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In this paper, we present a method for the Hamiltonian simulation in the context of eigenvalue
estimation problems which improves earlier results dealing with Hamiltonian simulation through the
truncated Taylor series. In particular, we present a fixed-quantum circuit design for the simulation
of the Hamiltonian dynamics, H(t), through the truncated Taylor series method described by Berry
et al. [1]. The circuit is general and can be used to simulate any given matrix in the phase estimation
algorithm by only changing the angle values of the quantum gates implementing the time variable
t in the series. The circuit complexity depends on the number of summation terms composing
the Hamiltonian and requires O(Ln) number of quantum gates for the simulation of a molecular
Hamiltonian. Here, n is the number of states of a spin orbital, and L is the number of terms
in the molecular Hamiltonian and generally bounded by O(n4). We also discuss how to use the
circuit in adaptive processes and eigenvalue related problems along with a slight modified version
of the iterative phase estimation algorithm. In addition, a simple divide and conquer method is
presented for mapping a matrix which are not given as sums of unitary matrices into the circuit.
The complexity of the circuit is directly related to the structure of the matrix and can be bounded
by O(poly(n)) for a matrix with poly(n)−sparsity.

I. INTRODUCTION

Quantum phase estimation [2] is a computationally powerful algorithm used in the study of various eigenvalue
problems. It is the key component of quantum chemistry simulations [3–6] and many other quantum algorithms (see
the recent review article [7] or the book [8]) such as the Shor’s integer factorization [9] and HHL algorithm for the
linear systems of equations [10]. Given a unitary matrix U with an approximate eigenvector |ϕ〉, since any eigenvalue
of a unitary matrix is in the form of a complex exponential ei2πφ for 0 ≤ φ < 1, the algorithm particularly estimates
the value of φ. In quantum simulations, since U is the time evolution operator of a Hamiltonian H representing the
dynamic of a quantum system, i.e. U = eiHt, the estimated value also yields an eigenvalue of H. Therefore, the
algorithm is used to find the eigenvalues (generally the lowest corresponding to the ground state energy) of H.
Simulating H of a quantum system through the phase estimation algorithm necessitates an explicit circuit design

of eiHt in terms of quantum gates. For a given H =
∑L−1

l=0 Hl, the generalized Trotter formula [11, 12] is a common
way to estimate eiHt as a product of evolution operators eiHlt which can be mapped to quantum gates. The resulting
product accurately yields the evolution if all terms in the formula commute with each other. Otherwise, it involves an
error which depends on the order of the approximation. The amount of the error and the computational complexity
(the required number of quantum gates) also increase proportionally with the number of terms L , ||Ht||, and the
simulation accuracy [13].
In quantum computing, the complexity of implementing a circuit for the Hamiltonian can be decreased by using

additional subspaces. Berry et al.[1] have proposed using the Taylor expansion of eiHt directly on quantum circuits

by adding an ancillary register to the system. In Ref.[14], for a Hermitian H we have showed that when
√
I −H2 is

available, one can use the following unitary matrix in the phase estimation algorithm:

(

H −
√
I −H2√

I −H2 H

)

. (1)

This notion of using an extended system to simulate a smaller one is generalized as quantum signal processing [15],
where a unitary matrix similar to Eq.(1) used without the phase estimation algorithm. Recently, the overhead of the
truncated Taylor series method is reduced by changing the computational basis to attain the square root of a matrix
efficiently [16]. In Ref.[17], successive applications of

(

I + iH/µ
)

with µ ≥ 10||H|| are used to obtain the eigenvalue of
H from the sine value of the phase in the phase estimation algorithm. Here, note that these approaches are assumed
that the Hamiltonian is given as a sum of simple unitary matrices. In Ref.[18], the truncated Taylor series method
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is also used for quantum simulations after decomposing the configuration interaction matrix into a sum of sparse
matrices.
The main contribution of this paper is as follows:

• Given a Hamiltonian H we consider U(t) =
(

tH+ i
√
I − t2H2

)

and approximate the expression involving the

square root by
(

I − t2H2/2
)

to obtain a circuit simulating the Hamiltonian dynamics with reduced complexity.
Using the circuit in the phase estimation algorithm, the eigenvalue of H can be obtained from the cosine value of
the phase. The presented circuit has a fixed design and can be used in adaptive processes along with a modified
iterative phase estimation algorithm.

• We also describe a divide and conquer method that can be used to write a general matrix as a sum of unitary
matrices. The method groups matrix elements into submatrices and directly maps them to the quantum gates.
Because of this direct mapping, the number of quantum gates is related to the number of nonzero matrix
elements and can be reduced in the case of structured-sparse matrices.

The remaining part of this paper is organized as follows: In the following subsection, we summarize the truncated
Taylor series method. In the next section; we first describe the Taylor expansion used in this paper, then present a
general circuit design for the described expansion, then analyze its complexity, then explain how to use it in the phase
estimation algorithm, and then discuss the molecular Hamiltonians and the Hamiltonian for the hydrogen molecule
as example system. In Sec.III, we explain the divide and conquer method and analyze the complexity in terms of the
required number of CNOTs. In Sec.IV, we discuss how the method can be used with structured matrices and use
the Hamiltonian of the hydrogen molecule as an example system. We also discuss adaptive processes and describe a
modification to the iterative phase estimation algorithm. In the final section, we conclude the paper.

A. Truncated Taylor Series Method

For a given matrix Ū , assume that we are able to build the circuit equivalent of the following unitary matrix by
using an ancilla quantum register:

U =

(

Ū •
• •

)

, (2)

where each “•” represents a matrix which has no special meaning and their dimensions may be different on the
diagonal and anti-diagonal of the matrix. When applied to any arbitrary |ψ〉 on the system register, the above matrix
generates the following output state:

U |0〉 |ψ〉 = |Φ〉+ |0〉 Ū |ψ〉 . (3)

Here, |0〉 represents the first vector in the standard basis and |Φ〉 is the part of the output in which the first register
is not in |0〉 state. In this output, when the first register is in |0〉 state, the second register holds Ū |ψ〉. Therefore,
U can be used to emulate the action of Ū on any arbitrary state |ψ〉. This idea is used in various contexts: e.g., in

Ref.[19], a programmable circuit design is presented for unitary matrices. Given a Hamiltonian H =
∑L

l=1 αlHl with
Hl representing a unitary matrix; the Taylor expansion of eiHt truncated at the Kth order is defined as:

U (t) = eiHt ≈ Ū (t) =

K
∑

k=0

(iHt)k
k!

. (4)

As in Ref.[1], we obtain:

Ū (t) =

K
∑

k=0

L−1
∑

l1,...lk=0

(it)k

k!
αl1 . . . αlkHl1 . . . Hlk =

M−1
∑

j=0

βjVj , (5)

Here, while Vjs are some products of Hls, βjs are of αls. And M ≈ LK is the number of terms. The above expansion
can be implemented as a circuit by using the following [1]:

U =
(

B∗ ⊗ I
)

V (B ⊗ I) =

(

Ū •
• •

)

. (6)

where V = blkdiag (V0, V1, . . . , VM ) and B =
∑M−1

j=0

√

βj |j〉. V can be implemented as a circuit by using an additional

≈ logM control qubits: When these qubits are in the state |j〉, Vj is applied to the system register.
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|0〉
B

• •
B∗

|0〉
Π

/ UH UH /
︸ ︷︷ ︸

V

FIG. 1: The circuit for U (t): In total (n+ logL+ 2) qubits are employed in the circuit.

II. EXPANSION FORMULA AND THE CIRCUIT

Given a Hamiltonian H ∈ RN with (N = 2n); when ||tH || ≤ 1 (see the footnote1), as in Ref.[18, 20–22]) we define:

U (t) = tH+ i
√

I − t2H2. (7)

Here, U (t) describes a unitary matrix [23] with the eigenvalues whose real parts are equal to those of the Hamiltonian.
In addition, U (t) and tH have the same eigenvectors. Truncating the Taylor expansion of the square root at the
second term, we obtain the following approximation:

Ū (t) = tH+ i

(

I − t2H2

2

)

, (8)

which is the same as the Taylor expansion of ie−iHt truncated at the third term. The most significant part of this
approximation is that it does not introduce any error on the real part of the eigenvalues of U (t). Hence, by mapping
Ū (t) to a circuit and using the phase estimation algorithm, one can obtain the eigenvalue from the cosine value of
the phase.
In the following subsection, based on Eq.(6), a circuit design is presented for Ū (t).

A. Circuit Design for Ū (t)

When Ū (t) is close to a unitary matrix, one may consider finding a circuit design through matrix decomposition
techniques such as QR iterations [24] or Householder transformations [25, 26]. However, such a task would require
finding the square of the Hamiltonian and be equivalent to the diagonalization of the Hamiltonian in terms of the
complexity: i.e. O(N3) for an N dimensional dense matrix.
In this paper, we will first assume that we know how to obtain the circuit for H in the following form:

UH =

(

H •
• •

)

. (9)

Here, if H is an orthogonal matrix, then UH = H. Otherwise, a “•” represents a matrix: if H is a sum of L number
of unitary matrices, then UH is a matrix of dimension LN × LN .
In Fig.1, using UH we draw a circuit which can emulate the action of Ū (t) in the same way as shown in Eq.(3).

The circuit can be considered as the matrix product U(t) = (B∗ ⊗ I)V (B ⊗ I), where B is the coefficient matrix and
V is the selection matrix for the terms included in Ū (t):

• In matrix form, the gate B is a 4 × 4 matrix that includes the square root of the coefficients of the expansion
in Eq.(8):

B =
1

|| |b〉 ||











√
t 1 t/

√
2 0

1 −
√
t 0 t/

√
2

t/
√
2 0 −

√
t −1

0 −t/
√
2 1 −

√
t











. (10)

Here, 〈b| =
[√

t, 1, t/
√
2, 0
]

. Since this matrix describes a Householder transformation, it can be implemented

by using 4 quantum gates [25, 26].

1 If H is given as a sum of unitaries, then normalizing the coefficients directly make ||H|| ≤ 1. If it is given as a matrix, then one can
divide the matrix elements by the 1- or inifinity-norm of the matrix, which can be computed in poly(n) time if there are poly(n) number
of nonzero matrix elements.

3
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• V is the product of two controlled-UH and a controlled-permutation(Π) gates. This has the following matrix
form:

V =





















H •
• •

I2N
H2 • • •
• • • •
• • • •
• • • •





















. (11)

Because of the zero coefficient in the matrix B, the last part on the diagonal of this matrix are disregarded.
The construction of V is achieved through a permutation matrix Π (also used in Ref.[17]) which realigns matrix
elements to obtain H2 on the diagonal and is defined as:

Π =





IN
X ⊗ ILN−N

IN



 . (12)

If we apply this to the first controlled gate, then we attain the following product which leads to V given above:

































I2N
I2N

H •
• •

UH









































































UH

I2N
H •

IN
• •

IN









































(13)

B. Complexity Analysis

Computational complexity of a quantum circuit is generally determined by the required number of CNOT gates.
Since the coefficient matrix B can be implemented by 4 quantum gates, we will essentially count the number of
CNOTs needed for the controlled-UH operations in order to estimate the computational complexity of the circuit U(t)
in Fig.1 at time t.

As in Ref.[1], let us assume that for a given H =
∑L−1

l=0 αlHl, we have an oracle select(H) that applies Hl to
the system register when the ancilla register in |l〉 state. Since 0 ≤ l ≤ L − 1, logL number of qubits is needed
in the ancilla. Using this selection operator along with the operator BH whose leading row and column are the
coefficient vector [α0, . . . , αL−1], we can assume that we have a mechanism to construct UH given in Eq.(9): UH =
(B∗

H ⊗ I⊗n)select(H)(BH ⊗ I⊗n). Since there are two controlled-UH gates in the circuit U(t), in total U(t) makes
2L number of queries to select(H). In addition, BH is an operator on logL qubits and can be implemented by using
O(L) number of quantum gates as a Householder transformation. Therefore, the total complexity for the circuit can
be bounded by O(L).
Ref.[1] is concerned with the Hamiltonian simulation with error ǫ. The evolution, eiHt, is divided into r segments.

Then each segment is approximated through the Taylor series truncated at order K. The query complexity is shown

to be proportional to LK , where K is set to be O
(

log(r/ǫ)
log log(r/ǫ)

)

to obtain the accuracy (ǫ/r) for each segment [1, 27].

In contrast, in this paper the simulation is performed in the context of eigenvalue estimation and the error introduced
by the truncation of the Taylor series at the third term does not affect the eigenvalue error in Eq.(7) and Eq.(8) (The
next subsection explains how to use these equations in the phase estimation algorithm.). Therefore, considering Eq.(8)
in combination with Eq.(5) it is immediate to see that one can set K = 2 to get a computational cost proportional to
L2 (as opposed to the value of K in Ref.[1] that increases with ǫ−1 ) which can be further reduced to O(L) as done
in this paper.
Note that the query complexity O(L) when L = O(poly(n)) may appear to be small but when we take into account

the implementation cost of the queries the gate complexity may be much higher as illustrated in Ref.[28] for the
simulation of Electronic Hamiltonians. In order to have a O(poly(n)) total gate cost, in addition to L = O(poly(n)),
the required number of quantum gates for each Hl should be bounded by O(poly(n)). This is the case when each Hl

is a matrix with poly(n)-sparsity (the number of non-zero elements is bounded by O(poly(n)))[29, 30] or an n−fold
tensor product of Pauli matrices.

4
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C. Simulating with the Phase Estimation Algorithm

The phase estimation algorithm (PEA) [2] uses U(t)2
j−1

to compute the jth bit of the eigenvalue U(t). The powers

of Ũ(t) in Eq.(8) can be obtained by successively applying the circuit U(t) along with a projector operator. Since this

requires 2j repetitions for the 2jth power of Ũ(t), in the phase estimation algorithm U(t) is applied O(2m) times to

obtain an eigenvalue with m-bit precision. Therefore, if the circuit Ũ(t) is of O(Lpoly(n)) number of quantum gates,
then the eigenvalue can be obtained in O(2mLpoly(n)) time complexity.

If Ũ (t) is considered as an approximation to eiHt, then the jth bit can be estimated through the multiplication of t

by 2j: i.e., Ũ
(

t2j
)

= i2jtH−
(

I − 22j−1t2H2
)

which is an approximation to eiHt2j . However, in this case the approx-

imation error is O(t3||H3||). In addition, changing the elements of the coefficient vector 〈b| =
[√
t2j , 1, t2j/

√
2, 0
]

changes the value of || 〈b| ||2. Since || 〈b| ||2 impacts the success probability in the output, this may further affect the
accuracy of the obtained eigenvalue. Note that U (t) in Eq.(7) (or Eq.(8) as an approximation to Eq.(7)) cannot be
used in the phase estimation algorithm by simply changing the elements of 〈b| . Because if the eigenvalue of U (t) is

eiφ, the eigenvalue of U
(

2jt
)

is not necessarily ei2
jφ.

1. Example Hamiltonian

As an example let us consider the molecular electronic Hamiltonian in the formalism of the second quantization[31–
33]:

H =
∑

p,q

hp,qa
†
paq +

1

2

∑

p,q,r,s

hp,q,r,shp,q,r,sa
†
pa

†
qaras, (14)

where aj and a†j are the spinless fermionic creation and annihilation operators that are used to define the interaction

of a fermionic system. In the context of quantum chemistry, here, j ∈ {0, ..., n− 1} and represents the state of a spin
orbital. hp,q and hp,q,r,s are one and two electron integrals classically computed through Hartree-Fock method.
In the occupation number basis, the creation and annihilation operators can be written in terms of Pauli matrices

(σx, σy , σz) by using the Jordan-Wigner transformation[34]:

aj → I⊗n−j−1 ⊗ σ+ ⊗ σ⊗j
z , and a†j → I⊗n−j−1 ⊗ σ− ⊗ σ⊗j

z , (15)

where

σ+ = |1〉 〈0| = σx − iσy
2

, and σ− = |0〉 〈1| = σx + iσy
2

. (16)

Alternative to the occupation number basis, the parity basis and the Bravyi-Kitaev basis [35] can be used to map
this Hamiltonian into the Pauli matrices (see Ref.[33] for a comparison). As a particular example, we will use the
hydrogen molecule in minimal basis. The Hamiltonian for the hydrogen molecule is given as a sum of products of
Pauli matrices through Bravyi-Kitaev transformation in Eq.(79) of Ref.[33]:

HH2
=− 0.81261I + 0.171201σz

0 + 0.16862325σz
1 − 0.2227965σz

2 + 0.171201σz
1σ

z
0 + 0.12054625σz

2σ
z
0

+ 0.17434925σz
3σ

z
1 + 0.04532175σx

2σ
z
1σ

x
0 + 0.04532175σy

2σ
z
1σ

y
0 + 0.165868σz

2σ
z
1σ

z
0 + 0.12054625σz

3σ
z
2σ

z
0

− 0.2227965σz
3σ

z
2σ

z
1 + 0.04532175σz

3σ
x
2σ

z
1σ

x
0 + 0.04532175σz

3σ
y
2σ

z
1σ

y
0 + 0.165868σz

3σ
z
2σ

z
1σ

z
0

(17)

The evolution operator for this Hamiltonian is computed through Trotter-Suzuki decomposition. In this decomposi-
tion, the exponential (and the circuit) for the each term is computed separately (note that an n-fold tensor product
of Pauli matrices requires (2n − 1) CNOT gates.). Then, these circuits are combined to estimate the whole evolu-
tion operator. Commuting terms in this Hamiltonian simplify the resulting circuit. Because of these simplifications,
Ref.[33] shows that the circuit simulating the single first order Trotter time-step of this Hamiltonian requires only 44
CNOT and 30 single gates.
In our case, since an n-fold tensor product of Pauli matrices requires n single gates, each term can be implemented

by using only single gates. Since there are L = 15 terms, we need at least 4 qubits in the ancilla to control which
term to be applied to the system. This is basically a select(H) operator that applies the single gates in the jth term
to the system qubits when the ancilla is in |j〉 state. Since there are 4 system qubits, this leads to a 4 multi-controlled
network. Here, note that a network controlled by n qubits can be implemented by 2n CNOT gates by following the

5



A Division into Submatrices III WRITING ANY H AS A SUM OF UNITARIES

decomposition given in Ref.[24]. Since there are 4 multi-controlled networks, in total select(H) requires 4× 24 CNOT
gates. Another 24 CNOT gates is necessary for the implementation of the coefficients. Therefore, the circuit UH for
the Hamiltonian will require ≈ 80 CNOT gates in total. Note that this number is a rough estimate, the number of
CNOTs may be reduced by some optimization on the circuit.
Considering the one iteration of the phase estimation along with the circuit U ; since there are two more control qubits

for UH, the number of CNOTs for each UH increases fourfold. For two UHs controlled by two qubits, 2× 4× 80 = 640
CNOT gates are necessary.
In general case the number of terms in an electronic Hamiltonian is bounded by O(n4) [33]. Since each term can

be implemented in O(n) time, one iteration of the phase estimation algorithm would then require O(n5) quantum
gates. Therefore, these Hamiltonians can be simulated in O(poly(n)) time with the truncated Taylor series described
in Eq.(5) or with the general circuit in Fig.1 described in this paper.

III. WRITING ANY H AS A SUM OF UNITARIES

When H is given as a sum of unitary matrices or matrices which can be easily mapped to quantum gates, then one
can design the circuit for U (t) by following Eq.(5) where the summation is converted into a product formula or the
standard Trotter-Suzuki decomposition. This is the case for molecular Hamiltonians given in the second quantization
[31, 33].
However, if H is not given as a sum of simple unitaries2, then the following divide and conquer method can be used

to write the Hamiltonian as a sum of unitary matrices and obtain UH:

i) The matrix is first divided into 2× 2 submatrices.

ii) Then, each submatrix is written as a sum of quantum gates.

iii) Using a coefficient matrix BH, the Hamiltonian is generated as a part of UH.

The details are given in the following subsections:

A. Division into Submatrices

First, a given Hamiltonian H ∈ RN with (N = 2n) is divided into four blocks:

H =

(

A0 A1

A2 A3

)

=

(

A0

A3

)

+

(

A1

A2

)

. (18)

Using the vectors in the standard basis, this can be rewritten as:

H = |0〉 〈0| ⊗A0 + |1〉 〈1| ⊗A3

+
(

|0〉 〈1| ⊗A1 + |1〉 〈0| ⊗A2

)

=
(

|0〉 〈0| ⊗A0 + |1〉 〈1| ⊗A3

)

+
(

|0〉 〈0| ⊗A1 + |1〉 〈1| ⊗A2

)

(

X ⊗ IN/2

)

,

(19)

where IN/2 describes an N/2 dimensional identity matrix and

X =

(

0 1
1 0

)

. (20)

This division into blocks is recursively continued until each block dimension becomes 2 or circuit representations of
the blocks become known. For instance, after the second recursion step, we have the following (see Appendix A1 and

2 simple in the sense that the required number of quantum gates for each unitary is polynomial in the number of qubits.

6



B Forming Vjs III WRITING ANY H AS A SUM OF UNITARIES

A2 for the mathematical steps and the third recursion):

H =
(

|00〉 〈00| ⊗A00 + |01〉 〈01| ⊗A03 + |10〉 〈10| ⊗A30 + |11〉 〈11| ⊗A33

)

+
(

|00〉 〈00| ⊗A01 + |01〉 〈01| ⊗A02 + |10〉 〈10| ⊗A31 + |11〉 〈11| ⊗A32

)

(

I ⊗X ⊗ IN/4

)

+
(

|00〉 〈00| ⊗A10 + |01〉 〈01| ⊗A13 + |10〉 〈10| ⊗A20 + |11〉 〈11| ⊗A23

)

(

X ⊗ I ⊗ IN/4

)

+
(

|00〉 〈00| ⊗A11 + |01〉 〈01| ⊗A12 + |10〉 〈10| ⊗A21 + |11〉 〈11| ⊗A22

)

(

X ⊗X ⊗ IN/4

)

.

(21)

In matrix form,

H =











(

A00 A01

A02 A03

) (

A10 A11

A12 A13

)

(

A20 A21

A22 A23

) (

A30 A31

A32 A33

)











. (22)

Note that following the subscripts of A[... ]s from left to right one can easily find the matrix elements of any A[... ].

B. Forming Vjs

By generalizing above steps, at the kth recursive step, H can be written more concisely in the following form:

H =
2k−1
∑

j=0

Vj

(

Pj (X, I)⊗ IN/2k

)

. (23)

Here, we construct Vjs using A[... ]s and Pj (X, I) is a permutation matrix constructed by using the tensor product of
X and identity matrices, i.e.:

Pj (X, I) =

k−1
⊗

i=0

Xji , with j = (j0 . . . jk−1)2 . (24)

Each Vj describes a multi controlled network: In matrix form, Vj is a block diagonal matrix where a group of A[... ]s
are tiled on the diagonal.

1. Assigning A[... ]s to Vjs at the kth step

Let wi represent the ith word in the set {“0. . . 00”, “0. . . 03”, . . . , “3. . . 33”} which includes all possible words from
the alphabet {0,3} with the length k. Then we can define V0 as:

V0 =

2k−1
∑

i=0

|i〉 〈i| ⊗Awi
, (25)

Here, |i〉 is the ith vector in the standard basis. V0 is obtained from A[... ]s on the diagonal of the Hamiltonian.
Consider the matrix in Eq.(22) as an example, then V0 is the block diagonal matrix with A00, A03, A30, and A33.
Using wis in V0 and Pj (X, I), we will determine the subscripts of A[... ]s involved in any Vj by the following rule:

Rule 1. If there is an X on the qth qubit, the following change is made in the subscripts of A[... ]s in V0:

• (3 → 2): if the qth letter of the subscript is 3, we make it 2.

• (0 → 1): if it is 0, we make it 1.

You can consider this as an application of NOT gate that switches 3s into 2s and 0s into 1s or vice versa. Based on
this rule, one A[... ] from each row of the Hamiltonian is included in Vj .
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|0〉
BH

• • • • • • • • •
B∗

H|0〉 • • • • • • • • •

X • • • • • • • •

X • • • • • • • •

A00 A03 A30 A33 A01 A02 A31 A32 A10 A13 A20 A23 A11 A12 A21 A22

FIG. 2: The circuit for UH for any 8× 8 Hamiltonian matrix: It is assumed that there is no coefficient on any A[... ].
Therefore, BH can be considered as a tensor product of two Hadamard gates. CNOTs at the beginning of the circuit

represents the simplified permutation operations.

C. Generating Circuit for UH in Eq.(9)

If A[... ]s are of dimension 2×2, then 2k = N/2 and each Vj involves N/2 number of A[... ]s. Once the involved A[... ]s
are determined, they can be mapped to a circuit by using different control bit schemes for each A[... ]. Therefore, each
Vj describes a multi controlled network.
A[... ]s in general are not unitary. We can write a nonunitary A[... ] as a sum of two unitary matrices. For instance,

A[... ] =
A[... ] + i

√

I −A2
[... ]

2
+
A[... ] − i

√

I −A2
[... ]

2
(26)

This will double the number of Vjs. Here note that any unitary single qubit gate can be implemented as a product
of three quantum gates and a global phase [8]: eiθ1Rz(θ2)Ry(θ3)Rz(θ4) with θ1, . . . , θ4 ∈ R. Although this increases
the overall number of quantum gates by a factor of 4, it does not impact the number of Vjs.
Then, the circuits for VjPjs are combined in the selection matrix V P by using an ancilla register: V P applies the

product VjPj when the ancilla is in |j〉 state. The matrix form of this operation is as follows:

V P =











V0
V1P1

. . .

VN/2−1PN/2−1











. (27)

Finally, the circuit for UH implementing the Hamiltonian can be defined as the product
(

B∗
H ⊗ I

)

V P (BH ⊗ I),
where BH forms a state with the square root of the coefficients: These coefficients are generated by writing nonunitary
A[... ]s as a sum of two unitaries. For instance, in Eq.(26) we have a coefficient 1/2. This becomes a coefficient to

the product
(

VjPj (X, I)
)

. BH can be considered as a Householder transformation: An L dimensional Householder
matrix requires O(L) number of quantum gates [25, 26]. An example UH for a general 8× 8 Hamiltonian is presented
in Fig.2, where Pjs are simplified into two CNOT gates.
Here, note that MATLAB source codes for obtaining A[... ], Vj , and Pj matrices and the circuit can be downloaded

from GitHub3.

D. Gate and Qubit Count

1. Unstructured Dense Matrices

The complexity of UH is determined by the number of Vjs. We can determine the number of qubits and CNOTs by
counting the number of A[... ]s. In the final step of the recursive division, if the matrix elements are put into group of

four elements, then there are
(

N2/4
)

number of A[... ]s. If each A[... ] is written as a sum of two unitary matrices, then

the number of unitary gates becomes
(

N2/2
)

. As mentioned in the previous subsection, each unitary single gate can
be implemented using a product of three rotations. Therefore, in total there are three multi controlled-networks with
(

N2/2
)

number of gates and (2n− 1) number of control qubits. By following Ref.[24], a network controlled by (2n− 1)

3 https://github.com/adaskin/circuitforTaylorseries
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IV DISCUSSION ON ADAPTIVE PROCESSES

qubits can be decomposed into N2/2 CNOTs and N2/2 single gates. Since we have three networks(assuming we have
used three single gates for each unitary gate), then the total number of CNOTs is 3N2/2. The total complexity of a
controlled UH is dominated by these networks.
As a result, a controlled-UH in Fig.1 can be implemented by using O(N2) number of quantum gates. In this case,

since the complexity of B and Π are negligible in comparison to the controlled-UH, the total complexity of the circuit
is also bounded by O

(

N2
)

.

2. Structured matrices

Direct classical methods require O(N3) computational time (number of floating-point operations) to compute the
eigenvalue of a dense matrix. However, due to discretization and linearization techniques, most of the eigenvalue
related-problems deal with structured matrices: that means the description of a matrix depends on less than N2

parameters [36]. Many classical algorithms benefit from the structure of a matrix to reduce the computational effort.
Moreover, in the study of complex many body quantum systems through the random-matrix theory, knowing the
structure of the Hamiltonian determines the structure of the random Hamiltonians in the ensemble used to replace
the Hamiltonian[37].
The described divide and conquer method groups the neighboring matrix elements into gates. Any sparsity in the

considered matrix may potentially reduce the number of A[... ]s. However, when the sparsity of the matrix is structured
as in tridiagonal, anti-tridiagonal, and band matrices; the number of terms and so the numbers of qubits and CNOTs
used in the circuit are directly affected. As an example consider removing the first half of A[... ]s from the circuit in
Fig.2, then we can also remove one of the qubits in the ancilla. This will reduce the gate count by half. The divide
and conquer method does not necessitate to store nonzero elements since the indices are used to determine matrix
elements of A[... ]s. Therefore, it can be also used to write sparse matrices in terms of a circuit with A[... ]s. If there
are O(poly(n)) number of non-zero elements, then this is likely to produce a circuit with O(poly(n)) number of A[... ]s.
If any matrix element is accessible in O(poly(n)) time, then the construction of the circuit can be done in O(poly(n))
time.

3. Hamiltonian for the Hydrogen Molecule

Let us consider the 16 × 16 Hamiltonian for the hydrogen molecule given in Eq.(17) again. In matrix form, this
Hamiltonian only has 4 non-diagonal elements located on the anti-diagonal part of the Hamiltonian. If we write the
diagonal part and the anti-digonal part as a sum of two unitaries, then the Hamiltonian can be written as sum of
4 number of

(

VjPj

)

terms. Since each Vj involves multi-controlled 8 quantum gates, in total there are 32 quantum
gates. Then, UH requires 5 control- and 1 target-qubits. Since an additional control qubit is necessary for U (t),
there are two multi-controlled network, viz. two controlled UHs, with 6 control qubits. The decomposition of these
networks will constitute 128 CNOT gates in total. Here, note that using U (t) in the phase estimation introduces an
additional control qubit. Then the required number of CNOTs for each iteration of the phase estimation algorithm
is doubled to ≈ 256.
Here, the hydrogen molecule is given as an example to show how the structured-sparsity may reduce the complexity

of the circuit generated through the divide and conquer method. As explained in Sec.II C 1, using the Jordan-
Wigner[34] or Bravyi-Kitaev[35] transformations, the molecular Hamiltonians in the second quantization can be
easily mapped to a sum of L unitary matrices (each unitary is a product of Pauli matrices σx, σy , σz, I).

IV. DISCUSSION ON ADAPTIVE PROCESSES

Finding the matrix elements of a Hamiltonian representing the dynamics of a quantum system is a nontrivial task
requiring tedious analytical and numerical computations. The circuit can be used to experimentally identify the
Hamiltonian dynamic of an unknown large system or estimate the parameters of a quantum channel, where a known
state is sent through an unknown state and the measurement is used to estimate the parameters associated with the
channel [38]. A similar approach is used also in Ref.[39] to compress molecular Hamiltonians.
The matrix divided as in Eq.(21) can be also used to represent a layer of a neural network in matrix form. In

the learning or adaptive processes based on gradient-descent; when the eigenvalues of an autocorrelation matrix are
disparate: i.e. the condition number of the matrix is large, the learning rate or the performance of an adaptive
algorithm is hindered in applications [40]. Therefore, in these processes, using the phase estimation as an ingredient
for different algorithms may provide better performances. The phase estimation algorithm requires two registers
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A EXPLICIT STEPS OF THE RECURSION

|0〉 H • Rz(−π/2) H

|ϕ〉 / U2k /

FIG. 3: The kth iteration of the iterative phase estimation for adaptive processes: H represents the Hadamard gate
and k ≥ 1.

to store the eigenvalue and the eigenvector respectively. The size of the first register is determined by the desired
accuracy: e.g. for a 32-bit precision, it has 32 qubits. When the system size is large, the iterative phase estimation
[2] using only a qubit in the first register is more preferred in the experiments and classical simulations. However, the
iterative version starts the estimation of the bits from the least significant bit (LSB) toward the most significant bit
(MSB). This impedes the employment of the algorithm as a subroutine in various multivariate statistical algorithms
in which the eigenvalues above or below some threshold are filtered out. Fig.3 describes the iterative phase estimation
algorithm, where the bit values are estimated starting from MSB (see Appendix B for the details of the circuit). This
iterative version can be used in adaptive processes to filter out some of the eigenvalues or prepare the ground state of
the Hamiltonians.

V. CONCLUSION

In this work, we have introduced a quantum circuit for the simulation of the Hamiltonian dynamic through the
Taylor expansion truncated at the third term. The circuit can be used with the Hamiltonians given as a sum of
unitary matrices. Furthermore, we have described a method to write the Hamiltonian as a sum of unitary matrices
and generate the equivalent circuit. This allows us to use the circuit with the phase estimation algorithm to simulate
any Hamiltonian.

VI. ACKNOWLEDGMENT

We would like to thank two anonymous reviewers for their help in improving the clarity of the paper and the
complexity analysis of the circuit.

Appendix A: Explicit Steps of the Recursion

1. Second step (k = 2)

First, we plug Eq.(19) in places of A[... ]s:

H = |0〉 〈0|
(

|0〉 〈0| ⊗A00 + |1〉 〈1| ⊗A03 +
(

|0〉 〈0| ⊗A01 + |1〉 〈1| ⊗A02

)

(

X ⊗ IN/8

)

)

+ |1〉 〈1|
(

|0〉 〈0| ⊗A30 + |1〉 〈1| ⊗A33 +
(

|0〉 〈0| ⊗A31 + |1〉 〈1| ⊗A32

)

(

X ⊗ IN/8

)

)

+ |0〉 〈0|
(

|0〉 〈0| ⊗A10 + |1〉 〈1| ⊗A13 +
(

|0〉 〈0| ⊗A11 + |1〉 〈1| ⊗A12

)

(

X ⊗ IN/8

)

)

(

X ⊗ IN/4

)

+ |1〉 〈1|
(

|0〉 〈0| ⊗A20 + |1〉 〈1| ⊗A23 +
(

|0〉 〈0| ⊗A21 + |1〉 〈1| ⊗A22

)

(

X ⊗ IN/8

)

)

(

X ⊗ IN/4

)

.

(A1)
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This gives the following:

H = |00〉 〈00| ⊗A00 + |01〉 〈01| ⊗A03 +
(

|00〉 〈00| ⊗A01 + |01〉 〈01| ⊗A02

)

(

I ⊗X ⊗ IN/8

)

+ |10〉 〈10| ⊗A30 + |11〉 〈11| ⊗A33 +
(

|10〉 〈10| ⊗A31 + |11〉 〈11| ⊗A32

)

(

I ⊗X ⊗ IN/8

)

+
(

|00〉 〈00| ⊗ A10 + |01〉 〈01| ⊗A13

)

(

X ⊗ I ⊗ IN/8

)

+
(

|00〉 〈00| ⊗A11 + |01〉 〈01| ⊗A12

)

(

X ⊗X ⊗ IN/8

)

+
(

|10〉 〈10| ⊗ A20 + |11〉 〈11| ⊗A23

)

(

X ⊗ I ⊗ IN/8

)

+
(

|10〉 〈10| ⊗A21 + |11〉 〈11| ⊗A22

)

(

X ⊗X ⊗ IN/8

)

.

(A2)

By rewriting this equation, we obtain in Eq.(21).

2. Third step (k = 3)

Then, in the third recursion, we get the following:

H =|0| ⊗A000 + |1| ⊗A003 + |2| ⊗A030 + |3| ⊗A033 + |4| ⊗A300 + |5| ⊗A303 + |6| ⊗A330 + |7| ⊗A333

+
(

|0| ⊗A001 + |1| ⊗A002 + |2| ⊗A031 + |3| ⊗A032 + |4| ⊗A301 + |5| ⊗A302 + |6| ⊗A331 + |7| ⊗A332

)

(

I ⊗ I ⊗X ⊗ IN/8

)

+
(

|0| ⊗A010 + |1| ⊗A013 + |2| ⊗A020 + |3| ⊗A023 + |4| ⊗A310 + |5| ⊗A313 + |6| ⊗A320 + |7| ⊗A323

)

(

I ⊗X ⊗ I ⊗ IN/8

)

+
(

|0| ⊗A011 + |1| ⊗A012 + |2| ⊗A021 + |3| ⊗A022 + |4| ⊗A311 + |5| ⊗A312 + |6| ⊗A321 + |7| ⊗A322

)

(

I ⊗X ⊗X ⊗ IN/8

)

+
(

|0| ⊗A100 + |1| ⊗A103 + |2| ⊗A030 + |3| ⊗A033 + |4| ⊗A200 + |5| ⊗A203 + |6| ⊗A230 + |7| ⊗A233

)

(

X ⊗ I ⊗ I ⊗ IN/8

)

+
(

|0| ⊗A101 + |1| ⊗A102 + |2| ⊗A031 + |3| ⊗A032 + |4| ⊗A201 + |5| ⊗A202 + |6| ⊗A231 + |7| ⊗A232

)

(

X ⊗ I ⊗X ⊗ IN/8

)

+
(

|0| ⊗A110 + |1| ⊗A113 + |2| ⊗A123 + |3| ⊗A123 + |4| ⊗A210 + |5| ⊗A213 + |6| ⊗A220 + |7| ⊗A223

)

(

X ⊗X ⊗ I ⊗ IN/8

)

+
(

|0| ⊗A111 + |1| ⊗A112 + |2| ⊗A121 + |3| ⊗A122 + |4| ⊗A211 + |5| ⊗A212 + |6| ⊗A221 + |7| ⊗A222

)

(

X ⊗X ⊗X ⊗ IN/8

)

,

(A3)

where |i| = |i〉 〈i|. This Hamiltonian in matrix form corresponds to the following matrix:

H =









































(

A000 A001

A002 A003

) (

A010 A011

A012 A013

)

(

A020 A021

A022 A023

) (

A030 A031

A032 A033

)





















(

A100 A101

A102 A103

) (

A110 A111

A112 A113

)

(

A120 A121

A122 A123

) (

A130 A131

A132 A133

)





















(

A200 A201

A202 A203

) (

A210 A211

A212 A213

)

(

A220 A221

A222 A223

) (

A230 A231

A232 A233

)





















(

A300 A301

A302 A303

) (

A310 A311

A312 A323

)

(

A320 A321

A322 A323

) (

A330 A331

A332 A333

)









































. (A4)

Appendix B: Iterative Phase Estimation for Adaptive Processes

The circuit in Fig.3 works as follows:
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FIG. 4: The histogram of the probability differences in the outputs of the iterative phase estimation for 5000
random matrices. The algorithm is iterated 20 times for each matrix. Here, the probability to see the probability

difference less than 0.1 is 0.0644 and greater than 0.9 is 0.2862.

• Assume that the circuit U = eiHπ and its eigenvector |ϕ〉 are given.

• In the first iteration k is set to 1. After the controlled-U , then the following state is obtained (Normalization
constants are omitted for simplicity.):

|ψ1〉 = |0〉 |ϕ〉+ eiπ(φ1.φ2... )2 |1〉 |ϕ〉 . (B1)

Here, (φ1.φ2 . . . )2 represents the binary form of the phase multiplied by 2: 2φ.

• To make the real part of the value eiπ(φ1.φ2... )2 negative when φ1 = 1 and positive when φ1 = 0, we apply a
rotation Rz

(

−π/2
)

:

Rz

(

−π
2

)

=

(

1 0
0 e−iπ/2

)

. (B2)

Note that in general when rotation gate about the z-axis is defined, the angle is divided by 2, which is neglected
here. After this gate, we have:

|ψ2〉 = |0〉 |ϕ〉+ eiπ(φ1.φ2... )2−iπ/2 |1〉 |ϕ〉 . (B3)

• After applying the second Hadamard gate, the final state becomes the following:

|ψ3〉 =
(

1 + cos (α) + i sin (α)
)

|0〉 |ϕ〉
+
(

1− cos (α) − i sin (α)
)

|1〉) |ϕ〉 ,
(B4)

where α = π (φ1.φ2 . . . )2 − π/2. The probability difference between |0〉 and |1〉 is determined by the value of
cos(α):

– If φ1 = 0, then α ∈
[

−π
2 ,

π
2

]

and cos(α) ≥ 0. Hence, the probability of |0〉 is higher than |1〉.

– If φ1 = 1, then α ∈
[

π
2 ,

3π
2

]

and cos(α) ≤ 0. And so, the probability of |1〉 is higher than |0〉.

• In the second iteration; k = 2 and if φ1 is 1, then we have (10)2 + (φ2.φ3 . . . )2. Since e
i(10)2π = 1, the phase is

in the form (φ2.φ3 . . . )2.

The probability difference between |0〉 and |1〉 in the output may be as high as 1 or in rare cases is equal to 0. For
random 5000 matrices, the distribution of the probability differences is drawn Fig.4: The probability differences are
obtained by iterating the phase estimation algorithm 20 times for each matrix. As shown in the figure, the probability
to see the difference less than 0.1 is around 0.06.
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[34] P. Jordan and E. Wigner, “Über das paulische äquivalenzverbot,” Zeitschrift für Physik 47, 631–651 (1928).

13

http://arxiv.org/abs/1711.11025
http://arxiv.org/abs/1703.03597
http://arxiv.org/abs/1711.10460
http://arxiv.org/abs/1707.05391
http://arxiv.org/abs/1610.06546
http://dx.doi.org/ 10.1103/PhysRevLett.93.130502
http://arxiv.org/abs/1611.10033
http://dx.doi.org/10.1063/1.4768229
http://dx.doi.org/10.1007/BF01331938


B ITERATIVE PHASE ESTIMATION FOR ADAPTIVE PROCESSES

[35] Sergey B. Bravyi and Alexei Yu. Kitaev, “Fermionic quantum computation,” Annals of Physics 298, 210 – 226 (2002).
[36] Heike Fassbender and Daniel Kressner, “Structured eigenvalue problems,” GAMM-Mitteilungen 29, 297–318 (2006).
[37] Thomas Guhr, Axel Müller-Groeling, and Hans A Weidenmüller, “Random-matrix theories in quantum physics: common

concepts,” Physics Reports 299, 189–425 (1998).
[38] BM Escher, RL de Matos Filho, and L Davidovich, “General framework for estimating the ultimate precision limit in

noisy quantum-enhanced metrology,” Nature Physics 7, 406–411 (2011).
[39] Jonathan Romero, Jonathan P Olson, and Alan Aspuru-Guzik, “Quantum autoencoders for efficient compression of

quantum data,” Quantum Science and Technology 2, 045001 (2017).
[40] Bernard Widrow, John M McCool, Michael G Larimore, and C Richard Johnson, “Stationary and nonstationary learning

characteristics of the lms adaptive filter,” Proceedings of the IEEE 64, 1151–1162 (1976).

14

http://dx.doi.org/ https://doi.org/10.1006/aphy.2002.6254

	A Generalized Circuit for the Hamiltonian Dynamics Through the Truncated Series 
	Abstract
	I Introduction
	A Truncated Taylor Series Method

	II Expansion Formula and the Circuit
	A Circuit Design for (t)
	B Complexity Analysis
	C Simulating with the Phase Estimation Algorithm
	1 Example Hamiltonian


	III Writing any H as a Sum of Unitaries
	A Division into Submatrices
	B Forming Vjs
	1 Assigning A[…]s to Vjs at the kth step

	C Generating Circuit for UH in Eq.(??)
	D Gate and Qubit Count
	1 Unstructured Dense Matrices
	2 Structured matrices
	3 Hamiltonian for the Hydrogen Molecule


	IV Discussion on Adaptive Processes
	V Conclusion
	VI Acknowledgment
	A Explicit Steps of the Recursion
	1 Second step (k=2)
	2 Third step (k=3)

	B Iterative Phase Estimation for Adaptive Processes
	 References


