Unextendible maximally entangled bases[J]. Physical Review A, 2011, 84: 042306
- [11] B. Chen, S. M. Fei. Unextendible maximally entangled bases and mutually unbiased bases[J]. Physical Review A, 2013, 88: 034301
- [12] Y. Guo, S. J. Wu. Unextendible entangled bases with fixed Schmidt number[J]. Physical Review A, 2014, 48(24): 245301
- [13] H. Nan, Y. H. Tao, L. S. Li, J. Zhang. Unextendible Maximally Entangled Bases and Mutually Unbiased Bases in $\mathbb{C}^d \otimes \mathbb{C}^{d'}[J]$. International Journal of Theoretical Physics, 2015, 54: 927
- [14] M. S. Li, Y. L. Wang, S. M. Fei, Z. J. Zheng. Unextendible maximally entangled bases in $\mathbb{C}^d \otimes \mathbb{C}^{d'}[J]$. Physical Review A, 2014, 89: 062313
- [15] Y.L. Wang, M. S. Li, S.M. Fei. Unextendible maximally entangled bases in $\mathbb{C}^d \otimes \mathbb{C}^{d'}[J]$. Physical Review A, 2014, 90: 034301
- [16] Y. L. Wang, M. S. Li, S. M. Fei. Connecting the UMEB in $\mathbb{C}^d \otimes \mathbb{C}^d$ with partial Hadamard matrices[J]. Quantum Information Processing, 2017, 16(3): 84
- [17] Y. Guo. Constructing the unextendible maximally entangled basis from the maximally entangled basis[J]. Physical Review A, 2016, 94: 052302
- [18] G. J. Zhang, Y. H. Tao, Y. F. Han, X. L. Yong, S. M. Fei. Constructions of Unextendible Maximally Entangled Bases in $\mathbb{C}^d \otimes \mathbb{C}^{d'}[J]$. Scientific Reports, 2018, 8(1): 319
- [19] Y. J. Zhang, H. Zhao, N. Jing, S. M. Fei. Multipartite unextendible entangled basis[J]. International Journal of Theoretical Physics, 2017, 56(11): 3425-3430
- [20] Y. Guo, Y. P. Jia, X. L. Li. Multipartite unextendible entangled basis[J]. Quantum Inf Process. 2015, 14: 3553
- [21] Y. Guo, S. P. Du, X. L. Li, S. J. Wu. Entangled bases with fixed Schmidt number[J]. Journal of Physics A: Mathematical and Theoretical, 2015, 48: 245301

Acknowledgements

The work is supported by the NSFC under number 11675113, 11761073 and NSF of Beijing under No. KZ201810028042.

Acknowledgements

G.-J.Z and Y.-H.T. wrote the main manuscript text. All of the authors reviewed the manuscript.