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Abstract

Quantum coherence and entanglement are two key features in quantum mechanics and play

important roles in quantum information processing and quantum computation. We provide a

general triangle-like inequality satisfied by the l1-norm measure of coherence for convex combination

of arbitrary n pure states of a quantum state ρ. Furthermore, we present triangle-like inequality

for the convex-roof extended negativity for any states of rank 2, which gives a positive answer to

a conjecture raised in [Phys. Rev. A 96, 062308 (2017)]. Detailed examples are given to illustrate

the relations characterized by the triangle-like inequalities.
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INTRODUCTION

Quantum coherence and entanglement are the two key features of quantum world. While

quantum coherence is defined for single systems, quantum entanglement is adopted to de-

scribe the correlations in bipartite or multipartite systems. Recent developments in under-

standing of quantum coherence have come from the burgeoning field of quantum information

science. Just like entanglement, coherence can be treated as a physical resource and has

been widely studied. One important pillar of the field is the study on quantification of

coherence. Since the seminal work [1] on defining a good coherence measure in terms of the

resource theory, quantum coherence has been widely studied and applied to many quantum

information processing [1–20].

The relative entropy and l1-norm coherence measures are two well-known measures of co-

herence, especially concerning the strong monotonicity property and the closed expressions.

In fact, different quantifications of coherence can greatly enrich our understanding of coher-

ence. In particular, the distillable coherence [8, 21], the coherence of formation [8, 21], the

robustness of coherence [13], the coherence measures based on entanglement [2], max-relative

entropy of coherence [20], and the coherence concurrence [22, 23] have been proposed and

investigated. For instance, the relative entropy coherence can be understood as the optimal

rate for distilling a maximally coherent state from given states [8]. The max-relative entropy

of coherence can exactly characterize the subchannel discrimination problems such that the

coherent state allows for a higher probability of successfully discriminating subchannels than

that of all incoherent states [20]. The robustness of coherence quantifies the advantage en-

abled by a quantum state in a phase discrimination task [13]. In addition, the relations

between coherence and path information [24–26], the distribution of quantum coherence in

multipartite systems [19], the complementarity between coherence and mixedness [27, 28]

have also been studied.

In [29], the authors show that if a rank-2 state ρ can be expressed as a convex combination

of two pure states, i.e., ρ = p1|ψ1〉〈ψ1|+ p2|ψ2〉〈ψ2|, a triangle inequality can be established,

|E(√p1|ψ1〉) − E(
√
p2|ψ2〉)| ≤ E(ρ) ≤ E(

√
p1|ψ1〉) + E(

√
p2|ψ2〉), where E can be either

the measures of coherence or the entanglement concurrence. In this paper, we give a revise

to the inequalities to make it a suitable measure. We provide detailed proofs of triangle-

like inequalities in coherence measures and entanglement negativity. A general triangle-like
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inequality for any convex combination of n states ρ based on the l1 norm coherence measure is

given. Furthermore, we provide entanglement negativity satisfied the triangle-like inequality

for any states of rank 2, which gives a positive answer to a conjecture of the convex-roof

extended negativity satisfied the triangle-like inequality [29]. At last, we give an example of

entanglement negativity in a two-qubit system.

TRIANGLE-LIKE INEQUALITIES FOR MEASURES OF COHERENCE

A widely used measure of coherence is the distance-based measure [1], defined by the

minimal distance between a given state and the set of incoherent quantum states I. The

incoherent states are diagonal ones in the reference basis {|i〉} of a d-dimensional Hilbert

space, δ =
∑d

i=1 δi|i〉〈i|. A measure of coherence for a state ρ can be defined by

CD(ρ) = min
δ∈I

D(ρ, δ), (1)

where D(ρ, δ) denotes certain distance measures of quantum states.

Typical distance-based measures of coherence are the relative entropy, the l1-norm and

the trace norm [1]. The l1-norm measure of coherence for a state ρ is given by

Cl1(ρ) = min
δ∈I

||ρ− δ||l1 =
∑

i 6=j

|ρij |, (2)

which is equal to sum of the absolute values of all off-diagonal elements of ρ.

For mixed states, the convex-roof l1-norm is adopted as a different measure of coherence

[22]. The convex-roof l1-norm of a mixed state ρ is given by

C̃l1(ρ) = min
{pi,|ψi〉}

∑

i

piCl1(|ψi〉), (3)

where the minimization is taken over all pure state decompositions of ρ =
∑

i pi|ψi〉〈ψi|,
∑

i pi = 1, Cl1(|ψi〉) is the l1-norm of the state |ψi〉〈ψi|.
We begin with a general triangle-like inequality based on the l1 norm measure of coher-

ence.

[Theorem 1]. If a state ρ can be expressed as a convex combination of n (n ≥ 2) states

ρ =
∑n

i=1 piρi, Cl1(ρ) satisfies the following triangle-like inequality,

1

n

n
∑

k=1

∣

∣

∣

∣

G
(n−1)
k − pkCl1(ρk)

∣

∣

∣

∣

≤ Cl1(ρ) ≤
∑

i

piCl1(ρi), (4)
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where G
(n−1)
k , k = 1, 2, · · · , n, are the low bounds of

∑n
i 6=k piCl1

(∑n
j 6=k pjρj∑n
t 6=k pt

)

.

[Proof]. First we consider the case of n = 2, i.e. ρ = p1ρ1 + p2ρ2. Then we have

Cl1(ρ) = Cl1(p1ρ1 + p2ρ2)

=
∑

i 6=j

|p1ρ1ij + p2ρ2ij|

≥
∣

∣

∣

∑

i 6=j

p1|ρ1ij | −
∑

i 6=j

p2|ρ2ij|
∣

∣

∣

=
∣

∣

∣
p1Cl1(ρ1)− p2Cl1(ρ2)

∣

∣

∣
, (5)

where G
(1)
1 = p2Cl1(ρ2), G

(1)
2 = p1Cl1(ρ1). Hence (5) is a special case of the left hand of (4).

Next, we consider the case of n = 3, ρ =
∑3

i=1 piρi. From (5), we get

Cl1(ρ) ≥
∣

∣

∣

∣

∣

3
∑

j 6=i

pjCl1

(

∑3
t6=i ptρt
∑3

k 6=i pk

)

− piCl1(ρi)

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

∣

∣

∣
pjCl1(ρj)− pkCl1(ρk)

∣

∣

∣
− piCl1(ρi)

∣

∣

∣

∣

∣

. (6)

Summing over all the i, j, k in (6), we have

Cl1(ρ) ≥
1

3

∑

i 6={j,k},j<k

∣

∣

∣

∣

∣

∣

∣

∣
pjCl1(ρj)− pkCl1(ρk)

∣

∣

∣
− piCl1(ρi)

∣

∣

∣

∣

∣

, (7)

where G
(2)
k =

∣

∣

∣
piCl1(ρi) − pjCl1(ρj)

∣

∣

∣
, i < j, k 6= {i, j}, i, j, k ∈ {1, 2, 3}. Thus (7) can be

rewritten as Cl1(ρ) ≥ 1
3

∑3
k=1

∣

∣G
(2)
k − pkCl1(ρk)

∣

∣.

(4) reduces to (7) for n = 3. Now suppose That Theorem 1 holds for n = m. Consider

the case of n = m+ 1, ρ =
∑m+1

i=1 piρi, we have

Cl1(ρ) = Cl1

(

m+1
∑

i 6=k

piρi + pkρk

)

≥
∣

∣

∣

∣

m+1
∑

i 6=k

piCl1

(

∑m+1
j 6=k pjρj
∑m+1

t6=k pt

)

− pkCl1(ρk)

∣

∣

∣

∣

≥
∣

∣

∣

∣

G
(m)
k − pkCl1(ρk)

∣

∣

∣

∣

. (8)

Summing over all the k in (8), we have

Cl1(ρ) ≥ 1

m+ 1

m+1
∑

k=1

∣

∣

∣

∣

G
(m)
k − pkCl1(ρk)

∣

∣

∣

∣

. (9)
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Therefore, the left inequality of (4) is proved. The right inequality in (4) is obvious due to

the convex property of the l1-norm coherence. �

Note that here the decomposed states ρ1, · · · , ρn can be either pure or mixed states. For

pure state decompositions, we have

[Theorem 2]. If ρ has a linearly independent pure state decomposition

|ψ1〉, |ψ2〉, · · · , |ψn〉, ρ =
∑n

i=1 pi|ψi〉〈ψi|, then the convex-roof l1-norm coherence of mul-

tiqubit state ρ satisfies the following triangle-like inequality:

1

n

n
∑

k=1

∣

∣

∣

∣

G̃
(n−1)
k − pkC̃l1(|ψk〉)

∣

∣

∣

∣

≤ C̃l1(ρ) ≤
∑

i

piC̃l1(|ψi〉), (10)

where C̃l1(|ψi〉) = Cl1(|ψi〉) is the convex-roof l1-norm coherence of pure states |ψi〉 i =

1, 2, · · · , n, G̃(n−1)
k , k = 1, 2, · · · , n, are the low bounds of

∑n
i 6=k piC̃l1

(∑n
j 6=k pjρj∑n
t 6=k pt

)

.

[Proof]. The second inequality of (10) is due to that the convex-roof l1-norm coherence

C̃l1(ρ) is a sum of the minimal decomposition of ρ, while
∑

i piCl1(|ψi〉) can be regarded as

a sum of a general decomposition of ρ.

Assume that ρ =
∑

k pk|ψk〉〈ψk| is the optimal decomposition of C̃l1(ρ). We have

C̃l1(ρ) =
∑

k

pkCl1(|ψk〉)

=
∑

k

pk
∑

i 6=j

∣

∣〈i|ψk〉〈ψk|j〉
∣

∣

≥
∑

i 6=j

∣

∣〈i|
∑

k

pk|ψk〉〈ψk|j〉
∣

∣

=
∑

i 6=j

|ρij | = Cl1(ρ). (11)

From Theorem 1, we obtain (10), which completes the proof. �

Remark 1. Theorem 1 is the main result in [29], where n = 2. There is a potential question

of whether other quantum measures also satisfy triangle inequalities. One may also consider

other measures of coherence, and entanglement measures such as relative entropy and the

entanglement of formation. However, these measures are usually difficult to calculate for

given states in general. Hence, the triangle-like inequalities associated with these measures

are still open problems.
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TRIANGLE-LIKE INEQUALITIES IN ENTANGLEMENT NEGATIVITY

Concurrence is a well-known measure of entanglement [30–34]. For a general bipartite

pure state |ψ〉AB in HA ⊗ HB, the concurrence is defined by [33, 35, 36], C(|ψ〉AB) =
√

2 [1− Tr(ρ2A)], with ρA the reduced density matrix by tracing over the subsystem B, ρA =

TrB(|ψ〉AB〈ψ|). The concurrence for a bipartite mixed state ρAB is defined by the convex-roof

extension C(ρAB) = min{pi,|ψi〉}

∑

i piC(|ψi〉), where the minimum is taken over all possible

decompositions of ρAB =
∑

i pi|ψi〉〈ψi|, with pi ≥ 0 and
∑

i pi = 1 and |ψi〉 ∈ HA ⊗HB.

Another well-known measure of bipartite entanglement is the negativity. Given a bipartite

state ρAB inHA⊗HB, the negativity is defined by [37], N(ρAB) = (||ρTAAB||−1)/2, where ρTAAB is

the partial transpose of ρAB with respect to the subsystem A, ||X|| denotes the trace norm of

X , ||X|| = Tr
√
XX†. Negativity is a computable measure of entanglement, and is a convex

function of ρAB. It vanishes if and only if ρAB is separable for the 2 ⊗ 2 and 2⊗ 3 systems

[38]. For simplicity, we use the following definition of negativity, N(ρAB) = ||ρTAAB|| − 1. For

a mixed state ρAB, the convex-roof extended negativity (CREN) is defined by

Nc(ρAB) = min
∑

i

piN(|ψi〉AB),

where the minimum is taken over all possible pure state decompositions {pi, |ψi〉AB} of ρAB.

CREN gives a perfect discrimination of positive partial transposed bound entangled states

and separable states in any bipartite quantum systems [39, 40].

For any bipartite pure state |ψ〉AB in a d ⊗ d quantum system with Schmidt rank

2, |ψ〉AB =
√
λ0|00〉 +

√
λ1|11〉, one has N(|ψ〉AB) =‖ |ψ〉〈ψ|TB ‖ −1 = 2

√
λ0λ1 =

√

2(1− Trρ2A) = C(|ψ〉AB). Namely, the negativity is equivalent to the concurrence for

any pure state with Schmidt rank 2. Consequently it follows that for any two-qubit mixed

state ρAB =
∑

pi|ψi〉AB〈ψi|,

Nc(ρAB) = min
∑

i

piN(|ψi〉AB) = min
∑

i

piC(|ψi〉AB) = C(ρAB), (12)

For a general bipartite pure state ρAB = |ψ〉〈ψ|, the concurrence can be written as [41],

C(|ψ〉) = 2

√

∑d1(d1−1)/2
i<j

∑d1(d1−1)/2
k<l

∣

∣

∣
aikajl − ailajk

∣

∣

∣

2

, with |ψ〉 =
∑d1

i=1

∑d2
j=1 aij|ij〉. It is

easy to obtain piC(|ψi〉) = C(
√
pi|ψi〉), i = 1, 2. From the result of Theorem 3 in [29], one

has,
∣

∣

∣
p1C(|ψ1〉)− p2C(|ψ2〉)

∣

∣

∣
≤ C(ρ) ≤ p1C(|ψ1〉) + p2C(|ψ2〉), (13)
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where ρ = p1|ψ1〉〈ψ1|+ p2|ψ2〉〈ψ2| is a two-qubit mixed state.

Combining (12) and (13), we have

∣

∣

∣
p1Nc(|ψ1〉)− p2Nc(|ψ2〉)

∣

∣

∣
≤ Nc(ρ) ≤ p1Nc(|ψ1〉) + p2Nc(|ψ2〉), (14)

and with a similiar method of Theorem 1, we generalize (14) to multiqubit states.

[Theorem 3]. If a multiqubit state ρ can be expressed as a convex combination of n

(n ≥ 2) states ρ =
∑n

i=1 piρi, with ρi = |ψi〉〈ψi|, i = 1, 2, · · · , n, then the negativity Nc(ρ)

satisfies the triangle-like inequality:

1

n

n
∑

k=1

∣

∣

∣

∣

H
(n−1)
k − pkNc(ρk)

∣

∣

∣

∣

≤ Nc(ρ) ≤
∑

i

piNc(ρi), (15)

where H
(n−1)
k , k = 1, 2, · · · , n, are the low bounds of

∑n
i 6=k piNc

(∑n
j 6=k pjρj∑n
t 6=k pt

)

, H
(1)
1 = p2Nc(ρ2),

H
(1)
2 = p1Nc(ρ1).

[Proof]. First, we consider the case of n = 3, ρ =
∑3

i=1 piρi. From Eq. (14), we get

Nc(ρ) ≥
∣

∣

∣

∣

∣

3
∑

j 6=i

pjNc

(

∑3
t6=i ptρt
∑3

k 6=i pk

)

− piNc(ρi)

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

∣

∣

∣
pjNc(ρj)− pkNc(ρk)

∣

∣

∣
− piNc(ρi)

∣

∣

∣

∣

∣

. (16)

Summing over all the i, j, k in (16), we have

Nc(ρ) ≥
1

3

∑

i 6={j,k},j<k

∣

∣

∣

∣

∣

∣

∣

∣
pjNc(ρj)− pkNc(ρk)

∣

∣

∣
− piNc(ρi)

∣

∣

∣

∣

∣

, (17)

where H
(2)
k =

∣

∣

∣
piNc(ρi) − pjNc(ρj)

∣

∣

∣
, i ≤ j, k 6= {i, j}, i, j, k ∈ {1, 2, 3}. Then (17) can be

rewritten as Nc(ρ) ≥ 1
3

∑3
k=1

∣

∣H
(2)
k − pkNc(ρk)

∣

∣.

(15) reduces to (17) for n = 3. Suppose that Theorem 3 holds for n = m. Consider the

state ρ =
∑m+1

i=1 piρi, we have

Nc(ρ) = Nc

(

m+1
∑

i 6=k

piρi + pkρk

)

≥
∣

∣

∣

∣

m+1
∑

i 6=k

piNc

(

∑m+1
j 6=k pjρj
∑m+1

t6=k pt

)

− pkNc(ρk)

∣

∣

∣

∣

≥
∣

∣

∣

∣

H
(m)
k − pkNc(ρk)

∣

∣

∣

∣

. (18)
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FIG. 1: Solid (red) line denotes the value of
∣

∣

∣
pNc(|ψ1〉)− (1− p)Nc(|ψ2〉)

∣

∣

∣
for given p,

dashed (blue) line for pNc(|ψ1〉) + (1− p)Nc(|ψ2〉), and dotted (green) line for Nc(ρ).

Summing over all the k in (18), we have

Nc(ρ) ≥ 1

m+ 1

m+1
∑

k=1

∣

∣

∣

∣

H
(m)
k − pkNc(ρk)

∣

∣

∣

∣

. (19)

Therefore, the left inequality of (15) is proved. The right inequality in (15) is obvious due

to the convex property of the negativity. �

Remark 2. Theorem 3 can be used to detect the entanglement of a multiqubit mixed

state. If the product of the probability distribution of |ψi〉 and its corresponding negativity

is different from that of |ψj〉, ρ must be entangled. If all |ψi〉, i = 1, 2, · · · , n, are partial

transpose positive states, ρ must be separable. In the following example, one can find that

for p = 1
3
, the left hand side of Theorem 3 is 0, but the state ρ is entangled.

Example. Consider a two-qubit mixed state ρ = p|ψ1〉〈ψ1|+(1−p)|ψ2〉〈ψ2|, where |ψ1〉 =
√

3
8
(|00〉+|11〉)+

√

1
8
i(|01〉+|10〉), |ψ2〉 =

√

3
8
(|00〉+|11〉)+

√

1
8
(|01〉+|10〉), i =

√
−1. From

the definition of negativity, we have Nc(|ψ1〉) = 1, Nc(|ψ2〉) = 1
2
and Nc(ρ) =

1
2

√

1 + 3p2.

The relations among
∣

∣

∣
pNc(|ψ1〉)− (1 − p)Nc(|ψ2〉)

∣

∣

∣
, Nc(ρ) and pNc(|ψ1〉) + (1 − p)Nc(|ψ2〉)

are shown in Fig. 1.

In fact, the bounds of Nc(ρ) in (15) depends on the pure state decompositions of ρ. Con-

sider a new decomposition ρ = p|ψ′
1〉〈ψ′

1|+ (1− p)|ψ′
2〉〈ψ′

2|, where (
√
p|ψ′

1〉,
√
1− p|ψ′

2〉)T =

8



U(
√
p|ψ1〉,

√
1− p|ψ2〉)T ,

U =





cosαeiβ sinαeiγ

− sinαe−iγ cosαe−iβ



 .

The relation still holds,
∣

∣

∣
p1Nc(|ψ′

1〉)− p2Nc(|ψ′
2〉)
∣

∣

∣
≤ Nc(ρ) ≤ p1Nc(|ψ′

1〉) + p2Nc(|ψ′
2〉).

In particular, under all possible unitary transformations U , the largest upper bound

of Nc(ρ) is just the convex-roof extended negativity of assistance [42], Na(ρ) =

max{pi,|ψi〉}

∑

i piN(|ψi〉).

CONCLUSION

We have provided a general triangle-like inequality for any n pure states combinations of

ρ, based on the l1-norm coherence measure. Furthermore, we have presented the triangle-

like inequality satisfied by the convex-roof extended negativity for any states of rank 2,

giving a positive answer to the conjecture raised in [29]. By a detailed example of a two-

qubit state, the relations characterized by the triangle-like inequalities have been explicitly

displayed. These results may highlight the further investigations on quantum coherence,

quantum entanglement and even other quantum correlations related to steerability and

non-locality.
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