Unextendible Maximally Entangled Bases in $\mathbb{C}^{p d} \otimes \mathbb{C}^{q d}$

Gui-Jun Zhang ${ }^{1}$, Yuan-Hong Tao ${ }^{1}$ *, Yi-Fan Han ${ }^{1}$, Xin-Lei Yong ${ }^{1}$, Shao-Ming Fei ${ }^{2}{ }^{2,3}$
1 Department of Mathematics College of Sciences, Yanbian University, Yanji 133002, China
2 School of Mathematics Sciences, Capital Normal University, Beijing 100048, China
3 Max-Planck-Institute for Mathematics in the Science, 04103 Leipzig, Germany
* Correspondence to taoyuanhong12@126.com

Abstract

The construction of unextendible maximally entangled bases is tightly related to quantum information processing like local state discrimination. We put forward two constructions of UMEBs in $\mathbb{C}^{p d} \otimes \mathbb{C}^{q d}(p \leq q)$ based on the constructions of UMEBs in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ and in $\mathbb{C}^{p} \otimes \mathbb{C}^{q}$, which generalizes the results in [Phys. Rev. A. 94, 052302 (2016)] by two approaches. Two different 48 -member UMEBs in $\mathbb{C}^{6} \otimes \mathbb{C}^{9}$ have been constructed in detail.

1 Introduction

It is well known that the quantum states are divided into two parts: separable states and entanglement states. Quantum entanglement, as a potential resource, is widely applied into many quantum information process, such as quantum computation [1], quantum teleportation [2], quantum cryptography [3] as well as nonlocality [4]. Nonlocality is a very useful concept in quantum mechanics [4, [5, 6] and is tightly related to entanglement. However, it is proved that the unextendible product bases (UPBs) reveal some nolocality without entanglement [7, 8]. The UPB is a set of incomplete orthogonal product states in bipartite quantum system $\mathbb{C}^{d} \otimes \mathbb{C}^{d^{\prime}}$ consisting of fewer than $d d^{\prime}$ vectors which have no additional product states orthogonal to each element of the set 9 .

In 2009, S. Bravyi and J. A. Smolin [10] first proposed the notion of unextendible maximally entangled basis(UMEB): a set of incomplete orthogonal maximally entangled states in $\mathbb{C}^{d} \otimes \mathbb{C}^{d^{\prime}}$ consisting of fewer than $d d^{\prime}$ vectors which have no additional maximally entangled vectors that are orthogonal to all of them. These incomplete bases have some special properties. In bipartite space $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$, one can get a state on the UMEB's complementary subspace, whose entanglement of assistance (EoA) is strictly smaller than $\log d$, the asymptotic EoA [10]. As for in $\mathbb{C}^{d} \otimes \mathbb{C}^{d^{\prime}}$,
one can also get a state on the complementary subspace of UMEB, corresponding to a quantum channel, which would not be unital. Besides, it cannot be convex mixtures of unitary operators too [11]. In addition, for a given mixed state, its Schmidt number is hard to calculate. If we can get a n-member UMEB $\left\{\left|\phi_{i}\right\rangle\right\}$ in $\mathbb{C}^{d} \otimes \mathbb{C}^{d^{\prime}}$, the Schmidt number of the following state

$$
\rho^{\perp}=\frac{1}{d d^{\prime}-n}\left(I-\sum_{i=1}^{n}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|\right)
$$

is smaller than $d[12]$. Therefore, different UMEBs can be used to construct different mixed entangled states with limited Schmidt number, even state with different Schmidt number.

In [11, B. Chen and S. M. Fei provided a way to construct UMEBs in some special cases of bipartite system. Then H. Nan et al. [13], M. S. Li et al. [14], Y. L. Wang et al. [15, 16], Y. Guo [17], G. J. Zhang et al. 18] developed some new results of UMEB in bipartite system. Later, Y.J. Zhang et al. [19] and Y. Guo et al. 20] generalized the notion of UMEB from bipartite systems to multipartite quantum systems. In [20], Y. Guo showed that if there exists an N-member UMEB $\left\{\left|\psi_{j}\right\rangle\right\}$ in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$, then there exists a $q d^{2}-q\left(d^{2}-N\right)$-member UMEB in $\mathbb{C}^{q d} \otimes \mathbb{C}^{q d}$ for any $q \in \mathbb{N}$. Y. Guo et al. [21] also proposed the definition of entangled bases with fixed Schmidt number.

In this paper, we study UMEBs in bipartite system $\mathbb{C}^{p d} \otimes \mathbb{C}^{q d}(p \leq q)$. A systematic way of constructing UMEBs in $\mathbb{C}^{p d} \otimes \mathbb{C}^{q d}$ from that in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ is presented firstly, and a construction of 48 -member UMEB in $\mathbb{C}^{6} \otimes \mathbb{C}^{9}$ is given as an example. Furthermore, a explicit method to construct UMEBs containing $p q d^{2}-d(p q-N)$ maximally entangled vectors in $\mathbb{C}^{p d} \otimes \mathbb{C}^{q d}$ from an N-member UMEB in $\mathbb{C}^{p} \otimes \mathbb{C}^{q}$ is presented. Moreover, another construction of 48-member UMEB in $\mathbb{C}^{6} \otimes \mathbb{C}^{9}$ is obtained, thus generalized the results in Yu Guo[phys.Rev.A.94,052302(2016)] by two approaches.

2 Preliminaries

Throughout the paper, we denote $[d]^{\prime}=\{0,1, \cdots, d-1\}$ and $[d]^{*}=\{1,2, \cdots, d\}$.
A pure state $|\psi\rangle$ is said to be a maximally entangled state in $\mathbb{C}^{d} \otimes \mathbb{C}^{d^{\prime}}\left(d \leq d^{\prime}\right)$ if and only if for a arbitrary given orthonormal basis $\{|i\rangle\}$ of \mathbb{C}^{d}, there exists an orthonormal basis $\left\{\left|i^{\prime}\right\rangle\right\}$ of $\mathbb{C}^{d^{\prime}}$ such that $|\psi\rangle$ can be written as $|\psi\rangle=\frac{1}{\sqrt{d}} \sum_{i=0}^{d-1}|i\rangle \otimes\left|i^{\prime}\right\rangle[6]$.

A set of pure states $\left\{\left|\phi_{i}\right\rangle\right\}_{i=0}^{n-1} \in C^{d} \otimes C^{d^{\prime}}$ with the following conditions is called an unex-
tendible maximally entangled bases(UMEB) [10]:
(i) $\left|\phi_{i}\right\rangle, i \in[n]^{\prime}$ are all maximally entangled states,
(ii) $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{i j}, i, j \in[n]^{\prime}$,
(iii) $n<d d^{\prime}$, and if a pure state $|\psi\rangle$ meets that $\left\langle\phi_{i} \mid \psi\right\rangle=0, i \in[n]^{\prime}$, then $|\psi\rangle$ can not be maximally entangled.

Let $\mathcal{M}_{d^{\prime} \times d}$ be the Hilbert space of all $d^{\prime} \times d$ complex matrices equipped with the inner product defined by $\langle A \mid B\rangle=\operatorname{Tr}\left(A^{\dagger} B\right)$ for any $A, B \in \mathcal{M}_{d^{\prime} \times d}$. If $\left\{A_{i}\right\}_{i=0}^{d d^{\prime}-1}$ constitutes a Hilbert-Schmidt basis of $\mathcal{M}_{d^{\prime} \times d}$, where $\left\langle A_{i} \mid A_{j}\right\rangle=d \delta_{i j}$, then there is a one-to-one correspondence between an orthogonal basis in $\mathbb{C}^{d} \otimes \mathbb{C}^{d^{\prime}}\left\{\left|\phi_{i}\right\rangle\right\}$ and $\left\{A_{i}\right\}$ as follows [20, 21]:

$$
\begin{gather*}
\left|\phi_{i}\right\rangle=\frac{1}{\sqrt{d}} \sum_{k=0}^{d-1} \sum_{\ell^{\prime}=0}^{d^{\prime}-1} a_{\ell^{\prime} k}^{(i)}|k\rangle\left|\ell^{\prime}\right\rangle \in \mathbb{C}^{d} \otimes \mathbb{C}^{d^{\prime}} \Leftrightarrow A_{i}=\left[a_{\ell^{\prime} k}^{(i)}\right] \in \mathcal{M}_{d^{\prime} \times d} \\
\operatorname{Sr}\left(\left|\phi_{i}\right\rangle\right)=\operatorname{rank}\left(A_{i}\right), \quad\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\frac{1}{d} \operatorname{Tr}\left(A_{i}^{\dagger} A_{j}\right) \tag{1}
\end{gather*}
$$

where $\operatorname{Sr}\left(\left|\phi_{i}\right\rangle\right)$ denotes the Schmidt number of $\left|\phi_{i}\right\rangle$. Obviously, $\left|\phi_{i}\right\rangle$ is a maximally entangled pure state in $C^{d} \otimes C^{d^{\prime}}$ iff A_{i} is a $d^{\prime} \times d$ singular-value-1 matrix (a matrix whose singular values all equal to 1). Specially, A_{i} is a unitary matrix when $d=d^{\prime}$.

For simplicity we adopt the following definitions [17]. We call a Hilbert-Schmidt basis $\Omega=$ $\left\{A_{i}\right\}_{i=0}^{d^{2}-1}$ in $\mathcal{M}_{d \times d}$ a unitary Hilbert-Schmidt basis (UB) of $\mathcal{M}_{d \times d}$ if A_{i} s are unitary matrices, and a Hilbert-Schmidt basis $\Omega=\left\{A_{i}\right\}_{i=0}^{d d^{\prime}-1}$ in $\mathcal{M}_{d^{\prime} \times d}$ a singular-value-1 Hilbert-Schmidt basis (SV1B) of $\mathcal{M}_{d \times d}$ if A_{i} s are singular-value-1 matrices. A set of $d \times d$ unitary matrices $\Omega=$ $\left\{A_{i}\right\}_{i=0}^{n-1}\left(n<d^{2}\right)$ is called an unextendible unitary Hilbert-Schmidt basis (UUB) of $\mathcal{M}_{d \times d}$ if (i) $\operatorname{Tr}\left(A_{i}^{\dagger} A_{j}\right)=d \delta_{i j}$; (ii) if $\operatorname{Tr}\left(A_{i}^{\dagger} X\right)=0, i \in[n]^{\prime}$, then X is not unitary.
[Definition] A set of $d \times d^{\prime}\left(d<d^{\prime}\right)$ singular-value-1 matrices $\Omega=\left\{A_{i}\right\}_{i=1}^{d d^{\prime}}\left(n<d d^{\prime}\right)$ is called an unextendible singular-value-1 Hilbert-Schmidt basis (USV1B) of $\mathcal{M}_{d \times d}$ if (a) $\operatorname{Tr}\left(A_{i}^{\dagger} A_{j}\right)=d \delta_{i j}$; (b) if $\operatorname{Tr}\left(A_{i}^{\dagger} X\right)=0, i \in[n]^{\prime}$, then X is not a singular-value- 1 matrix.

According to the Eq.(1), it is obvious that $\Omega=\left\{A_{i}\right\}_{i=0}^{d^{2}-1}$ is a UB iff $\left\{\left|\phi_{i}\right\rangle\right\}$ is a maximally entangled basis (MEB) of $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ while $\Omega=\left\{A_{i}\right\}_{i=0}^{d d^{\prime}-1}$ is a SV1B iff $\left\{\left|\phi_{i}\right\rangle\right\}$ is a MEB of $\mathbb{C}^{d} \otimes \mathbb{C}^{d^{\prime}}$. And $\Omega=\left\{A_{i}\right\}_{i=0}^{n-1}\left(n<d^{2}\right)$ is a UUB iff $\left\{\left|\phi_{i}\right\rangle\right\}$ is a UMEB of $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ while $\Omega=\left\{A_{i}\right\}_{i=0}^{n-1}\left(n<d d^{\prime}\right)$ is a USV1B iff $\left\{\left|\phi_{i}\right\rangle\right\}$ is a UMEB of $\mathbb{C}^{d} \otimes \mathbb{C}^{d^{\prime}}[17]$.

3 UMEBs in $\mathbb{C}^{p d} \otimes \mathbb{C}^{q d}(p \leq q)$ from UMEBs in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$

Theorem 1. If there is an N-member UMEB $\left\{\left|\psi_{j}\right\rangle\right\}$ in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$, then there exists a $p q d^{2}-p\left(d^{2}-N\right)$-member UMEB in $\mathbb{C}^{p d} \otimes \mathbb{C}^{q d}(p \leq q)$.

Proof. Let $\left\{W_{j}=\left[w_{i^{\prime}}^{j} j\right\}_{j=0}^{N-1}\right.$ be a UUB of $\mathcal{M}_{d \times d}$ corresponding to $\left\{\left|\psi_{j}\right\rangle\right\}$,

$$
\left|\psi_{j}\right\rangle=\frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} \sum_{i^{\prime}=0}^{d-1} w_{i^{\prime} i}^{j}|i\rangle \otimes\left|i^{\prime}\right\rangle, \quad j \in[N]^{\prime} .
$$

Denote

$$
\begin{aligned}
U_{n m} & =\sum_{a=0}^{d-1} e^{\frac{2 \pi n a \sqrt{-1}}{d}}\left|a \oplus_{d} m\right\rangle\langle a|, \\
V_{k l} & =\sum_{a=0}^{p-1} e^{\frac{2 \pi k a \sqrt{-1}}{p}}\left|a \oplus_{q} l\right\rangle\langle a|,
\end{aligned}
$$

where $m, n \in[d]^{\prime} ; \quad l \in[q]^{\prime} ; \quad k \in[p]^{\prime} ; \quad j \in[N]^{\prime}$, and

$$
\begin{gathered}
B_{k 0}^{j}=V_{k 0} \otimes W_{j}, \quad k \in[p]^{\prime} ; \quad j \in[N]^{\prime}, \\
B_{k l}^{n m}=V_{k l} \otimes U_{n m}, \quad k \in[p]^{\prime} ; l \in[q-1]^{*} ; m, n \in[d]^{\prime} .
\end{gathered}
$$

Set $C_{1}=\left\{B_{k 0}^{j}\right\}$ and $C_{2}=\left\{B_{k l}^{n m}\right\}$. Then $C_{1} \cup C_{2}$ is exactly a USV1B in $\mathcal{M}_{q d \times p d}$.
Firstly, all $B_{k 0}^{j}$ and $B_{k l}^{n m}$ are $q d \times p d$ singular-value- 1 matrices, which satisfy the conditions in the Definition:
(a) $\operatorname{Tr}\left[\left(B_{k 0}^{j}\right)^{\dagger} B_{k^{\prime} 0}^{j^{\prime}}\right]=p d \delta_{k k^{\prime}} \delta_{j j^{\prime}}, \operatorname{Tr}\left[\left(B_{k l}^{n m}\right)^{\dagger} B_{k^{\prime} l^{\prime}}^{n m^{\prime}}\right]=p d \delta_{k k^{\prime}} \delta_{l l^{\prime}} \delta_{n n^{\prime}} \delta_{m m^{\prime}}$ and $\operatorname{Tr}\left[\left(B_{k l}^{n m}\right)^{\dagger} B_{k^{\prime} 0}^{j}\right]=$ 0 , where $j, j^{\prime} \in[N]^{\prime} ; k, k^{\prime} \in[p]^{\prime} ; l, l^{\prime} \in[q-1]^{*} ; n, n^{\prime}, m, m^{\prime} \in[d]^{\prime}$.
(b) Denote S the matrix space of $\left(I_{p}, O_{p \times(q-p)}\right)^{t} \otimes R$, where t stands for matrix transpose, I_{p} is the $p \times p$ identity matrix, $O_{p \times(q-p)}$ is the $p \times(q-p)$ zero matrix and $R \in \mathcal{M}_{d \times d}$. Obviously the dimension of S^{\perp} is $p(q-1) d^{2}$. Thus C_{2} is an SV1B of S^{\perp} with $p(q-1) d^{2}$ elements.

Assume that D is a singular-value-1 matrix in $\mathcal{M}_{q d \times p d}$, which is orthogonal to all matrices in $C_{1} \cup C_{2}$. Since C_{2} is a SV1B of S^{\perp}, then $D \in S$. No loss of generality, set

$$
D=\binom{A}{O_{1}}, \quad A=\operatorname{diag}\left(A_{1}, A_{2}, \cdots, A_{p}\right), \quad O_{1}=O_{(q-p) d \times p d}
$$

where $A_{h}\left(h \in[p]^{*}\right)$ are all $d \times d$ matrices. Note that D is orthogonal to each $B_{k 0}^{j}$ in C_{1}, i.e.,

$$
\operatorname{Tr}\left(D^{\dagger} B_{k 0}^{j}\right)=0, \quad k=[p]^{\prime} ; \quad j \in[N]^{\prime}
$$

Then

$$
\operatorname{Tr}\left[\left(\begin{array}{ll}
A^{\dagger} & O_{1}^{\dagger}
\end{array}\right)_{p d \times q d} \cdot\binom{G}{O_{1}}_{q d \times p d}\right]=0
$$

where $G=\operatorname{diag}\left(\omega_{p}^{0 k} W_{j}, \omega_{p}^{1 k} W_{j}, \cdots, \omega_{p}^{(p-1) k} W_{j}\right)$, i.e.,

$$
\omega_{p}^{0 k} \operatorname{Tr}\left(A_{1}^{\dagger} W_{j}\right)+\omega_{p}^{-1 k} \operatorname{Tr}\left(A_{2}^{\dagger} W_{j}\right)+\cdots+\omega_{p}^{(1-p) k} \operatorname{Tr}\left(A_{p}^{\dagger} W_{j}\right)=0
$$

Hence,

$$
H X_{j}=0,
$$

where

$$
H=\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & \omega_{p}^{p-1} & \omega_{p}^{p-2} & \ldots & \omega_{p}^{1} \\
1 & \omega_{p}^{p-2} & \omega_{p}^{p-4} & \ldots & \omega_{p}^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega_{p}^{1} & \omega_{p}^{2} & \ldots & \omega_{p}^{p-1}
\end{array}\right), \quad X_{j}=\left(\begin{array}{c}
\operatorname{Tr}\left(A_{1}^{\dagger} W_{j}\right) \\
\operatorname{Tr}\left(A_{2}^{\dagger} W_{j}\right) \\
\operatorname{Tr}\left(A_{3}^{\dagger} W_{j}\right) \\
\vdots \\
\operatorname{Tr}\left(A_{p}^{\dagger} W_{j}\right)
\end{array}\right) .
$$

Obviously, $X_{j}=O$ for $j \in[N]^{\prime}$ since $\operatorname{det} H \neq 0$. That is to say, $\operatorname{Tr}\left(A_{h}^{\dagger} W_{0}\right)=\operatorname{Tr}\left(A_{h}^{\dagger} W_{1}\right)=$ $\cdots=\operatorname{Tr}\left(A_{h}^{\dagger} W_{N-1}\right)=0, h \in[p]^{*}$. As every A_{n} is orthogonal to each W_{j}, whereas $\left\{W_{j}\right\}$ is a UUB in $\mathcal{M}_{d \times d}$, none of A_{h} is unitary. Moreover, all the singular values of $A_{h} \mathrm{~s}$ are also the singular values of D. Therefore, D is not a singular-value-1 matrix, which contradicts to the assumption. Thus, $C_{1} \cup C_{2}$ is a USV1B in $\mathcal{M}_{q d \times p d}$.

Example 1. A 48 -member UMEB in $\mathbb{C}^{6} \otimes \mathbb{C}^{9}$ from a 6 -member UMEB in $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$.
A 6 -member UMEB in $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$ from Ref. [10] is as follows:

$$
W_{j}=I-\left(1-e^{\sqrt{-1} \theta}\right)\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|, j=[6]^{\prime},
$$

where

$$
\begin{aligned}
\left|\psi_{0,1}\right\rangle & =\frac{1}{\sqrt{1+\phi^{2}}}(|0\rangle \pm \phi|1\rangle) \\
\left|\psi_{2,3}\right\rangle & =\frac{1}{\sqrt{1+\phi^{2}}}(|1\rangle \pm \phi|2\rangle) \\
\left|\psi_{4,5}\right\rangle & =\frac{1}{\sqrt{1+\phi^{2}}}(|2\rangle \pm \phi|0\rangle)
\end{aligned}
$$

with $\phi=(1+\sqrt{5}) / 2$.
Then, denote

$$
U_{n m}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{m} \cdot\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega_{3} & 0 \\
0 & 0 & \omega_{3}^{2}
\end{array}\right)^{n}, \quad m, n \in[3]^{\prime}
$$

$$
V_{k l}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{l} \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)^{k}, \quad k \in[2]^{\prime} ; \quad l \in[3]^{\prime},
$$

where $\omega_{3}=e^{\frac{2 \pi \sqrt{-1}}{3}}$.
Let

$$
\begin{gathered}
B_{01}^{n m}=\left(\begin{array}{cc}
0 & 0 \\
U_{n m} & 0 \\
0 & U_{n m}
\end{array}\right), \quad B_{11}^{n m}=\left(\begin{array}{cc}
0 & 0 \\
U_{n m} & 0 \\
0 & -U_{n m}
\end{array}\right), \\
B_{02}^{n m}=\left(\begin{array}{cc}
0 & U_{n m} \\
0 & 0 \\
U_{n m} & 0
\end{array}\right), \quad B_{12}^{n m}=\left(\begin{array}{cc}
0 & U_{n m} \\
0 & 0 \\
-U_{n m} & 0
\end{array}\right), \\
B_{00}^{j}=\left(\begin{array}{cc}
W_{j} & 0 \\
0 & W_{j} \\
0 & 0
\end{array}\right), \quad B_{10}^{j}=\left(\begin{array}{cc}
W_{j} & 0 \\
0 & -W_{j} \\
0 & 0
\end{array}\right),
\end{gathered}
$$

where $n, m \in[3]^{\prime} ; j \in[6]^{\prime}$. Set $C_{1}=\left\{B_{k 0}^{j}\right\}, C_{2}=\left\{B_{k l}^{n m}\right\}$, for $k \in[2]^{\prime} ; j \in[6]^{\prime} ; l \in$ [2] ${ }^{*} ; \quad n, m \in[3]^{\prime}$. According to Theorem 1, we have that $C_{1} \cup C_{2}$ is a 48-number UMEB in $\mathbb{C}^{6} \otimes \mathbb{C}^{9}$.

Remark 1. Theorem 1 in Ref. [15] is a special case of the above Theorem 1 for $p=q$.

4 UMEBs in $\mathbb{C}^{p d} \otimes \mathbb{C}^{q d}(p \leq q)$ from UMEBs in $\mathbb{C}^{p} \otimes \mathbb{C}^{q}$

Next, we will present a general approach to construct UMEBs in $\mathbb{C}^{p d} \otimes \mathbb{C}^{q d}$ from UMEBs in $\mathbb{C}^{p} \otimes \mathbb{C}^{q}$.

Theorem 2. If there is an N-member UMEB $\left\{\left|\psi_{j}\right\rangle\right\}$ in $\mathbb{C}^{p} \otimes \mathbb{C}^{q}$, then there exists a $p q d^{2}$ $d(p q-N)$-member UMEB in $\mathbb{C}^{p d} \otimes \mathbb{C}^{q d}(p \leq q)$.

Proof. Let $\left\{W_{j}=\left[w_{i^{\prime} i}^{j}\right]\right\}_{j=0}^{N-1}$ be a USV1B of $\mathcal{M}_{q \times p}$ corresponding to $\left\{\left|\psi_{j}\right\rangle\right\}$, then

$$
\left|\psi_{j}\right\rangle=\frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} \sum_{i^{\prime}=0}^{d^{\prime}-1} w_{i^{\prime} i}^{j}|i\rangle \otimes\left|i^{\prime}\right\rangle, \quad j \in[N]^{\prime}
$$

Denote

$$
\begin{aligned}
U_{n m} & =\sum_{a=0}^{d-1} e^{\frac{2 \pi n a \sqrt{-1}}{d}}\left|a \oplus_{d} m\right\rangle\langle a|, \\
V_{k l} & =\sum_{a=0}^{p-1} e^{\frac{2 \pi k a \sqrt{-1}}{p}}\left|a \oplus_{q} l\right\rangle\langle a|,
\end{aligned}
$$

where $m, n \in[d]^{\prime} ; \quad l \in[q]^{\prime} ; \quad k \in[p]^{\prime} ; \quad j \in[N]^{\prime}$. Let

$$
\begin{gathered}
B_{n 0}^{j}=U_{n 0} \otimes W_{j}, \quad n \in[d]^{\prime} ; \quad j \in[N]^{\prime}, \\
B_{n m}^{k l}=U_{n m} \otimes V_{k l}, \quad m \in[d-1]^{*} ; n \in[d]^{\prime} ; l \in[q]^{\prime} ; k \in[p]^{\prime},
\end{gathered}
$$

and

$$
C_{1}=\left\{B_{n 0}^{j}\right\}, \quad C_{2}=\left\{B_{n m}^{k l}\right\} .
$$

then, $C_{1} \cup C_{2}$ is exactly a USV1B in $\mathcal{M}_{q d \times p d}$.
Firstly, all $B_{n 0}^{j}$ and $B_{n m}^{k l}$ are $q d \times p d$ singular-value- 1 matrices, satisfying the conditions in the Definition:
(a) $\operatorname{Tr}\left[\left(B_{n 0}^{j}\right)^{\dagger} B_{n^{\prime} 0}^{j^{\prime}}\right]=q d \delta_{n n^{\prime}} \delta_{j j^{\prime}}, \operatorname{Tr}\left[\left(B_{n m}^{k l}\right)^{\dagger} B_{n^{\prime} m^{\prime}}^{k^{\prime} l^{\prime}}\right]=q d \delta_{n n^{\prime}} \delta_{m m^{\prime}} \delta_{k k^{\prime}} \delta_{l l^{\prime}}$ and $\operatorname{Tr}\left[\left(B_{n m}^{k l}\right)^{\dagger} B_{n^{\prime} 0}^{j}\right]=$ 0 , where $j, j^{\prime} \in[N]^{\prime} ; k, k^{\prime} \in[q]^{\prime} ; l, l^{\prime} \in[p]^{\prime} ; n, n^{\prime} \in[d]^{\prime} ; m, m^{\prime} \in[d-1]^{*}$.
(b) Denote S the matrix space of $I_{d} \otimes R$, where $R \in \mathcal{M}_{q \times p}$. Obviously, the dimension of S^{\perp} is $p q(d-1) d$.

Setting $C_{1}=\left\{B_{n 0}^{j}\right\}$ and $C_{2}=\left\{B_{n m}^{k l}\right\}$, we have that C_{2} with $p q(d-1) d$ elements is an SV1B of S^{\perp}, and $C_{1} \cup C_{2}$ is just a USV1B in $\mathcal{M}_{q d \times p d}$.

Assume that D is a singular-value- 1 matrix in $\mathcal{M}_{q d \times p d}$, which is orthogonal to all matrices in $C_{1} \cup C_{2}$. Since C_{2} is a SV1B of S^{\perp}, then $D \in S$. No loss of generality, set

$$
D=\operatorname{diag}\left(A_{1}, A_{2}, \cdots, A_{d}\right)_{q d \times p d},
$$

where $A_{h}\left(h \in[d]^{*}\right)$ are all $q \times p$ matrices. Similar to the proof of Theorem 1, we can prove that none of A_{h} is singular-value- 1 matrices. Moreover, all the singular values of all $A_{h} \mathrm{~s}$ are also the singular values of D, namely, D is not a singular-value- 1 matrix, which contradicts to the assumption. Thus, $C_{1} \cup C_{2}$ is a USV1B in $\mathcal{M}_{q d \times p d}$.

Example 2. A 48-member UMEB in $\mathbb{C}^{6} \otimes \mathbb{C}^{9}$ from a 4 -member UMEB in $\mathbb{C}^{2} \otimes \mathbb{C}^{3}$.
A 4-member UMEB in $\mathbb{C}^{2} \otimes \mathbb{C}^{3}$ is as follows:

$$
\begin{aligned}
W_{0,1} & =\left|0^{\prime}\right\rangle\langle 0| \pm\left|1^{\prime}\right\rangle\langle 1|, \\
W_{2,3} & =\left|0^{\prime}\right\rangle\langle 1| \pm\left|1^{\prime}\right\rangle\langle 0| .
\end{aligned}
$$

Denote

$$
U_{n m}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{m} \cdot\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega_{3} & 0 \\
0 & 0 & \omega_{3}^{2}
\end{array}\right)^{n}, \quad m, n \in[3]^{\prime}
$$

$$
V_{k l}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{l} \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)^{k}, \quad k \in[3]^{\prime} ; \quad l \in[2]^{\prime},
$$

where $\omega_{3}=e^{\frac{2 \pi \sqrt{-1}}{3}}$. Let

$$
\begin{aligned}
& B_{01}^{k l}=\left(\begin{array}{ccc}
0 & 0 & V_{k l} \\
V_{k l} & 0 & 0 \\
0 & V_{k l} & 0
\end{array}\right), B_{11}^{k l}=\left(\begin{array}{ccc}
0 & 0 & \omega_{3}^{2} V_{k l} \\
V_{k l} & 0 & 0 \\
0 & \omega_{3} V_{k l} & 0
\end{array}\right), B_{21}^{k l}=\left(\begin{array}{ccc}
0 & 0 & \omega_{3} V_{k l} \\
V_{k l} & 0 & 0 \\
0 & \omega_{3}^{2} V_{k l} & 0
\end{array}\right), \\
& B_{02}^{k l}=\left(\begin{array}{ccc}
0 & V_{k l} & 0 \\
0 & 0 & V_{k l} \\
V_{k l} & 0 & 0
\end{array}\right), B_{12}^{k l}=\left(\begin{array}{ccc}
0 & \omega_{3} V_{k l} & 0 \\
0 & 0 & \omega_{3}^{2} V_{k l} \\
V_{k l} & 0 & 0
\end{array}\right), B_{22}^{k l}=\left(\begin{array}{ccc}
0 & \omega_{3}^{2} V_{k l} & 0 \\
0 & 0 & \omega_{3} V_{k l} \\
V_{k l} & 0 & 0
\end{array}\right), \\
& B_{00}^{j}=\left(\begin{array}{ccc}
W_{j} & 0 & 0 \\
0 & W_{j} & 0 \\
0 & 0 & W_{j}
\end{array}\right), B_{10}^{j}=\left(\begin{array}{ccc}
W_{j} & 0 & 0 \\
0 & \omega_{3} W_{j} & 0 \\
0 & 0 & \omega_{3}^{2} W_{j}
\end{array}\right), B_{20}^{j}=\left(\begin{array}{ccc}
W_{j} & 0 & 0 \\
0 & \omega_{3}^{2} W_{j} & 0 \\
0 & 0 & \omega_{3} W_{j}
\end{array}\right),
\end{aligned}
$$

where $k \in[3]^{\prime} ; l \in[2]^{\prime} ; j \in[4]^{\prime}$. Set $C_{1}=\left\{B_{n 0}^{j}\right\}, \quad C_{2}=\left\{B_{n m}^{k l}\right\}$, for $k \in[3]^{\prime} ; l \in[2]^{\prime} ; j \in$ $[4]^{\prime} ; n \in[3]^{\prime} ; m \in[2]^{*}$. Then according to Theorem $2, C_{1} \cup C_{2}$ is a 48 -member UMEB in $\mathbb{C}^{6} \otimes \mathbb{C}^{9}$.

Remark 2. The Constructions of UMEB in Theorem 1 and Theorem 2 are different, which can be easily seen from the Examples 1 and 2. We can give a state with Schmidt number 4 in the subspace of the UMEB in Example 1. While what we can get in the subspace of the UMEB in Example 2 are the states with Schmidt number no more than 3. In fact, according to Theorem 2 , one can construct a UMEB in $\mathbb{C}^{4} \otimes \mathbb{C}^{6}$ from the UMEB in $\mathbb{C}^{2} \otimes \mathbb{C}^{3}$, while one can not do this way from the Theorem 1. Here Theorem 1 in [15] is a also special case of the above Theorem 2 for $p=q$.

Remark 3. By using Theorem 2 in [18], we can give a $p(q-r)$-member UMEB in $\mathbb{C}^{p} \otimes \mathbb{C}^{q}$. According to Theorem 2 in this paper, we can obtain a $p d(q d-r)$-member UMEB in $\mathbb{C}^{p d} \otimes \mathbb{C}^{q d}$, in whose subspace we can get some states with Schmidt number $d r$. We can also get a $p d(q d-r)$ member UMEB directly by Theorem 2 in [18], nevertheless, in the associated subspace, one can only attain the states with Schmidt number no greater than r. Therefore, they are different constructions. Actually, there are many N-number UMEBs in $\mathbb{C}^{p} \otimes \mathbb{C}^{q}$, where $p \nmid N$. In this case, it doesn't hold that $p d \mid\left(p q d^{2}-d(p q-N)\right)$. Namely, we can not even get a UMEB with the same number of members by Theorem 2 in [18].

5 Conclusion

We have provided an explicit way of constructing a $p q d^{2}-p\left(d^{2}-N\right)$-member UMEB in $\mathbb{C}^{p d} \otimes \mathbb{C}^{q d}$ from an N-member UMEB in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$, and constructed a 48 -number UMEB in $\mathbb{C}^{6} \otimes \mathbb{C}^{9}$ as a detailed example. We have also established a method to construct a $p q d^{2}-d(p q-N)$ member UMEB in $\mathbb{C}^{p d} \otimes \mathbb{C}^{q d}$ from an N-member UMEB in $\mathbb{C}^{p} \otimes \mathbb{C}^{q}$, and presented another 48-member UMEB in $\mathbb{C}^{6} \otimes \mathbb{C}^{9}$. These results may highlight the further investigations on the construction of unextendible bases and the theory of quantum entanglement.

References

[1] A. Barenco, A. K. Ekert. Dense Coding Based on Quantum Entanglement[J]. Journal of Modern Optics, 1995, 42(6): 1253-1259
[2] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81: 865-942
[3] W. Tittel, J. Brendel, H. Zbinden, N. Gisin. Quantum cryptography using entangled photons in energy-time bell states[J]. Physical Review Letters, 2000, 84(20): 4737
[4] S. B. Zheng. Quantum nonlocality for a three-particle nonmaximally entangled state without inequalities[J]. Physical Review A, 2002, 66(1): 90-95
[5] W. J. Guo, D. H. Fan, L. F. Wei. Experimentally testing Bells theorem based on Hardys nonlocal ladder proofs[J]. Science China Physics, Mechanics Astronomy. 2015, 58: 024201.
[6] H. X. Meng, H. X. Cao, W. H. Wang, L. Chen, Y. J. Fan. Continuity of the robustness of contextuality and the contextuality cost of empirical models[J]. Science China Physics, Mechanics \& Astronomy. 2016, 59(4): 640303
[7] D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, B. M. Terhal. Unextendible product bases, uncompletable product bases and bound entanglement[J]. Commun. Math. Phys. 2013, 238, 379
[8] S. D. Rinaldis. Distinguishability of complete and unextendible product bases[J]. Phys. Rev. A. 2004, 70: 022309
[9] C. H. Bennett et al. Unextendible product bases and bound entanglement[J]. Phys. Rev. Lett. 1999, 82: 5385
[10] S. Bravyi, J. A. Smolin. Unextendible maximally entangled bases[J]. Physical Review A, 2011, 84: 042306
[11] B. Chen, S. M. Fei. Unextendible maximally entangled bases and mutually unbiased bases[J]. Physical Review A, 2013, 88: 034301
[12] Y. Guo, S. J. Wu. Unextendible entangled bases with fixed Schmidt number[J]. Physical Review A, 2014, 48(24): 245301
[13] H. Nan, Y. H. Tao, L. S. Li, J. Zhang. Unextendible Maximally Entangled Bases and Mutually Unbiased Bases in $\mathbb{C}^{d} \otimes \mathbb{C}^{d^{\prime}}[\mathrm{J}]$. International Journal of Theoretical Physics, 2015, 54: 927
[14] M. S. Li, Y. L. Wang, S. M. Fei, Z. J. Zheng. Unextendible maximally entangled bases in $\mathbb{C}^{d} \otimes \mathbb{C}^{d^{\prime}}[\mathrm{J}]$. Physical Review A, 2014, 89: 062313
[15] Y.L. Wang, M. S. Li, S.M. Fei. Unextendible maximally entangled bases in $\mathbb{C}^{d} \otimes \mathbb{C}^{d^{\prime}}[\mathrm{J}]$. Physical Review A, 2014, 90: 034301
[16] Y. L. Wang, M. S. Li, S. M. Fei. Connecting the UMEB in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ with partial Hadamard matrices[J]. Quantum Information Processing, 2017, 16(3): 84
[17] Y. Guo. Constructing the unextendible maximally entangled basis from the maximally entangled basis[J]. Physical Review A, 2016, 94: 052302
[18] G. J. Zhang, Y. H. Tao, Y. F. Han, X. L. Yong, S. M. Fei. Constructions of Unextendible Maximally Entangled Bases in $\mathbb{C}^{d} \otimes \mathbb{C}^{d^{\prime}}[J]$. Scientific Reports, 2018, 8(1): 319
[19] Y. J. Zhang, H. Zhao, N. Jing, S. M. Fei. Multipartite unextendible entangled basis[J]. International Journal of Theoretical Physics, 2017, 56(11): 3425-3430
[20] Y. Guo, Y. P. Jia, X. L. Li. Multipartite unextendible entangled basis[J]. Quantum Inf Process. 2015, 14: 3553
[21] Y. Guo, S. P. Du, X. L. Li, S. J. Wu. Entangled bases with fixed Schmidt number[J]. Journal of Physics A: Mathematical and Theoretical, 2015, 48: 245301

Acknowledgements

The work is supported by the NSFC under number 11675113, 11761073 and NSF of Beijing under No. KZ201810028042.

Acknowledgements

G.-J.Z and Y.-H.T. wrote the main manuscript text. All of the authors reviewed the manuscript.

