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Abstract

The construction of unextendible maximally entangled bases is tightly related to quantum
information processing like local state discrimination. We put forward two constructions of
UMEBSs in CP?®@C%(p < ¢) based on the constructions of UMEBs in C?®C? and in C? @ C¥9,
which generalizes the results in [Phys. Rev. A. 94, 052302 (2016)] by two approaches. Two
different 48-member UMEBs in C® ® C° have been constructed in detail.
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1 Introduction

It is well known that the quantum states are divided into two parts: separable states and

[quant

entanglement states. Quantum entanglement, as a potential resource, is widely applied into

2

= many quantum information process, such as quantum computation [I], quantum teleportation
LO) [2], quantum cryptography [3] as well as nonlocality [4]. Nonlocality is a very useful concept in
(@))

[~ quantum mechanics [4] [5 [6] and is tightly related to entanglement. However, it is proved that

o
o the unextendible product bases (UPBs) reveal some nolocality without entanglement [7, 8]. The
OFOI UPB is a set of incomplete orthogonal product states in bipartite quantum system C¢ @ C%
—

~ ! consisting of fewer than dd’ vectors which have no additional product states orthogonal to each

element of the set [9].

arxXiv

In 2009, S. Bravyi and J. A. Smolin [10] first proposed the notion of unextendible maximally
entangled basis(UMEB): a set of incomplete orthogonal maximally entangled states in C¢ ® cd
consisting of fewer than dd’ vectors which have no additional maximally entangled vectors that
are orthogonal to all of them. These incomplete bases have some special properties. In bipartite
space C¢@C?, one can get a state on the UMEB’s complementary subspace, whose entanglement

of assistance (EoA) is strictly smaller than logd, the asymptotic EoA [I0]. As for in C? ® C%,
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one can also get a state on the complementary subspace of UMEB, corresponding to a quantum
channel, which would not be unital. Besides, it cannot be convex mixtures of unitary operators
too [I1]. In addition, for a given mixed state, its Schmidt number is hard to calculate. If we can

get a n-member UMEB {|¢;)} in C? @ C¥, the Schmidt number of the following state
o= (=Sl
dd' —n P ’

is smaller than d [12]. Therefore, different UMEBs can be used to construct different mixed

entangled states with limited Schmidt number, even state with different Schmidt number.

In [11], B. Chen and S. M. Fei provided a way to construct UMEBs in some special cases
of bipartite system. Then H. Nan et al. [13], M. S. Li et al. [14], Y. L. Wang et al. [I5, [16],
Y. Guo [17], G. J. Zhang et al. [I§] developed some new results of UMEB in bipartite system.
Later, Y.J. Zhang et al. [19] and Y. Guo et al. [20] generalized the notion of UMEB from
bipartite systems to multipartite quantum systems. In [20], Y. Guo showed that if there exists
an N—member UMEB {|¢;)} in C? ® C, then there exists a qd*> — ¢(d?> — N)-member UMEB
in C% @ C9 for any ¢ € N. Y. Guo et al. [2I] also proposed the definition of entangled bases

with fixed Schmidt number.

In this paper, we study UMEBs in bipartite system CP?® C% (p < q). A systematic way of
constructing UMEBs in CP? @ C% from that in C? ® C? is presented firstly, and a construction
of 48-member UMEB in C® @ C? is given as an example. Furthermore, a explicit method to
construct UMEBs containing pgd? —d(pg — N') maximally entangled vectors in CP¢® C? from an
N-member UMEB in CP®QCY is presented. Moreover, another construction of 48-member UMEB
in C® ® CY is obtained, thus generalized the results in Yu Guo[phys.Rev.A.94,052302(2016)] by

two approaches.

2 Preliminaries

Throughout the paper, we denote [d) = {0,1,--- ,d — 1} and [d]* = {1,2,--- ,d}.

A pure state [¢) is said to be a maximally entangled state in C% ® C% (d < d') if and only if
for a arbitrary given orthonormal basis {|i)} of C¢, there exists an orthonormal basis {|i')} of
C% such that |1) can be written as [i)) = Ld S L i) @ |i)]6).

A set of pure states {|¢;)}/=) € C?® C% with the following conditions is called an unex-



tendible maximally entangled bases(UMEB) [10]:

(i)|¢s), i € [n] are all maximally entangled states,

(ii)(ild5) = 45,4, 7 € [n],

(ili)n < dd', and if a pure state |[¢)) meets that (¢;[¢)) = 0,7 € [n]’, then [¢) can not be
maximally entangled.

Let My «4 be the Hilbert space of all d’ x d complex matrices equipped with the inner product
defined by (A|B) = Tr(A'B) for any A, B € Mgygq. If {Ai}filo_l constitutes a Hilbert-Schmidt
basis of Mg 4, where (A;|Aj) = dd;j, then there is a one-to-one correspondence between an

orthogonal basis in C% ® C¥ {|¢;)} and {4;} as follows [20} 21]:

d—1d -1
190) = \/_ZZ Z’k|k e ceCloC? o A; —[(Igg]GMd/Xd,
k=0 ¢'=
Sr(|¢i)) = rank(A),  (¢5le;) = —Tr(A*A) 1)

where S7(|¢;)) denotes the Schmidt number of |¢;). Obviously, |¢;) is a maximally entangled
pure state in C%® C iff A; is a d' x d singular-value-1 matrix (a matrix whose singular values

all equal to 1). Specially, A; is a unitary matrix when d = d'.

For simplicity we adopt the following definitions [I7]. We call a Hilbert-Schmidt basis 2 =
{4; }d ~1in Myq a unitary Hilbert-Schmidt basis (UB) of Mgxq if A;s are unitary matrices,
and a Hilbert-Schmidt basis Q = {4; filo_l in My wq a singular-value-1 Hilbert-Schmidt basis
(SVIB) of Myyg if A;s are singular-value-1 matrices. A set of d x d unitary matrices ) =
{A}7=) (n < d?) is called an unextendible unitary Hilbert-Schmidt basis (UUB) of Mgy if (i)
Tr(AZT.Aj):d&j; (i) if Tr(AIX)zO, i € [n]’, then X is not unitary.

[Definition] A set of d x d’ (d < d') singular-value-1 matrices Q = {4;}%%, (n < dd') is called
an unextendible singular-value-1 Hilbert-Schmidt basis (USV1B) of Mgyq if (a) Tr(AIAj):déij;
(b) if Tr(A}LX )=0, i € [n], then X is not a singular-value-1 matrix.

According to the Eq.(1), it is obvious that Q = {Ai}fial is a UB iff {|¢;)} is a maximally
entangled basis (MEB) of C%®C? while Q = {4;}%V is a SVIB iff {|¢;)} is a MEB of C?@C? .
And Q = {A;}77) (n < d?)is a UUB iff {|¢;)} is a UMEB of C®@C? while Q = {4;}1} (n < dd')
is a USV1B iff {|¢;)} is a UMEB of C% @ C¥[17].



3 UMEB:s in C" @ C% (p < ¢q) from UMEBs in C? @ C?

Theorem 1. If there is an N-member UMEB {|v;)} in C¢ ® C¢, then there exists a
pqd? — p(d?> — N)-member UMEB in CP? ® C%(p<q).
Proof. Let {W; = [wf,i]};v:_ol be a UUB of Mgyq corresponding to {|1;)},

d—-1d-1

z: wl.|iy ® |i), je[NY.

=0 i'=0

1
W) =5

Denote
d—1

2mnay/—1
Unm = Z € d |(I€Bdm> <(1|,
a=0

p—1
2mka~/—1
Vie=> ¢ » |a®gl)(al,
a=0

where m,n € [d]; 1€lq]; kelp]; je[N/,and

Bjy = Vio®Wj, ke [p|; je [N,
Bklm = V®Upm, k€ [p]/;l € [q - 1]*;m’n € [d]/

Set C, = {B} 0} and Cy = {B}J"}. Then C1UCs is exactly a USVIB in Mgy pa-

Firstly, all Bio and Bj" are qd x pd singular-value-1 matrices, which satisfy the conditions
in the Definition:

(a) Tr((Blo) BLy] = pdbuedyy, Tr{(BE™) BEY] = pddess S umdms and Tr[(B) B =
07 where jvj/ € [ ] ; kvk/ € [p],a l7l/ € [q - 1]*a n,n 7m7m/ € [d]/

(b) Denote S the matrix space of (I, Opx(q_p))t ® R, where t stands for matrix transpose,
I, is the p x p identity matrix, Opy (4—p) is the p x (¢ — p) zero matrix and R € Mgxq. Obviously
the dimension of S* is p(¢ — 1)d?. Thus Cy is an SVIB of S+ with p(q — 1)d? elements.

Assume that D is a singular-value-1 matrix in M4y pq, Which is orthogonal to all matrices

in C; U Cy. Since C5 is a SVIB of S+, then D € S. No loss of generality, set

A .
D = < Ol ) ) A= dlag(AlyA27'” 7Ap)7 Ol = O(q—p)dxpda

where Ay (h € [p]*) are all d x d matrices. Note that D is orthogonal to each Bio in C1, ie.,
Tr(D'Bl) =0, k=1[p/; jeI[N].

4



Then

(at of) ¢ — 0,
1 pdxqd 01 qdxpd

where G = diag(WO*W;, wkW;, - - ,wép_l)ij), ie.,

p "VirWp
W T (ATW;) + wy e (ASW)) + -+ W PE T (AT W) = 0
Hence,
HX; =0,

where
111 1 Tr(AlW))
wp_; wg_z wll, TT(A;W])
H— wh ™ wh w2 . X, = TT(A;E)W])
1w wloo. wh™! Tr(ALW;)

Obviously, X; = O for j € [N]' since detH # 0. That is to say, TT(AILWO) = Tr(AEWl) =
cee = TT’(ALWN_l) =0, h € [p]*. As every A, is orthogonal to each W;, whereas {W;} is
a UUB in M x4, none of Ay is unitary. Moreover, all the singular values of Ays are also the
singular values of D. Therefore, D is not a singular-value-1 matrix, which contradicts to the

assumption. Thus, C7 U Cy is a USV1B in Mygyxpq. O
Example 1. A 48-member UMEB in C® ® C? from a 6-member UMEB in C? @ C3.

A 6-member UMEB in C3 ® C? from Ref.[I0] is as follows:

Wj=1—(1—e/ 0\ wy,5 = [6],

where
1
=———(]0) £ ¢|1)),
1
= ——(|1) £ ¢[2)),
1h2,3) m(l ) £ ¢[2))
1
= ——(|2) £ ¢]0)),
with ¢ = (1 +v/5)/2.
Then, denote
00 1\™ /1 0 0\"
Um=11 00 w3 0 , m,n € [3],
010 0 0 w§



where wg = e%\f{j.
Let
0 0 0 0
Byi"=\| Uwm O , BY"=1 Uwmnm 0 ,
0 Unm 0 _Unm
Byt = 0 0 , BlY'= 0 0 ,
Unm 0 _Unm 0
_ W; 0 ' W; 0
Bo—| 0 w, |, Ba={ 0 -w |.
0 0 0 0

where n,m € [3)'; j € [6]. Set C; = {Bl,}, Cy = {BY"}, for k € [2; je[6]; I¢c
[2]*;  n,m € [3]'. According to Theorem 1, we have that C; U Cs is a 48-number UMEB in
CloC.

Remark 1. Theorem 1 in Ref.[15] is a special case of the above Theorem 1 for p = q.

4 UMEB:s in C" @ C%(p<q) from UMEBs in C? @ C¢

Next, we will present a general approach to construct UMEBs in CP¢ ® C9% from UMEBs
in CP @ C1.

Theorem 2. If there is an N-member UMEB {|¢;)} in CP ® CY, then there exists a pqd* —
d(pq — N)-member UMEB in CP* @ C%(p < q).

Proof. Let {W; = [wg,i]}ﬁy:_ol be a USVIB of My, corresponding to {|1);)}, then

d-1d'-1

lthj) = \[ZZ“’ iy ®li'), jeINT.

=0 =0

Denote
a1 2rnay/—1
Unm = Z € d |(I€Bdm> <(1|,
a=0

p—1
2wkay/—1
V=Y ¢ » |adgl)(al,
a=0




where m,n € [d); 1€lq); kel[p]; je€[N]. Let
Bl, = UyoW;, neld’; jelN],
By, = Upn®Via, m € [d—1]*n € [d);1 € [q'sk € [p]'
and
Gy = {Bio}a Gy = {Blrfin :
then, C1UC3 is exactly a USVIB in M gqxpa-

Firstly, all B%O and BFl are qd x pd singular-value-1 matrices, satisfying the conditions in

the Definition:

(8) Tr{(Blo) Byl = 48y, Tr((BY}) BIY,] = 4y Sona Oty and Tr((BY}) 1B =
0, where j,7' € [N]; k, k' € [q]'; I,I' € [p]; n,n' € [d]; m,m’ € [d—1]*.

(b) Denote S the matrix space of I; ® R, where R € M,x,. Obviously, the dimension of S+
is pg(d — 1)d.

Setting C; = {B?,} and Cy = {BX. }, we have that Cy with pq(d — 1)d elements is an SV1B
of 8+, and C1UC, is just a USV1B in M ydaxpd-

Assume that D is a singular-value-1 matrix in M4y pq, Which is orthogonal to all matrices
in C; U Cy. Since Cy is a SVIB of S+, then D € S. No loss of generality, set

D = diag(A1, Az, , Ad)qdxpds

where Ay, (h € [d]*) are all ¢ X p matrices. Similar to the proof of Theorem 1, we can prove that
none of A; is singular-value-1 matrices. Moreover, all the singular values of all Ays are also
the singular values of D, namely, D is not a singular-value-1 matrix, which contradicts to the

assumption. Thus, C7 U Cy is a USV1B in Mygyxpq. O
Example 2. A 48-member UMEB in C% ® C° from a 4-member UMEB in C? ® C3.

A 4-member UMEB in C2 @ C3 is as follows:
Wo1 = [07)(0] & [1')(1],

Was = [0)(1] £ [1'){0].

Denote m "
0 0 1 1 0 O
Um=1|1 00 0 w3 O , m,n € [3],
010 0 0 w§



0 0 1 10 L0\
V=1 00 ] -[ 01 <0 _1> , ke3); le|2],
010 00
where wg = e%\-‘{j. Let
0 0 Vkl 0 0 wgvkl 0 0 W3Vkl
B=(Vvy 0 o |.,BE=|Vu O 0 B = vy o 0 ,
0 Vi 0 0 wiViw O 0 wiViw O
0 Vkl 0 0 W3Vkl 0 0 w%Vkl 0
B¥=1 0 0 Vy |,BE=| 0 0 w3Vy |,Bi=( 0 0 wW |,
Vie 0 0 Vie O 0 Viie 0 0
_ wW; 0 0 ' wW; 0 0 _ w; 0 0
0o 0 W 0 0 wiw; 0 0 wsW;

where k € [3]'; 1 € [2); j € [4]'. Set C; = {Bflo}, Cy={BF Y for k c 3]; 1 €[2]; j¢c
[4); n € [3]"; m € [2]*. Then according to Theorem 2, C;UCj is a 48-member UMEB in C®®C?.

Remark 2. The Constructions of UMEB in Theorem 1 and Theorem 2 are different, which
can be easily seen from the Examples 1 and 2. We can give a state with Schmidt number 4
in the subspace of the UMEB in Example 1. While what we can get in the subspace of the
UMEB in Example 2 are the states with Schmidt number no more than 3. In fact, according to
Theorem 2, one can construct a UMEB in C* ® C% from the UMEB in C? @ C3, while one can
not do this way from the Theorem 1. Here Theorem 1 in [I5] is a also special case of the above

Theorem 2 for p = q.

Remark 3. By using Theorem 2 in [18], we can give a p(¢ —r)-member UMEB in CP @ C1.
According to Theorem 2 in this paper, we can obtain a pd(qd — r)-member UMEB in CP% @ C%9,
in whose subspace we can get some states with Schmidt number dr. We can also get a pd(qd—r)-
member UMEB directly by Theorem 2 in [18], nevertheless, in the associated subspace, one can
only attain the states with Schmidt number no greater than r. Therefore, they are different
constructions. Actually, there are many N-number UMEBs in CP ® C?, where p f N. In this
case, it doesn’t hold that pd|(pgd® — d(pg — N)). Namely, we can not even get a UMEB with

the same number of members by Theorem 2 in [I§].



5

Conclusion

We have provided an explicit way of constructing a pgd? — p(d? — N)-member UMEB in

CPl®CI% from an N-member UMEB in C?®C?, and constructed a 48-number UMEB in Cé@C?

as a detailed example. We have also established a method to construct a pgd? — d(pg — N)-
member UMEB in CP¢ ® C% from an N-member UMEB in C? ® CY?, and presented another

48-member UMEB in C%® @ C°. These results may highlight the further investigations on the

construction of unextendible bases and the theory of quantum entanglement.
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