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In this work, a comparison study between unidimensional (UD) coherent-state and UD squeeze-state protocols is 
performed in the continuous variable quantum key distribution domain. First, the UD squeeze-state protocol is 
proposed, and the equivalence between the prepare-and-measure and entanglement-based schemes of UD squeeze-
state protocol is proved. Then, the security of the UD squeeze-state protocol under collective attack in realistic 
conditions is analyzed. Lastly, the performances of the two UD protocols are analyzed. Based on the uniform 
expressions established in our study, the squeeze-state and coherent-state protocols can be analyzed simultaneously. 
Our results show that the UD squeeze-state protocols are quite different from the two-dimensional (TD) protocols in 
that the UD squeeze-state protocols have a poorer performance compared with UD coherent-state protocols, which is 
opposite in the case of TD protocols.  
PACS number(s): 03.67.Dd, 03.67.Hk 
 

 
I. INTRODUCTION 

 

The unconditional security of quantum key distribution (QKD) prevents information from being eavesdropped; it is 
expected that this technology will be used for a wide variety of applications in the future with the advent of quantum 
information technology. In general, QKD technology can be categorized into discrete-variable and continuous-
variable (CV) QKD protocols [1–2]. CV-QKD protocols encode information into continuous quadrature components 
of quantum states and utilize homodyne detectors instead of single-photon detectors. The CV-QKD protocols typically 
provide a high secret key rate at a relatively short distance; in addition, they have good compatibility with the classical 
communication networks [3-25].  

Based on the utilized quantum states, the CV-QKD protocols can be classified as coherent-state protocols, squeeze-
state protocols, and entanglement-state protocols. In general, it is believed that the squeeze-state and entanglement-
state protocols perform better than the coherent-state protocols; however, because coherent state sources are easy to 
prepare, coherent-state protocols have also been widely researched. Till date, many protocols to enhance the 
performance of or simplify a QKD system have been proposed, including a unidimensional (UD) coherent-state 
protocol [26], three coherent-state protocols [27], and method for passive state preparation [28]. The advantages of 
the UD coherent-state protocol include easy modulation, low costs, and only needs less random numbers [29, 30]. In 
the case of a small amount of excess noise, the UD coherent-state protocol performs as well as the two-dimensional 
(TD) coherent-state protocol (GG02). Therefore, the UD coherent-state protocol has the potential to be used for 
applications in various scenarios, such as in QKD local area networks, where the transmission distance between users 
is typically short and cost is a key concern.  

Thus far, the UD modulation method has only focused on the coherent-state protocol. Therefore, in this study, a 
UD squeeze-state protocol was proposed; in addition, the equivalence between the prepare-and-measure (PM) scheme 
and entanglement-based (EB) scheme of the protocol was proved. Using the uniform expression introduced in our 
study for the squeezed and coherent states, we can analyze the protocols of the states simultaneously. In particular, by 
changing the value of a parameter r , the result for the corresponding state can be obtained. By comparing these 
obtained results, we observed that in the case of the UD protocols, the coherent-state protocol performed better that 
the squeeze-state protocol, whereas, in the case of the TD or symmetrical modulation protocols, the asymmetric 
squeezed state led to a better performance. 

The remainder of this paper is organized as follows. In Section II, the proposed UD squeeze-state protocol is 
presented; in addition, the equivalence of PM and EB schemes is discussed. Section III presents the security analysis 
of the UD squeezed-state protocol under collective attack in realistic conditions using the EB scheme. Further, Section 
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IV discusses the performance of the UD squeeze-state protocol and compares the protocol with the UD coherent-state 
protocol. Finally, our conclusions are provided in Section V.  

 

II. UD SQUEEZED AND COHERENT PROTOCOLS 

A. PM scheme for UD squeezed or coherent state protocols 

It is well-known that one of the quadrature variances of the squeezed state is less than the shot noise, whereas the 
other quadrature variance is more than the shot noise. When the amplitude quadrature, which is denoted by x, is 
squeezed, the covariance matrix is given by: 
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where 0s >  is the squeezing parameter. When the phase quadrature, which is denoted by y, is squeezed, the 
covariance matrix is given by: 
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The covariance matrix of the coherent state is  
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In order to describe the three kinds of states uniformly in our study, the covariance matrix was denoted as follows: 
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where r  represents the variance of the phase quadrature. When 0 1r< < , the matrix represents the covariance matrix 
of the phase quadrature squeezed state or y-squeezed state, whereas when 1r > , the matrix represents the covariance 
matrix of the amplitude quadrature squeezed state or x-squeezed state. Further, when 1r = , the matrix is the 
covariance matrix of the coherent state. It should be noted that all the variances in our study are normalized to the shot 
noise. Based on this uniform expression, we can analyze these protocols simultaneously. 

The traditional TD squeeze-state protocol in the PM scheme proposed in [5] is based on the following concept: 
Alice randomly prepares x-squeezed states displaced along x or y-squeezed states displaced along y with a Gaussian 
distribution.  Then, the mixed Gaussian states with the null mean value and covariance matrix are obtained as follows: 
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where MV  is the modulation variance. When we impose 2 2 =s s
Me V e V− + = , a thermal state with variance V  can be 

obtained. The thermal state realized by a mixture of x-squeezed states is indistinguishable from a thermal state realized 
by a mixture of y-squeezed stated. Thus, the information can be encoded in two conjugate quadratures with both mixed 
states representing the same thermal state of variance V .  

Similar to the UD coherent-state protocol, for the UD squeezed-state protocol in the PM scheme, Alice displaces 
the squeezed state along one quadrature with a Gaussian distribution. Without loss of generality, the amplitude 
quadrature is selected to distribute the squeezed state as shown in Fig. 1. The squeezed state can be either the y-
squeezed state as shown in Fig. 1 (a) or x- squeezed state as shown in Fig. 1 (b). Figure 2 (c) presents the scheme of 
the UD coherent-state protocol. The modulation variance along the amplitude quadrature is MV . Further, Bob 
measures the amplitude or phase quadratures by switching the detection bases randomly with true random numbers. 



 

 
FIG. 1 UD distributed squeezed states in the phase space. (a) Phase quadrature squeezed state. 

(b) Amplitude quadrature squeezed state. (c) Coherent state. 
 

After Bob has measured all the pulses, the two partners need to perform post-processing, which starts by applying 
sifting. In our study, we select the sifting method corresponding to reverse reconciliation. The sifting steps are 
described as follows:  

1. Bob discloses the random measurement base of each pulse. 
2. Alice records the data corresponding to the cases wherein Bob measures the amplitude quadrature. It should be 

noted that Bob should store all the data. The amplitude quadrature data are used to estimate the parameters and distill 
the secret key. Furthermore, the phase quadrature data are used to estimate the variance of phase quadrature in order 
to calculate the secret key. 

Then. they make public part of the amplitude quadrature randomly to estimate the parameters, such as transmission 
efficiency and excess noise in amplitude quadrature, after which, the secret key rate is calculated. The procedure of 
reverse reconciliation and privacy amplification is used to ensure that Alice and Bob could share a group of secret 
keys.  

 
B. Equivalence of the PM and EB schemes in UD protocols 

 
In general, most of the current experimental systems for CV-QKD protocols are based on PM schemes, because they 
are easy to implement in practice. However, in theory, it is difficult to analyze the security of such protocols based on 
the PM schemes. On the contrary, theoretical analysis based on the EB scheme can be performed appropriately; the 
involved entangled states lead to simpler and more feasible calculations [2]. In particular, in the case of the UD 
protocol, security analysis based on the EB scheme has more advantages that are based on the PM scheme. The 
covariance matrices obtained using the EB schemes contain the constraints of phase amplitude quadrature; however, 
these constraints are difficult to obtain using the PM scheme. 
 

 
FIG. 2. Schematic of the EB scheme of the UD protocol under realistic conditions. 

 
In the EB scheme shown in Fig. 2, Alice prepares a pair of Einstein–Podolsky–Rosen (EPR) states 

0ABρ  with 

covariance matrix 
0ABγ  as follows: 
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where ( )2 1,1I diag=  and ( )1, 1z diagσ = − . Then, Alice squeezes one of its modes 0B  with the squeeze parameter 

lnS V r= . The resulting covariance matrix ASγ  is: 
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where SQ  is the squeeze operator, which is given by: 
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Here, Aγ  and Sγ  are the covariance matrices of the modes A  and S , respectively, and ASσ  is the correlation matrix 
of the two modes. In quantum communication, Alice sends the mode S to Bob. The collapsed state sρ  that transmitted 
to Bob depends on the measurement of mode A . In the UD protocol, when the modulation is performed on the 
amplitude quadrature in the PM scheme, Alice will conduct homodyne detection on the amplitude quadrature in the 
EB scheme. The covariance matrix of mode S conditioned on Alice’s measurement result Ax  can be derived using: 

( ) ,A
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S S AS A ASX Xγ γ σ γ σ= − ⋅ ⋅                                                           (9) 

where (1,0)X diag= , and MP denotes the Moore–Penrose inverse of a matrix. After a straightforward calculation, 
we can obtain the following:   
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Before Alice’s measurement, the two modes of state ASρ  are centered on ( )0,0in
Ad =  and =(0,0)in

Sd . The 

homodyne measurement on mode A , denoted by ( ),0Am x= , will project the mode S  to the squeezed state or 
coherent state centered on: 

( ) ( )out = .MP in in
S AS A A Sd X X m d dσ γ⋅ ⋅ − +                                         (11) 

Then, after a straightforward calculation, we can obtain:   

( ) ( )out 2= 1 ,0 .S Ad V rV x− ⋅                                                                (12) 

From the covariance matrix Aγ of mode A , we can observe that the variance of Ax  is V . Therefore, for the 
amplitude quadrature, the variance of the center value of mode S  is:  
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Because the variance of each collapsed state in the amplitude quadrature is 1 r (the first diagonal element of Eq. (10)); 
therefore, the total variance of the squeezed state in the amplitude quadrature is 2V r (which is obtained by adding 



the result of Eq. (13) and 1 r ). This corresponds to the modulation variance ( )2 -1MV V r=  in the PM scheme; in 

addition, the variance of the modulated state is 1 r . Thus, we can see that the two schemes are indistinguishable for 
Bob and Eve, i.e., they are equivalent. The advantageous consequence of this equivalence is that the experiment can 
be performed using the PM scheme, whereas its security can be studied using the EB scheme. 

 

III. SECURITY ANALYSIS OF THE UD COHERENT AND SQUEEZED STATE PROTOCOLS 
UNDER REALISTIC CONDITIONS  

In the previous section, we established the equivalence between the EB and PM schemes of the UD protocols. Here, 
we analyze the security of the protocols to primarily study the availability of the UD squeeze-state protocol. The secret 
key rate against collective attacks for reverse reconciliation in the asymptotic regime can be calculated as follows: 

 AB BEI Iβ χ∆ = ⋅ − ，                                                                    (14) 

where β  is the reverse reconciliation efficiency; thus far, the highest value achieved is 99.96% [31]. ABI  is the 
Shannon mutual information between Alice and Bob, while BEχ  is the Holevo bound, which represents the maximum 
information eavesdropped by Eve under collective attacks.  

ABI  can be calculated using Shannon’s equation as follows: 
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where AV  is the variance of Alice in the case of amplitude quadrature; its value can be found at the first diagonal 
element of covariance matrix 

1ABγ , which is given as follows: 
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where ( )linex 1 x x xT Tχ ε= − +  is the channel noise added relative to the channel input in amplitude quadrature, 

( )1 x xT T−  is the noise due to losses, and xε  is the excess noise in the amplitude quadrature. 1B
yC  is the unknown 

correlation of phase quadratures, and 1B
yV , which could be measured experimentally, is the variance of the phase 

quadrature. The conditional variance |A BV  is the first diagonal element of the conditional matrix |A Bγ , which can be 
derived as follows: 
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where ( )1,0X diag= , Aγ , Bγ , and ABσ  are all submatrices of the covariance matrix ABγ . All of these are shown 
below. 
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with ( )hom 1 1elvχ η= + −  is the noise introduced by the realistic homodyne detector relative to Bob’s input in the 

amplitude quadrature, and totx linex hom xTχ χ χ= +  is the total noise added between Alice and Bob relative to the 
channel input in the amplitude quadrature. elv  is the electronic noise of the homodyne detector. Finally, the Shannon 
mutual information can be derived as follows:  
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To obtain the covariance matrix 
1ABγ  which is the submatrix of 

1AB FEγ  , it is convenient to assume that Eve holds 

a purification of Alice’s and Bob’s mutual state
1ABρ . Considering the freedom-in-purification theorem, any 

purification of 
1ABρ  that Eve may possess will result in the same entropy and hence the same Holevo information BEχ  

[32]. Here, we suppose that Eve generates an EPR state 'EE
ρ with covariance matrix 'EE

γ  and replaces the channel 

with a lossless channel in which she inserts a beam splitter with phase sensitive transmission xT  and yT (as shown in 

Fig. 3). The beam splitter mixes the modes S  and 'E . Then, Eve retains one of the output mode F  for herself and 
passes the other mode 1B  to Bob. This process can be expressed as follows: 

( ) ( ) ( )'1 2 ' 2 2 ' 2 .T
AB FE SE AS SEE E

I BS I I BS Iγ γ γ= ⊕ ⊕ ⋅ ⊕ ⋅ ⊕ ⊕                                              (20) 

 
FIG. 3. Beam splitter mode of the channel. 

 
The covariance matrix ABRHγ  can be obtained using a similar procedure shown below: 

( ) ( ) ( )1 0 1 0 1 02 2 2 2 .
T

ABRH B R AB R H B RI BS I I BS Iγ γ γ= ⊕ ⊕ ⋅ ⊕ ⋅ ⊕ ⊕                                           (21) 

In order to analyze the security of the protocol in an easy manner, the realistic homodyne detector is usually 
replaced by a beam splitter 

1 0B RBS  with a transmission efficiency η  and ideal homodyne detector (as shown in Fig. 

2). The electronic noise elv   of the homodyne detector can be modeled by one model 0R  of ERP state 
0R Hρ  with 

variance ( )1 / 1N elV v η= + −  entering the other input port of the beam splitter. Because the detector cannot be accessed 
by the eavesdropper, it is considered that the detector has phase insensitive efficiency.  

The Holevo bound that represents the maximum information eavesdropped by Eve is defined as:  
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Because the quantum state 
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where ( )S ρ  is the von Neumann entropy of the quantum state ρ . For an n-mode Gaussian state ρ , this entropy can 
be calculated using the symplectic eigenvalues of the covariance matrix γ  characterizing ρ  as follows: 
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where ( ) ( ) ( )2 21 log 1 logG x x x x x= + + − . In general, the symplectic eigenvalues of covariance matrix γ  with n  
mode can be calculated by finding the absolute eigenvalues of the matrix i γΩ  . The matrix Ω  has an expression as  
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The covariance matrix bx

ARHγ  of the state bx
ARHρ  can be derived using Eq. (26 ). 
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The covariance matrix ARHBγ  is obtained by rearranging the lines and columns of matrix ABRHγ , which, in turn, is 
obtained using Eq. (21). In the above expression (23), there are two unknown variables 1B

yC  and 1B
yV . In order to 

obtain the secret key rate, we need to constraint them using the covariance matrix 
1ABγ  and Heisenberg uncertainty 

principle as follows [33]: 
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FIG. 4. Regions of the UD 1-dB x-squeezed state protocol under realistic detection conditions. 

 
In Fig. 4, a black parabolic curve between 1B

yC  and 1B
yV  can be seen. The parameter r  is set to 1.1, which indicates 

that 1-dB x-squeezed states are generated. The values of r  correspond to the coherent state or y-squeezed state, which 
has a similar result. The other parameters are set as follows: 0.99β = , 3MV = , 0.1xT = , 0.01xε = , 0.6η = , and 

0.1elυ = . The entire plane is divided into physical and unphysical regions by the parabolic curve. In particular, the 
physical region is contained in the parabolic curve. In the unphysical region, the value of  1B

yC  and 1B
yV  cannot be 

satisfied simultaneously. The cyan curve with the secret key rate of zero separates the entire physical region into 
secure and unsecure regions. The secret key rate in the secure region is larger than zero, whereas it is less than zero in 
the unsecured region. For a fixed value 1B

yV , there is a group of secret key rates with different values of 1B
yC . In 

general, the value of 1
min

B
yC  ，which can be achieved by scanning all the 1B

yC  in the secure region, corresponding to 

the minimum secret key rate minI∆  is used for securing. When the value of 1B
yV  is different, the value of 1

min
B
yC  will be 

different. The line with two colors, i.e., red and green, record the trajectory of 1
min

B
yC   in the secure region. In contrast, 

the red part indicates the points with the minimum secret key rate that overlap with points on the parabolic curve. 
When the value of 1B

yV increases, the blue part represents that the points with the minimum secret key rate gradually 
separate from the parabolic curve. We denote the line as “safe line.” The minimum secret key rate of safe line is shown 
in Fig. 5.   



 
FIG. 5. The minimum secret key rate of safe line. 

 
When the transmission efficiency yT  in the phase quadrature equals the transmission quadrature xT  in the 

amplitude quadrature, the variance of phase quadrature 1B
yV  can be derived as follows:  

( )1

x y

B
y T T x lineV T r χ= = +                                      (31) 

It is depicted as the vertical black virtual line in Figs. 4 and 5. The minimum secret key rate at the phase quadrature 
variance 1

x y

B
y T TV = is typically used to estimate the secret key rate of the realistic conditions. Thus, we denote the 

virtual line as the “expected line”. 
Based on the above discussion, we can observe that the security of the squeeze- and coherent-state protocols can 

be analyzed simultaneously using uniform expressions.  
 

IV. PERFORMANCE OF THE COHERENT AND SQUEEZE STATE PROTOCOLS 

In order to analyze the performance of the coherent- and squeeze-state protocols, the secret key rate minI∆  versus 
distance for different squeezing parameters were plotted, as shown in Fig. 5. The black solid line corresponds to the 
squeezed parameter 1r = , indicating the coherent state. The squeezed parameters of the blue dash and blue dot lines 
are 0.8r = and 0.6r = , respectively, both of which represent the amplitude quadrature squeezed state. The squeezed 
parameters of the red dash-dot and red dash-dot-dot lines are 1.2r = and 1.4r = , respectively, both of which represent 
the phase quadrature squeezed state. The other parameters are the same as the ones used in Fig. 4. 

  



 
FIG. 6. Minimum secret key rate versus distance at different squeezing parameters. 

 
Based on an analysis of the performance of the UD protocols, we can observe that either the UD amplitude 

quadrature or phase quadrature squeezed state has a lower performance. In general, the larger the degree of squeezing, 
the lower the performance is. This observation is quite different from the TD or symmetrical protocols in which the 
squeeze-state protocol performs better than the coherent-state protocol; in that case, the performance increases with 
an increase in the degree of squeezed parameters [2, 34].  

 
FIG. 7. Parabolic curves with different squeezing parameters. 

 
The parabolic curves with different squeezing parameters are shown in Fig. 7. With an increase in the value of the 

squeezed parameters, the parabolic curve moves from left to right. The cross point of the safe line (dash line) and 
expected line (dash-dot line) also moves from left to right. The minimum secret key rates for different conditions are 
graphically depicted in Fig. 8. Evidently, the black cross point that represents the coherent state protocol has the 
highest secret key rate. In particular, many of the black cross points at different transmission efficiencies constitute 
the black solid line that is shown in Fig. 6; similarly, the blue cross and red cross points at different transmission 
efficiencies constitute the corresponding blue dash and red dash-dot lines in Fig. 6. 



  
FIG. 8. Secret key rates of different squeezing parameters. 

 

V. DISCUSSION AND CONCLUSIONS 

By comparing the performance of the UD protocols, we can see that the performance of the UD squeeze-state is lower 
than that of the UD coherent-state protocols. It is different from the TD protocols. In this section, we will discuss the 
reasons briefly and present a conclusion.  

It is well known that the Shannon mutual information of the TD squeeze-state protocol between Alice and Bob is 
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and the Shannon mutual information of the coherent-state protocol between the two parties is  
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where V  is the variance of EPR state in the equivalent EB scheme, and it is larger than one [35]. When the value of 
V  is same, we can see that the TD squeeze-state protocol has a larger Shannon mutual information than the TD 
coherent state protocol by comparing expressions (32) and (33). In the equivalent EB scheme, the information 
eavesdropped by Eve in the two TD protocols can be calculated by  

( )( ) .bx
BE E ES Sχ ρ ρ= −                                                                       (34) 

It means that when the variance of the EPR state is the same, Eve eavesdrops the same information in the above two 
TD protocols. Using expression (14), we can obtain  
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In UD protocols, the Shannon mutual information UD
ABI between Alice and Bob can be calculated by expression (19). 

It can be rewritten as  
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The value of UD
ABI  not only changes with variance V  but also changes with variable r . The variable r  has a relation 

with the squeezing process, and it can be used to discriminate the UD protocols. However, UD
ABI  is monotonous with 

the value of r . If the value of r  is larger, then the value of UD
ABI  is larger. Thus, we cannot determine the superiority 

of the UD coherent-state protocol by only using the Shannon mutual information briefly. Because of the uncertain 



variables 1B
yC , the Holevo bound UD

BEχ  can be calculated directly. The Minimum secret key rate should be achieved 

firstly by scanning the variable 1B
yC . When the value 1

min
B
yC is determined, the Holevo bound UD

ABχ  can be calculated. 

Thus, it is hard to use the monotonicity of UD
ABI and UD

BEχ  to determine the superiority of UD coherent-state protocol.  
From the final numerically calculated result of minimum secret key rate shown in Fig. 6 and Fig. 8, we can see 

that when 1r = or when the coherent state is used, the best performance can be achieved. This is in contrast to the 
trend in the case of the TD protocols. Because of our analysis, the coherent state is proven to be the optimal state in 
the UD domain. For future research and experiment, an integration of CV QKD in deployed optical-network-based 
UD coherent-state protocol is expected [36], especially, when the transmission distance between users is usually short 
and cost is a key concern. In theory, the composable security [37, 38] of the UD coherent-state protocol will be 
considered. 
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