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Quantum Fisher information plays a central role in the field of quantum metrology. In this pa-
per we study the problem of quantum Fisher information of unitary processes. Associated to each
parameter θi of unitary process U(θ), there exists a unique Hermitian matrix Mθi = i(U†∂θiU).
Except for some simple cases, such as when the parameter under estimation is an overall multi-
plicative factor in the Hamiltonian, calculation of these matrices is not an easy task to treat even
for estimating a single parameter of qubit systems. Using the Bloch vector mθi , corresponding to
each matrix Mθi , we find a closed relation for the quantum Fisher information matrix of the SU(2)
processes for an arbitrary number of estimation parameters and an arbitrary initial state. We ex-
tend our results and present an explicit relation for each vector mθi for a general Hamiltonian with
arbitrary parametrization. We illustrate our results by obtaining the quantum Fisher information
matrix of the so-called angle-axis parameters of a general SU(2) process. Using a linear transfor-
mation between two different parameter spaces of a unitary process, we provide a way to move
from quantum Fisher information of a unitary process in a given parametrization to the one of the
other parametrization. Knowing this linear transformation enables one to calculate the quantum
Fisher information of a composite unitary process, i.e. a unitary process resulted from successive
action of some simple unitary processes. We apply this method for a spin-half system and obtain
the quantum Fisher matrix of the coset parameters in terms of the one of the angle-axis parameters.

I. INTRODUCTION

Estimation theory is an important topic in different
areas of physics. Quantum metrology tries to improve
estimation precision by using quantum strategy such as
entanglement [1–3] and discord [4–6]. Many applications
of quantum metrology have been found, such as gravita-
tional radiation [7–9], quantum frequency standards [10–
12], quantum imaging [13–15], and atomic clocks [16–20].
Estimation precision in quantum metrology is described
by the Cramer-Rao inequality [21–26]

δθ =

√
Var(θ̂) ≥ 1√

NFθ
, (1)

where lower bound is related to the inverse of the quan-
tum Fisher information. The estimation precision for
separable states is bounded by the standard quantum
limit ∆θ ∼ 1√

N
, whereas for the maximally entangled

states, GHZ and NOON states, it is bounded by the
Heisenberg limit ∆θ ∼ 1

N [27–29]. In general, there are
three stages in quantum metrology: the first is the prepa-
ration of the input state, the so-called probe state. In the
second stage the input state is encoded with an unknown
parameter θ. Finally, the third stage is information ex-
traction, carried out by measuring on the output states.
Fisher information is at the heart of metrology and gives
us knowledge about the unknown parameters from the
probability distribution. It can be obtained directly from
its definition Fθ =

∑
x Pθ(x)[∂θ lnPθ(x)]2, for discrete

outcomes x [30], where Pθ(x) is the probability distri-
bution obtained by measuring the encoded probe states.
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The maximum of Fθ over all possible measurements is
the so-called quantum Fisher information (QFI). Quan-
tum Fisher information is related to the Bures [23, 31–33]
and Hellinger [34] distances which are referred to as two
different extensions from classical Fisher information.

Parameter encoding can occur in a noisy [35–47] or
noiseless scenario [48–52]. In the noiseless encoding,
which is the purpose of this work, the parameters are
encoded via a unitary operator U (θ) on an initially θ-
independent probe state ρ0

ρθ = U (θ) ρ0U
† (θ) , (2)

where θ = {θ1, · · · , θn} denotes the set of parameters to
be encoded. In unitary encoding, the most important
ingredients for calculating QFI matrix are the genera-
tors of the parameter translations with respect to each
parameter θi of the unitary process U(θ)

∂θiρθ = −i[Kθi , ρθ]. (3)

These generators capture all information of the
parametrization process and are defined by [53]

Kθi = i
∂U(θ)

∂θi
U†(θ), (4)

or equivalently, up to a unitary transformation in the
sense of Mθi = U†(θ)KθiU(θ), can be expressed as [53,
54]

Mθi = iU†(θ)
∂U(θ)

∂θi
. (5)

If the unitary process is known, then Kθi and Mθi can
be directly calculated by their definitions. Also, when
the estimation parameter θ is an overall multiplicative
factor of the Hamiltonian, the derivative involved in Eqs.
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(4) and (5) can be calculated straightforwardly. For es-
timation of an arbitrary parameter of a d-dimensional
Hamiltonian, a general solution for Kθ is presented in
[48]

Kθ = t

r∑
k=1

Tr{Γ†k∂θHθ}Γk (6)

− i
d2∑

k=r+1

1− e−iλkt

λk
Tr{Γ†k∂θHθ}Γk

where λk (with λk = 0 for k = 1, · · · , r and λk 6= 0 for
k = r + 1, · · · , d2) and Γk are, respectively, eigenvalues
and orthonormal eigenvectors of a Hermitian superopera-
tor corresponding to the Hamiltonian Hθ, obtained from
[Hθ,Γ] = λΓ.

Moreover, an expanded form for Hθi = −Mθi is pre-
sented in [51] which requires calculating an infinite series
of

Hθi = i

∞∑
n=0

FnH×nθ (∂θiHθ), (7)

where Fn = (it)n+1/(n + 1)!, Hθ is the Hamiltonian
of the unitary process Uθ = e−itHθ , and H×n(·) =
[H, · · · , [H, ·]]. Utilizing the eigenspectral of ρ0

ρ0 =

s−1∑
a=0

pa|ϕa〉〈ϕa|, (8)

where {pa}s−1a=0 and {|ϕa〉}s−1a=0 are the sets of eigenvalues
and eigenvectors of ρ0, respectively, and s is the dimen-
sion of the support of ρ0, the matrix elements of QFI
for a general unitary transformation ρθ = U (θ) ρ0U

† (θ)
can be expressed by [49–51]

Fθiθj =

s−1∑
a=0

4pacova(Hθi ,Hθj ) (9)

−
∑
a6=b

8papb
pa + pb

Re
{
〈ϕa|Hθi |ϕb〉〈ϕb|Hθj |ϕa〉

}
,

where

cova(Hθi ,Hθj ) =
1

2
〈ϕa|{Hθi ,Hθj}|ϕa〉

− 〈ϕa|Hθi |ϕa〉〈ϕa|Hθj |ϕa〉 (10)

is the covariance matrix on the eigenstate |ϕa〉 of the
initial state [49–51].

In this paper, we consider the QFI of a unitary pro-
cess and provide a new representation for QFI of a gen-
eral SU(2) process. In this representation we associate
to each parameter θi a real vectors mθi ∈ R3. The for-
mulation is independent of the parametrization of the
process in a sense that it takes a covariant form for any
parametrization of the process. We then provide an ex-
plicit relation for the vectors mθi for a general Hamil-
tonian with arbitrary parametrization. Furthermore, we

present a linear transformation between two different pa-
rameter spaces of a unitary process, enabling us to in-
terplay between their corresponding QFI matrices. Us-
ing this linear transformation, one can go from either
parametrization to another one, in particular, one can
obtain the QFI matrix of the coset parameters in terms
of the one of the angle-axis parameters.

This paper is organized as follows. In section II, we
briefly review the QFI and present a representation for
the QFI matrix of a general unitary process in terms of
the matrices Mθi . We then concern ourselves with the
particular case of SU(2) processes and introduce vectors
mθi , associated with matrices Mθi , and present a closed
relation for QFI matrix in terms of these vectors. An ana-
lytical closed relation to evaluate these vectors for general
Hamiltonian and arbitrary estimation parameters is also
provided in this section. Section III is devoted to present
a linear transformation between two different parameter
spaces of a unitary process. A way to move from QFI
matrix of a unitary process in a given parametrization to
the one of the other parametrization is provided in this
section. The utility of this transformation is examined
by providing an example in qubit systems. The paper is
concluded in section IV with a brief discussion.

II. QUANTUM FISHER INFORMATION

From various different versions of QFI, the so-called
symmetric logarithmic derivative (SLD) Fisher informa-
tion is the one which has attracted much attention. For a
single parameter θ, the SLD Fisher information is defined
by [23–26]

Fθ = Tr
(
ρθL

2
θ

)
, (11)

where ρθ is the density matrix depending on θ, and Lθ is
the SLD operator determined by the equation

∂θρθ =
1

2
{Lθ, ρθ} , (12)

where {, } denotes anticommutator. For a multiparame-
ter scenario θ = {θ1, · · · , θn}, the quantum Fisher infor-
mation matrix is defined by

Fθiθj =
1

2
Tr
(
ρ
{
Lθi , Lθj

})
, (13)

where Lθi is the SLD operator for the parameter θi, given
by

∂θiρθ =
1

2
{Lθi , ρθ} , (14)

and Lθj is defined similarly.
Using the eigenspectral of ρ0 given in Eq. (8), one can

write the eigenspectral of ρθ as

ρθ =

s−1∑
a=0

pa|ϕ̃a〉〈ϕ̃a|, (15)
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where |ϕ̃a〉 = U (θ) |ϕa〉 denotes eigenvectors of ρθ. In
this basis Eqs. (3) and (14) read, respectively, as (for
i = 1, · · · , n)

(∂θiρθ)ãb̃ = i(pa − pb) (Kθi)ãb̃

=
1

2
(pa + pb) (Lθi)ãb̃ ,

where we have defined (Kθi)ãb̃ = 〈ϕ̃a|Kθi |ϕ̃b〉 and
(Lθi)ãb̃ = 〈ϕ̃a|Lθi |ϕ̃b〉. Using this, one can find
the matrix elements of the SLD operators in the θ-
parametrization in terms of the matrix elements of the
corresponding matrices Kθi as

(Lθi)ãb̃ = 2i
(pa − pb)
pa + pb

(Kθi)ãb̃. (16)

This can be used in Eq. (13) to find matrix elements of
the QFI matrix in the θ-representation as

Fθiθj =
∑
a

∑
b

2
(pa − pb)2

pa + pb
(Kθi)ãb̃(Kθj )b̃ã

=
∑
a

∑
b

2
(pa − pb)2

pa + pb
(Mθi)ab(Mθj )ba, (17)

where (Mθi)ab = 〈ϕa|Mθi |ϕb〉. Equation (17) provides
a relation for the QFI matrix of an arbitrary unitary
process U(θ), and is equivalent to the one presented by
Eq. (9) [51]. Accordingly, the QFI matrix can be calcu-
lated provided that we could calculate the infinitesimal
generators Kθi (or Mθi) associated to each parameter θi
(i = 1, · · · , n). Instead of using matrix representation of
operators, a useful technique is to utilize the Bloch vec-
tor representation. This method has been used recently
for the SLD operator to derive an explicit expression for
the Holevo bound for estimating two-parameter family of
qubit states [55, 56]. In the next section we concern our
attention to the SU(2) processes and by using the Bloch
vector representation for matrices Mθi , Eq. (5), a closed
relation for the QFI matrix of arbitrary parameters of a
general Hamiltonian is provided.

A. SU(2) processes

For the simplest case of SU(2) processes we will pro-
vide a closed relation for Eq. (17) in terms of the Bloch
vector representation of the M -matrices. To do so, first
suppose that the initial state ρ0 is diagonal in the com-
putational basis {|0〉, |1〉}. In this case Eq. (17) reduces
to

Fθiθj = 2(p0 − p1)2
(
(Mθi)01(Mθj )10 + (Mθi)10(Mθj )01

)
= 2(p0 − p1)2

(
Tr[MθiMθj ]− 2(Mθi)00(Mθj )00

)
,(18)

where in the last line we have used the fact that M -
matrices are traceless. Now, to each Hermitian traceless
2× 2 matrix Mθi , one can associate a real vector mθi ∈
R3 by Mθi = σ ·mθi . In this representation we have

(Mθi)00 = (σ ·mθi)00 = ẑ ·mθi and MθiMθj = (σ ·
mθi)(σ ·mθj ) = (mθi ·mθj )12 + iσ · (mθi ×mθj ). We
find

Fθiθj = 4(p0 − p1)2
[
mθi ·mθj − (ẑ ·mθi)(ẑ ·mθj )

]
.(19)

In general, however, we are interested in the QFI of
the unitary process U(θ) starting from an arbitrary
initial state ρ0 with associated orthonormal eigenbasis
{|ϕ0〉, |ϕ1〉}. To do this we define |ϕa〉 = Ω(θ, φ)|a〉, for
a = 0, 1, with

Ω(θ, φ) =

(
cos θ2 −e−iφ sin θ

2

eiφ sin θ
2 cos θ2

)
. (20)

One can easily show that |ϕ0〉 and |ϕ1〉 are eigenvectors of
σ ·n̂ corresponding to the eigenvalues +1 and −1, respec-
tively, where n̂ = (sin θ cosφ, sin θ sinφ, cos θ)t. Start-
ing from this initial state transforms the M -matrices as
Mθi → Mθi = Ω†(θ, φ)MθiΩ(θ, φ). Associated to this
unitary transformation the m-vectors rotate as mθi →
Otmθi , where the orthogonal matrix O is defined by
Oij = 1

2Tr[σiΩσjΩ
†]. Obviously, mθi ·mθj remains in-

variant under such transformation and that ẑ ·Otmθi =
Oẑ ·mθi . Moreover, simple calculation shows that for
the unitary transformation (20), Oẑ is nothing but the
unit vector n̂ defined above. We therefore arrive at the
following proposition for the QFI matrix of the unitary
process U(θ) ∈ SU(2).

Proposition 1 To each parameter θi of the unitary pro-
cess U(θ) one can associate a unique vector mθi defined
by [mθi ]k = 1

2Tr{σkMθi}, where Mθi is given by Eq. (5).
Using this, the QFI matrix takes the following form

Fθiθj = 4(p0 − p1)2
[
mt
θiΛn̂mθj

]
(21)

= 4(p0 − p1)2
[
mθi ·mθj − (n̂ ·mθi)(n̂ ·mθj )

]
where Λn̂ = 13 − n̂n̂t is a two-dimensional projection
operator orthogonal to n̂.

This simple form shows that the QFI matrix of a uni-
tary process is composed of two independent contribu-
tions; first, each parameter θi of the unitary process
U(θ) is contributed in the Fisher information via the
vector mθi ∈ R3, and second, the role of the initial
state ρ0 is played by the Bloch vector n̂ and the eigen-
values p0, p1. However, looking at Eq. (21) shows that
although mθi are vectors in R3, their role in the QFI ma-
trix is played effectively in a two dimensional subspace
perpendicular to n̂. To see this note that mt

θi
Λn̂mθj =

(Λn̂mθi)
t(Λn̂mθj ) and Λn̂mθi ∈ Range{Λn̂}. Accord-

ingly, initial states with different Bloch vectors result in
different subspaces, hence different QFI matrix, in gen-
eral. It turns out that the QFI matrix is invariant un-
der orthogonal transformation on the vectors mθi , i.e.
mθi −→ Rmθi , provided that the Bloch vector of the
initial state is changed as n̂ −→ Rtn̂. In view of this, the
maximum of QFI matrix over all initial states, if exists,
is invariant under orthogonal transformation performed
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on mθi . For instance, for a single parameter θ, Eq. (21)
reduces to Fθ = 4(p0 − p1)2

[
|mθ|2 − (n̂ ·mθ)

2
]
, implies

that the QFI attains its maximum value Fmax
θ = 4|mθ|2,

gained by any initial pure state |σ · n̂〉 with n̂ lying in
the plane perpendicular to mθ.

Another consequence of Eq. (21) is that the lack of in-
dependency of the vectors mθi leads to vanishing deter-
minant of the QFI matrix, meaning that the variances of
the set of parameters cannot be estimated simultaneously
through the Cramer-Rao bound. To make an interpreta-
tion of this, supposemθk =

∑
l 6=k clmθl for some nonzero

real numbers cl. In this case we find Mθk =
∑
l 6=k clMθl ,

results in ∂U(θ)
∂θk

=
∑
l 6=k cl

∂U(θ)
∂θl

from Eq. (5). Defin-

ing U(θ) = e−iHt for Hamiltonian H and invoking Eq.
(24), we find ∂H

∂θk
=
∑
l 6=k cl

∂H
∂θl

. The converse is also
true meaning that any relation between derivatives of
the Hamiltonian leads to the same relation between the
corresponding m-vectors, as such, for any initial probe
state ρ0 the QFI matrix becomes singular. What is
noteworthy here is that the lack of independency of m-
vectors is not necessary to get singular QFI matrix, as
Eq. (21) could lead to a singular QFI matrix even for
linearly independent m-vectors. To see this consider,
for example, two arbitrary parameters θ1 and θ2 asso-
ciated with two linearly independent vectors mθ1 and
mθ2 . One can see that for any Bloch vector of the initial
state lying in the plane of mθ1 and mθ2 , i.e. for any
n̂ = a1mθ1 + a2mθ2 with arbitrary real numbers a1 and
a2 such that a21|mθ1 |2 + a22|mθ2 |2 + 2a1a2mθ1 ·mθ2 = 1,
the QFI matrix obtained from Eq. (21) has a vanishing
determinant.

Moreover, for the eigendecomposition of ρθ, given by
Eq. (15), one can see that F (ρθ) = (p0 − p1)2F (ϕ̃a) for

a = 0, 1, as such F (ρθ)/
∑1
a=0 paF (ϕ̃a) = (p0−p1)2 ≤ 1,

implies convexity of the QFI in this case.
Having Eq. (21) as a relation for QFI matrix in terms

of the vectors mθi , it is now the time to present a rela-
tion to calculate the required vectors mθi for a general
Hamiltonian. The following proposition provides an ex-
plicit representation for vectors mθi of a general qubit
Hamiltonian.

Proposition 2 For a unitary process generated by the
Hamiltonian [52]

H = α · σ, (22)

the associated m-vectors are given by the following rela-
tion

mθi =
∂|α|
∂θi

t α̂+ sin (|α|t) cos (|α|t)∂α̂
∂θi

(23)

− sin2 (|α|t)
(
α̂× ∂α̂

∂θi

)
,

where we have defined the unit vector α̂ = α/|α|.

Before we proceed further to provide a proof for the above
equation, we have to stress here that a similar relation,
however with different derivation, is provided in Ref. [52].

Proof Using the equation [57]

∂

∂θi
e−iHt =

∫ 1

0

e−isHt
(
−it ∂

∂θi
H

)
e−i(1−s)Htds, (24)

in the definition of [mθi ]k, we get

[mθi ]k =
i

2
Tr

{
σkU

†(θ)
∂U(θ)

∂θi

}
=
t

2

∫ 1

0

ds Tr

{
V (s)σkV

†(s)
∂H

∂θi

}
= t

3∑
l=1

∂αl
∂θi

∫ 1

0

ds Olk(s), (25)

where we have defined V (s) = e−i(1−s)Ht, and Olk(s) =
1
2Tr

{
V (s)σkV

†(s)σl
}

is the orthogonal matrix corre-
sponding to the unitary matrix V (s). Now, for H =
α · σ, one can use V (s) = 12 cos[τ ] − iα̂ · σ sin[τ ] with
τ = (1− s)|α|t, so that

Olk(s) = cos[2τ ]δkl − sin[2τ ]εktlα̂t + 2 sin2[τ ]α̂kα̂l,(26)

where εktl is the so-called Levi-Civita symbol and sum-
mation over repeated indices is understood. Using this
in Eq. (25) and after calculating the integrals, we get

mθi =
1

2|α|

{
sin(2|α|t)∂α

∂θi
− (1− cos(2|α|t))

(
α̂× ∂α

∂θi

)
+

[
(2|α|t− sin(2|α|t))

(
α̂ · ∂α

∂θi

)]
α̂

}
. (27)

Finally, using α = |α|α̂ and noting that α̂ · ∂α̂∂θi = 0, we

find Eq. (23).

Note that in Eq. (23) we have not fixed the parameters
under estimation, in a sense that both amplitude and
direction of the vector α can be depend on each of the
parameters θi. Moreover, the m-vectors are generally
not orthogonal nor normalized. In the following we will
consider the so-called angle-axis parametrization of the
SU(2) group and show that for such a set of parameters
the associated m-vectors are orthogonal.

Example.—Consider a system described by the Hamil-
tonian (22), with α described by the following relation
[52]

α = rα̂, α̂ = (sinϑ cosϕ, sinϑ sinϕ, cosϑ)t. (28)

The unitary evolution generated by this Hamiltonian is
given by U(r, ϑ, ϕ) = e−iHt. Taking θ1 = r, θ2 = ϑ,
and θ3 = ϕ as the parameters under estimation, one can
easily find from Eq. (23)

mr = tα̂0, (29)

mϑ = sin rt [cos rt α̂1 − sin rt α̂2] , (30)

mϕ = sinϑ sin rt [sin rt α̂1 + cos rt α̂2] , (31)

where

α̂0 = α̂, α̂1 =
∂α̂

∂ϑ
, α̂2 =

1

sinϑ

∂α̂

∂ϕ
, (32)
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form an orthonormal basis. Clearly, such a set of m-
vectors is orthogonal and can be written as

mr = Rmr, mϑ = Rmϑ, mϕ = Rmϕ, (33)

with

mr = t (0 , 0 , 1)
t
, (34)

mϑ = sin rt (cos rt , − sin rt , 0 )
t
, (35)

mϕ = sinϑ sin rt (sin rt , cos rt , 0)
t
, (36)

Above, R = Rz(ϕ)Ry(ϑ) whereRz(ϕ) andRy(ϑ) denote
rotations about z and y axes, respectively

Rz(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 , (37)

Ry(ϑ) =

 cosϑ 0 sinϑ
0 1 0

− sinϑ 0 cosϑ

 . (38)

Note that vectors mr, mϑ, and mϕ are independent of the
azimuthal angle ϕ. With these m-vectors in hand, one
can easily use Eq. (21) to calculate QFI of the parameters
r, ϑ, and ϕ for an arbitrary initial state. We find

Fθiθj = 4(p0 − p1)2
[
mt
θiΛn̂′mθj

]
,

where Λn̂′ = 13 − n̂′n̂′
t

with n̂′ = Rtn̂.
As a particular case consider a spin-half system in a

magnetic field B described by the Hamiltonian

Hϑ = B (sinϑσ1 + cosϑσ3) . (39)

This Hamiltonian can be obtained from Eqs. (22) and
(28) by setting r → B, ϑ → ϑ and ϕ → 0. Suppose
that the magnetic field B is known and ϑ is the pa-
rameter under estimation. In this case we find mϑ =
sinBt (cosBt , − sinBt , 0 )

t
, so that

mϑ = sinBt (cosϑ cosBt , − sinBt , − sinϑ cosBt)
t
.(40)

Using this in Eq. (21) one can easily find the QFI. In
this case the maximum Fisher information leads [48]

Fmax
ϑ = 4|mϑ|2 = 4 sin2 (Bt), (41)

which happens for any initial pure state with Bloch vector
n̂ perpendicular to mϑ. If both B and ϑ are parameters
under estimation, the mϑ is given by the same Eq. (40),
and mB is defined by

mB = t (sinϑ , 0 , cosϑ)
t
. (42)

For instance, if the initial state is taken in the spin ẑ-
direction, one can find the QFI matrix as

F = 4(p0 − p1)2 (43)

×
(

sin2(Bt)
(
1− sin2 ϑ cos2(Bt)

)
t
4 sin(2ϑ) sin(2Bt)

t
4 sin(2ϑ) sin(2Bt) t2 sin2 ϑ

)
.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

t

T
r[
F
-
1
]

a

b

c

FIG. 1. (Color online) Total precision limit, given by Eq.
(44), as a function of time for B = 1, θ = π/2, and different
values of p0 (p1 = 1 − p0). (a) p0 = 1 (solid-red line). (b)
p0 = 0.8 (dashed-blue line). (c) p0 = 0.6 (dot-dashed-gray
line).

In this case, the ultimate precision limit is given by the
trace of inverse of the QFI matrix, i.e.

TrF−1 =
1

4(p0 − p1)2

(
1

sin4(Bt)
+

1− sin2 ϑ cos2(Bt)

t2 sin2 ϑ sin2(Bt)

)
.(44)

Figure 1 shows the above limit in terms of time for B = 1,
θ = π/2, and different values of p0. As can be seen from
this figure the best achievable precision happens when
the initial probe state is pure.

III. QFI OF A UNITARY PROCESS WITH TWO
DIFFERENT PARAMETRIZATIONS

Let us consider a unitary transformation parameter-
ized in terms of two different classes of parameters α =
{αk} and β = {βl}, i.e. U(α) = U(β). Now the ques-
tion is that if we start with the same initial state ρ0 and
encode these parameters on the state as

ρα = U(α)ρ0U
†(α) (45)

= U(β)ρ0U
†(β) = ρβ,

what is the relation between the QFI matrices of these
two parametrizations?

To address this question we should first find a rela-
tion between M -matrices with respect to these classes of
parameters. To do so, we write Eq. (5) for αk and βl
as Mαk

= iU† ∂U∂αk
and Mβl

= iU† ∂U∂βl
, respectively. By

using ∂U
∂βl

=
∑
k
∂U
∂αk

∂αk

∂βl
, we get

Mβl
= i
∑
k

U†
∂U

∂αk

∂αk
∂βl

=
∑
k

Mαk
Sαk,βl

, (46)

where we have defined the transfer matrix S with matrix
elements Sαk,βl

= ∂αk

∂βl
. Similarly, if we write Eq. (16)

for αk and βl and by using Eq. (46) we find a relation
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between SLD matrices with respect to these classes of
parameters

(Lβl
)ãb̃ =

∑
k

(Lαk
)ãb̃ Sαk,βl

. (47)

Finally the relation between various parametrizations of
the QFI can be expressed by

Fβlβl′ =
∑
k

∑
k′

Sαk,βl
Fαkαk′Sαk′ ,βl′ , (48)

which can be written in a more compact form as

F {βl} = StF {αk}S. (49)

Very recently a similar relation is presented in Ref. [58],
however it is for the special case of SU(2) processes with
the aim of calculating the QFI of arbitrary parameters
of SU(2) using the one of the Euler angles. Regarding
this, Eq. (48) is general in a sense that it enables one
to obtain the QFI matrix of an arbitrary unitary process
for a given set of estimation parameters from the one of
the other set of parameters, with no restriction on the
number of the initial and final estimation parameters.

For the simplest case of SU(2) processes, the relation
between QFI of different parametrizations can be ex-
pressed in terms of a relation between m-vectors of the
corresponding parameters. Actually, if mαk

and mβl

denote the m-vectors of a unitary process in the {αk}
and {βl} parametrizations, respectively, we find from Eq.
(46)

mβl
=
∑
k

mαk
Sαk,βl

. (50)

In view of this, both Fαkαk′ and Fβlβl′ are given by the
same relation (21) with their own m-vectors replaced by
mθi . In order to show how the above algorithm works,
in the example below we will obtain the QFI of a unitary
process in the coset representation from the one in the
canonical representation.

Example.—Consider again a system described by the
Hamiltonian (22) and parametrization (28). The uni-
tary evolution generated by this Hamiltonian provides
the canonical mapping of the algebra onto the group
[59]. On the other hand, an arbitrary unitary matrix
U ∈ SU(2) can be written in a unique way as a product
of two group elements [59]

U(η, γ, ξ) = Ω(2)(γ, ξ)Ω(1)(η), (51)

where Ω(1)(η) = exp{−iησz/2} is diagonal (in the com-
putational basis {|0〉, |1〉}), corresponding to the one-
dimensional Cartan subalgebra of su(2), and Ω(2)(γ, ξ) =
exp{−iγ(σx sin ξ+σy cos ξ)/2} is an arbitrary element of
the two-dimensional quotient space S2 = SU(2)/U(1).
The relation between the canonical parameters {r, ϑ, ϕ}

and the aim parameters {η, γ, ξ} is

r =
1

t
cos−1

(
cos

γ

2
cos

η

2

)
, (52)

ϑ = cos−1

(
cos γ2 sin η

2√
1− cos2 γ2 cos2 η2

)
, (53)

ϕ = tan−1
(

cot
(
ξ +

η

2

))
, (54)

which can be used to calculate the transfer matrix S. Af-
ter calculating S, and regarding that we have an explicit
expression for m-vectors in the parameters {r, ϑ, ϕ}, Eq
(33), one can invoke Eq. (50) and get

mη =
1

2
(0, 0, 1)

t
, (55)

mγ =
1

2
(sin Γ, cos Γ, 0)

t
, (56)

mξ = sin
γ

2

(
cos

γ

2
cos Γ,− cos

γ

2
sin Γ,− sin

γ

2

)t
,(57)

where Γ = ξ + η. Having these m-vectors in hand, one
can easily use Eq. (21) to calculate QFI of the coset
parameters for an arbitrary initial state. For instance,
when the initial state is diagonal in the computational
basis {|0〉, |1〉}, we get

F (η, γ, ξ) = (p0 − p1)2

0 0 0
0 1 0
0 0 sin2 γ

 . (58)

This simple form for F (η, γ, ξ), in particular vanishing
Fηη(η, γ, ξ), is not surprising as we have assumed that ρ0
is diagonal in the Cartan basis of the algebra, so that ρ
cannot encode any parameters of the Cartan subalgebra.

IV. CONCLUSION

In this paper, we have considered the quantum Fisher
information for unitary processes with special attention
to SU(2) processes. In particular, we have presented a
new formulation to calculate QFI matrix in terms of vec-
tors mθi ∈ R3, associated to each estimation parameter
θi. Our method gives a closed relation for the QFI ma-
trix and reveals, simply, its features. Furthermore, for a
general Hamiltonian with arbitrary parametrization, we
have provided a closed relation to calculate vectors mθi .
The relation is expressed in terms of derivatives of the
Hamiltonian parameters with respect to the parameters
under estimation. As an application we choose angle-
axis parameters, both as Hamiltonian parametrization
and estimation parameters, and calculate QFI. The gen-
eralization of the method to dimensions higher than two
is not straightforward and is under further consideration.

Finally, using a linear transformation between two dif-
ferent parameter spaces of a unitary process, we find a
relation between QFI matrices of two different classes of
estimation parameters. This can be used, in particular,
to calculate the QFI of a unitary process in terms of the
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one of the same process but with different parametriza-
tion, provided that the linear transformation between two
parameter spaces is known. For illustration, we have ap-
plied this method for a spin-half system and obtained the
QFI matrix of the coset parameters in terms of the one
of the angle-axis parameters.
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[17] André, A., Sørensen, A.S., Lukin, M.D.: Stability of
Atomic Clocks Based on Entangled Atoms. Phys. Rev.
Lett. 92, 230801 (2004)

[18] Louchet-Chauvet, A., Appel, J., Renema, J.J., Oblak,
D., Kjaergaard, N., Polzik, E.S.: Entanglement-assisted
atomic clock beyond the projection noise limit. New J.
Phys. 12, 065032 (2010)

[19] Borregaard, J., Sørensen, A.S.: Near-Heisenberg-Limited
Atomic Clocks in the Presence of Decoherence. Phys.
Rev. Lett. 111, 090801 (2013)
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