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We investigate the continuous-variable entanglement swapping protocol in a non-Gaussian setting, with non-
Gaussian states employed either as entangled inputs and/oras swapping resources. The quality of the swapping
protocol is assessed in terms of the teleportation fidelity achievable when using the swapped states as shared
entangled resources in a teleportation protocol. We thus introduce a two-step cascaded quantum communication
scheme that includes a swapping protocol followed by a teleportation protocol. The swapping protocol is fed
by a general class of tunable non-Gaussian states, the squeezed Bell states, which, by means of controllable
free parameters, allows for a continuous morphing from Gaussian twin beams up to maximally non-Gaussian
squeezed number states. In the realistic instance, taking into account the effects of losses and imperfections,
we show that as the input two-mode squeezing increases, optimized non-Gaussian swapping resources allow for
a monotonically increasing enhancement of the fidelity compared to the corresponding Gaussian setting. This
result implies that the use of non-Gaussian resources is necessary to guarantee the success of continuous-variable
entanglement swapping in the presence of decoherence.

PACS numbers: 03.67.Hk, 03.67.Mn, 42.50.Pq

I. INTRODUCTION

Long-distance quantum communication [1] is a crucial in-
gredient in the realization of distributed quantum informa-
tion networks. In achieving this goal, entanglement swapping
plays a key role. Such a protocol is needed, e.g., in order
to realize quantum repeaters connecting distant communicat-
ing parties, since it establishes quantum correlations between
remote parties via entanglement transfer [2]. In general, the
efficient teleportation of entanglement and of squeezing, as
well as entanglement purification, is a necessary requirement
for the realization of a quantum information network based on
multi-step information processing [3].

For continuous variable (CV) systems of quantized ra-
diation, various schemes for long-distance communication
based on concatenated entanglement swapping have been de-
vised [4, 5]. A CV entanglement swapping protocol has
been proposed by van Loock and Braunstein (vLB) [6], and
demonstrated experimentally [7–9]. Recently, the transfer
of discrete-variable two-mode entanglement has been exper-
imentally demonstrated in a hybrid framework, by exploiting
CV resources and operations [10]. The entanglement swap-
ping protocol requires the exploitation of suitably entangled
CV resources. The simplest available ones are two-mode
Gaussian states, and a detailed analysis of the optimal Gaus-
sian entanglement swapping has been carried out in Ref. [11].
On the other hand, it has been shown that selected classes of
non-Gaussian CV states can, in principle, be powerful for the
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efficient implementation of quantum information and metrol-
ogy tasks [12–27].

Due to their high degree of non-classicality, non-Gaussian
resources may offer a better performance with respect to their
Gaussian counterparts. Indeed, among all CV states with
the same fixed first and second statistical moments, Gaussian
states are the ones thatminimizevarious nonclassical proper-
ties [28, 29]. In addition, distilling Gaussian states using only
Gaussian operations is impossible [30], and insuperable lim-
itations to the transport of logical quantum information arise
when using Gaussian cluster states (even when arbitrary non-
Gaussian local measurements are allowed), implying the need
for non-Gaussian resources in measurement-based quantum
computing [31]. Many theoretical and experimental efforts
have been devoted to the engineering of non-Gaussian states
of the radiation field (for a review on quantum state engineer-
ing, see e.g. [32]).

Various theoretical methods for the generation of non-
Gaussian states have been proposed [33–44], several success-
ful experimental realizations have been reported [45–54],and
different criteria have been devised for the characterization
and/or quantification of non-classicality [55–58] and of non-
Gaussianity [59–64].

The squeezed Bell (SB) states introduced and investi-
gated in Refs. [12–14] form a particularly interesting class
of non-Gaussian entangled resources, characterized by free
parameters that can be tuned to obtain known Gaussian and
non-Gaussian states, including, among others, twin beams,
photon-added and photon-subtracted squeezed states, and
squeezed number states. The free parameters in the class of
BS states allow for significant degrees of optimization in im-
plementing quantum protocols. For instance, optimizedSB
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resources allow for a teleportation fidelity higher than that as-
sociated with resources such as Gaussian twin beams or non-
Gaussian photon-subtracted squeezed states (these last being
currently the best experimentally generated resources) for a
large variety of teleported input states, including coherent,
squeezed, and number states [12–14]. Simple schemes for the
generation ofSB states have been recently proposed, based
on the exploitation of independent twin beams and suitable
conditional coincidence measurements [65].

In the present work we investigate the performance ofSB
non-Gaussian entangled resources in the implementation of
the CV entanglement swapping protocol. In our analysis the
SB states are exploited as two-mode entangled input states
and/or two-mode entangled resources.

Given two Bosonic field modesh, k, the pure, two-mode
SB states|ψhk〉SB are defined as:

|ψhk〉SB = Shk(ζhk){cos δhk|0, 0〉hk+eiθhk sin δhk|1, 1〉hk} ,
(1)

where Shk(ζhk) = e−ζhka
†

h
a
†

k
+ζ∗

hkahak is the two-mode
squeezing operator,ζhk = rhke

iφhk is the squeezing complex
parameter, and|n , n〉hk ≡ |n〉h ⊗ |n〉k is a two-mode Fock
state withn photons in each mode, associated to modesh and
k. The free tunable parametersδhk, θhk control the degree
of non-Gaussianity, allowing to span a great variety of states,
from Gaussian twin beams (TB) to squeezed number states
(SN ), through intermediate non-Gaussian states which in-
clude, among others, the photon-added (PA) and the photon-
subtracted (PS) squeezed states.

In Tab. I we provide a list of the most relevant states, de-
noted by acronyms, representing special realizations of the
general class of two-modeSB states (1), together with the
corresponding values of the free parameters that realize them.

Squeezed Bell states SB arbitraryδhk, θhk

Twin Beams TB δhk = 0, θhk = 0

Photon Subtracted squeezed statesPS
cos δhk = cosh rhk√

cosh 2rhk

θhk = φhk

Photon Added squeezed statesPA
cos δhk = sinh rhk√

cosh 2rhk

θhk = φhk

Squeezed Number states SN δhk = π

2
, θhk = 0

TABLE I: List of particular states belonging to the general class of
squeezed Bell states.

When used as entangled resources, optimizedSB states al-
low for improved performance of the CV quantum telepor-
tation protocol compared to the corresponding GaussianTB
states with the same covariance matrix, especially at low and
intermediate levels of two-mode squeezingrh,k [12–14]. Of
course, in the ideal case, the improvement becomes more and
more marginal as squeezing increases, and vanishes asymp-
totically in the limit of infinite squeezing, as bothSB andTB
states converge to the Einstein-Podolski-Rosen (EPR) maxi-
mally entangled state.

Within the family ofSB states, more modest improvements
with respect toTB resources can also be obtained withPS re-
sources. On the other hand,PA andSN resources, although
both highly entangled and non-Gaussian, do not allow for ef-
ficient teleportation.

When using non-Gaussian resources, optimization of the
teleportation performance does not simply correspond to a
maximum amount of shared entanglement, as one would
naively expect and as is indeed the case when using Gaus-
sian resources [66]. Rather, optimization requires a fine in-
terplay among the optimization of three quantities: 1) entan-
glement; 2) degree of non-Gaussianity (as suitably quantified
by proper entropic or geometric measures at fixed covariance
matrix); 3) squeezed-vacuum-affinity (defined as the overlap
between the specific two-mode state considered and the two-
mode squeezed vacuum) [12]. Moreover,SB states allow for
different optimization procedures depending on the quantity
to be teleported [15]. Therefore, the level of performance
of non-Gaussian resources depends on the task to be accom-
plished, i.e. the target of the protocol these resources areused
for.

We investigate the performance of the CV vLB entangle-
ment swapping protocol when non-GaussianSB states are
used either as entangled inputs and/or as entangled resources.
Quantitatively, the level of performance is assessed by intro-
ducing a cascade scheme: we will consider the (ideal) tele-
portation fidelity of an input coherent state when the non-
Gaussian swapped entangled states (output of the swapping
protocol) are exploited as entangled resources of the CV BKV
teleportation protocol.

In the first two steps we analyze the ideal and the realis-
tic swapping protocol using as input states and/or resources
genericSB states, that is, with tuning parameters left free
and not optimized. Next, we compute (in the ideal instance)
the corresponding fidelity in the teleportation of a coherent
state when the (generic) non-Gaussian swapped states are ex-
ploited as entangled resources, and we maximize it over the
set of free parameters; these include the tunable parameters
of theSB states and the experimental gains [67]. In this way,
we identify, within the family ofSB states, the particular state
that ensures the best teleportation performance when used as a
resourceafter the swapping procedure has been implemented.
Finally, adopting the same criterion, we compare its perfor-
mance with that of other swapped Gaussian and non-Gaussian
resources.

We study the CV swapping protocol with non-Gaussian in-
puts and/or resources by extending to this case the formal-
ism of the characteristic function that has been introducedin
Ref. [68]. Here we follow the same technical procedure as
in Ref. [13]. The phase-space description proves to be partic-
ularly appropriate in the instance of CV non-Gaussian states,
as the corresponding mathematical machinery turns out to be
computationally effective.

The paper is organized as follows. In section II, we briefly
review the entanglement swapping protocol in the formalism
of the characteristic function, and we introduce the criterion
by which one can assess the performance of the non-Gaussian
entangled resources. In section III we present and discuss our
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main results, including the analysis, in comparative terms, of
the performance of the entanglement swapping protocol im-
plemented with non-Gaussian resources, both in the ideal case
and in realistic instances.

II. CV ENTANGLEMENT SWAPPING PROTOCOL

A. Characteristic functions

Here we briefly review the two-mode CV entanglement
swapping protocol. The task is the transfer of two-mode en-
tanglement between a pair of field modes initially prepared
in a entangled state, say modes1 and2, to a pair of modes
initially disentangled, say modes1 and4. Such a task is ac-
complished by exploiting another initially prepared entangled
state of modes4 and, say,3, a Bell measurement, and finally
a pair of local unitary transformations. Three users (Alice,
Bob, and Charlie) are involved in the protocol. Initially, Al-
ice shares the two-mode input entangled state of modes1 and
2 with Charlie, while Bob shares with Charlie the two-mode
entangled resource of modes3 and4.

A schematic picture and a brief description of the CV swap-
ping protocol are provided in Fig. 1. In this scheme, mode2 of
the two-mode input entangled state is mixed to mode3 of the
entangled resource at a balanced beam splitter. A Bell mea-
surement, realized by homodyne detections, is performed on
the mode resulting by the mixing of modes2 and3. In order
to model a non-ideal measurement, or equivalently to simu-
late the inefficiencies of the photodetectors, a further fictitious
beam splitter is placed in front of each ideal detector [69].
After the realistic Bell measurement, the result is transmitted
through classical channels to the locations of modes1 and4.

It is assumed that both the input state and the resource are
produced close to the Charlie’s location (Bell measurement),
and far from Alice’s and Bob’s locations (remote users), so
that the modes are spatially separated. Therefore, it can be
supposed that the modes2 and3 are not affected by the de-
coherence due to propagation; on the contrary, the modes1
and4 propagate through noisy channels, e.g. optical fibers,
towards Alice’s and Bob’s locations, respectively. According
to the result of the Bell measurement, at these locations local
unitary displacements are performed on mode1 of the input
state and on mode4 of the resource. The resulting two-mode
swapped (entangled) state of modes1 and4 is the output state
of the protocol. The protocol can be described in the charac-
teristic function formalism, as detailed in the following (see
also appendix A for further mathematical details).

Let ρ0 = ρA12 ⊗ ρB34 be the global input bi-separable four-
mode state. In phase space with quadrature field variables
(xi, pi) , i = 1, . . . 4, such a state is described by the charac-
teristic functionχ0(x1, p1;x2, p2;x3, p3;x4, p4):

χ0(x1, p1;x2, p2;x3, p3;x4, p4) =

χ12(x1, p1;x2, p2) χ34(x3, p3;x4, p4) , (2)

whereχ12(x1, p1;x2, p2) andχ34(x3, p3;x4, p4) correspond
to the characteristic functions of the two-mode entangled

statesρA12 and ρB34, respectively. The output characteristic
function χout(x1, p1;x4, p4) associated with the two-mode
entangled output state of the swapping protocol is given by:

χ
(swapp)
out (x1, p1;x4, p4) =

χ12

(

e−
τ1
2 x1, e

− τ1
2 p1;T2(g1x1 + g4x4), T3(−g1p1 + g4p4)

)

χ34

(

T2(g1x1 + g4x4),−T3(−g1p1 + g4p4); e
− τ4

2 x4, e
− τ4

2 p4
)

e−
1

2
(1−e−τ1 )( 1

2
+nth,1)(x2

1
+p2

1
)− 1

2
(1−e−τ4 )( 1

2
+nth,4)(x2

4
+p2

4
)

e−
R2

2

2
(g1x1+g4x4)

2−R2
3

2
(−g1p1+g4p4)

2

, (3)

whereTi (Ri), with i = 2, 3, are the transmissivities (reflec-
tivities) associated with the fictitious beam splitters that model
the inefficiencies of the homodyne detections;gi (i = 1, 4) are
the gains associated with the unitary displacements;Υi and
nth,i (i = 1, 4) are, respectively, the damping factors and the
average numbers of thermal photons associated with the noisy
channels. Finally,τi denotes the dimensionless timeτi = Υit.
For a better understanding we list in Tab. II all the parameters
appearing in expression (3) and associated with the experi-
mental apparatus. Such parameters are assumed to be fixed
constants; indeed, we assume a complete knowledge of the
experimental apparatus’ components.

1

2

Classical channels

Entanglement swapping protocol

3

4
Alice

Charlie

Bob

AA

TwoTwo--modemode entangledentangled

input stateinput state

B

Two-mode entangled

resource

DisplacementDisplacement 11 DisplacementDisplacement 44

RealisticRealistic

Bell Bell 

measurementmeasurement

FIG. 1: (Color online) Pictorial representation of the non-ideal CV
entanglement swapping protocol. Initially, two users, sayAlice and
Bob, share one entangled state each with a third party, say Char-
lie. Alice shares with Charlie the input two-mode entangledstate of
modes1 and2, and Bob shares with Charlie the two-mode entangled
resource of modes3 and4. In the first step, at Charlie’s location,
the mode2 of the input two-mode entangled state is mixed with the
mode3 of the entangled resource. The ensuing state is then subjectto
a realistic Bell measurement (imperfect photodetection).The result
of the measurement is communicated by Charlie to Alice and Bob
through classical channels. The modes1 and4 propagate towards the
corresponding locations through noisy channels, e.g. optical fibers.
In the second step, two local unitary transformations, determined by
the previous measurement, are applied by Alice and Bob to mode 1
and4, respectively. The ensuing output state of modes1 and4 is
the final swapped (entangled) state. Such a state is shared bythe two
final users Alice and Bob.
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gi , i = 1, 4 gains associated with unitary displacements

Ti (Ri) , i = 2, 3 transmissivities (reflectivities) at beam splitters

Υi , i = 1, 4 channel damping factors

nth,i , i = 1, 4 average numbers of thermal photons

τi ≡ Υit , i = 1, 4 dimensionless times

TABLE II: Parameters characterizing the experimental apparatus.

In the instance of an ideal protocol(Ri = 0 , Ti ≡ 1−Ri =
1 , τi = 0) and forg1 = 0, g4 = 1, Eq. (3) reduces to:

χ
(swapp)
out (x1, p1;x4, p4) =

χ12 (x1, p1;x4, p4) χ34 (x4,−p4;x4, p4) . (4)

This last formula offers a clear interpretation of the task
of the swapping protocol. Assuming the entangled re-
source to be a twin beam with squeezing parameterr34, in
the limit of large r34 (perfect EPR resource) the function
χ34 (x4,−p4;x4, p4) → 1; correspondingly, the output char-
acteristic functionχout coincides withχ12, with the complete
swapping of mode2 with mode4.

B. Swapping efficiency

In order to assess the efficiency of the swapping protocol
applied to input Gaussian or non-Gaussian entanglement and
implemented with Gaussian or non-Gaussian resources, we
proceed as follows. We study the performance of the output
states produced by the swapping protocol (two-mode swapped
states), as they are used as entangled resources in the tele-
portation of single-mode coherent input states. Given the in-
put two-mode entangled stateχ12(x1, p1;x2, p2) and the two-
mode entangled resourceχ34(x3, p3;x4, p4), we compute the
two-mode entangled output (swapped) state’s characteristic
functionχ(swapp)

out (x1, p1;x4, p4), given by Eq. (3) for the re-
alistic protocol (or by Eq. (4) for the ideal protocol). Such
a two-mode entangled state is then used as a resource for
the ideal teleportation protocol of single-mode coherent input
states. In summary:

- We first compute the output state of the swapping protocol
χ
(swapp)
out (x1, p1;x4, p4) associated with the entangled input

stateX swapped with the entangled resourceY .
- Second, we compute the single-mode (teleported) state of

the teleportation protocolχ(telep)
out (x4, p4):

χ
(telep)
out (x4, p4) = χ

(coh)
in (x4, p4)χ

(swapp)
out (x4,−p4;x4, p4),

(5)

whereχ(coh)
in (x4, p4) is the characteristic function of the co-

herent input state with displacement amplitudeβ.
- Third, we compute the fidelity of teleportation:

FXswY =
1

2π

∫

dx4dp4 χ
(coh)
in (x4, p4)χ

(telep)
out (−x4,−p4) ,

(6)

where the subscriptXswY specifies the entangled states used
as inputX and as resourceY of the swapping protocol.

- Finally, we optimize the fidelity with respect to the avail-
able free parameters, and we use the optimized fidelity to
quantify the efficiency of the swapping protocol.

In Eq. (6) the input stateX and the resourceY can be any
among theTB, PS, or SB states. With currently available
technology, we have a more or less on-demand availability of
GaussianTB states with finite squeezing, while efficient pro-
duction of non-Gaussian states with sizeable entanglementis
more demanding. Therefore, we may assume to have many
copies ofTB states and few copies ofSB states. With such a
constraint, the most convenient approach would be to swap the
non-Gaussian entanglement, and thus to useSB states as in-
put states andTB Gaussian states as resources. For instance,
in a long-distance communication scheme the entanglement
swapping and entanglement purification protocols can be per-
formed to transfer non-Gaussian entanglement along a quan-
tum channel divided into several segments. If the above con-
straint could be removed in the next future, one would have
on-demand availability also ofSB states. In this desirable in-
stance one could useSB states both as input and as resources
of the swapping protocol. Therefore, for the sake of complete-
ness, we compute the general form of the fidelityFSBswSB.
In this way, sinceSB states include alsoTB andPS states
for specific choices of the parameters, we obtain as particular
cases all the fidelities of interest, i.e.FSBswTB , FPSswTB,
andFTBswTB.

It is to verify that the optimal values for the phasesφhk
and θhk areφhk = π and θhk = 0. With such a choice,
the dependence of the fidelityFSBswSB on the two gainsg1
andg4 reduces the dependence on the unique parameterg̃ =
g1+ g4, that can be exploited as the only gain parameter to be
optimized.

The optimized fidelities are defined as:

F (opt)
XswY = max

P
FXswY , (7)

whereP denotes the set of free parameters available for opti-
mization. In the most general case in which genericSB states
are swapped with genericSB resources, the available free pa-
rameters for optimization areP = {δ12, δ34, g̃}.

III. RESULTS

In order to assess the teleportation performance when using
non-GaussianSB resources, it is convenient to introduce the
relative fidelity, defined as [12]:

∆F (X)
SB =

F (opt)
SB −F (ref)

X

F (ref)
X

, (8)

whereF (opt)
SB is the optimized fidelity of teleportation asso-

ciated with a non-GaussianSB resource andF (ref)
X is the

(optimized) fidelity associated to a reference resourceX .
Analogously, in order to quantify the teleportation perfor-

mance when using swapped non-GaussianSB resources with
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FIG. 2: (Color online) Relative teleportation fidelities∆F(Y swTB)
SBswTB ,

as functions of the input squeezing parameterr12 of the entangled
input state. The squeezing parameterr34 of the swapping Gaussian
TB resource is fixed at three different valuesr34 = 1.5, 1.0, 0.5.
The corresponding three curves are ordered from top to bottom at
r12 = 0. Full red curves: caseY = TB. Dashed black curves:
caseY = PS. For comparison, we plot also the relative fidelities
∆F(X)

SB associated with the corresponding non-swapped resources
(r34 → ∞), drawn in the same plot style, but with tinier line and
lighter color. Inset: optimized absolute fidelities of teleportation
F(opt)

XswTB , withX = SB (full blue line),X = PS (dashed red line),
andX = TB (dotted black line), as functions ofr12. For each re-
source, the curves corresponding, respectively, tor34 = 1.5, 1, 0.5
are ordered from top to bottom. For comparison, we include the
optimized fidelitiesF(opt)

X associated with the corresponding non-
swapped resources:r34 → ∞. The corresponding curves are drawn
in the same plot style, but with tinier line and lighter color. Fidelities
associated with non-swapped resources saturate to unity. Fidelities
associated with swapped resources saturate to a lower level, depend-
ing on the values ofr34.

respect to reference swapped resources, we generalize Eq. (8):

∆F (Y swZ)
SBswX =

F (opt)
SBswX −F (ref)

Y swZ

F (ref)
Y swZ

, (9)

whereF (opt)
SBswX is the optimized fidelity of teleportation asso-

ciated with aSB resource swapped with a resourceX , and
F (ref)

Y swZ is the reference (optimized) fidelity of teleportation
associated with a resourceY swapped with a resourceZ.

A. Ideal swapping protocol

For the ideal swapping protocol one hasR2 = R3 = 0,
τ1 = τ4 = 0. First, we study the behavior of the teleportation
fidelity associated with different entangled resources (X =
SB, PS, TB) swapped with GaussianTB resources (Y =
TB). In particular, we analyze the behavior of the relative
fidelities ∆F (TBswTB)

SBswTB and∆F (PSswTB)
SBswTB . We report them

in Fig. 2 as functions of the squeezing parameterr12 of the
swapped resource, for different fixed values of the swapping
squeezing parameterr34.

The relative improvement in the fidelity of teleportation that
is obtained using swappedSB resources increases for grow-

ing r34 and equals that of non-swapped resources at suffi-
ciently large values ofr34. A particularly significant improve-
ment is obtained over the GaussianTB instance. Further-
more, the use of swappedSB resources improves the telepor-
tation fidelity also when compared to the use of swappedPS
resources, especially for values of the two-mode squeezing
r12 ∈ [0, 1].
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F
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r12

DF

FIG. 3: (Color online) Relative teleportation fidelities∆F(XswX)
SBswSB

as functions of the input squeezing parameterr12 of the entangled
input state. The squeezing parameterr34 of the swapping resource
is fixed at four different valuesr34 = 1.5, 1.0, 0.7, 0.5. The corre-
sponding four curves are ordered from top to bottom atr12 = 0. Full
red curves: caseX = TB. Dashed black curves: caseX = PS. For
X = TB, the use of non-GaussianSB swapping resources guaran-
tees a finite non-vanishing improvement in the teleportation fidelity
for any value of the input squeezingr12. Inset: optimized absolute
fidelities of teleportationF(opt)

XswTB , with X = SB (full blue line),
X = PS (dashed red line), andX = TB (dotted black line), as
functions ofr12. For each resource, the curves corresponding, re-
spectively, tor34 = 1.5, 1, 0.7, 0.5 are ordered from top to bottom.

In the inset of Fig. 2, we report the optimized fidelities
F (opt)

SBswTB , F (opt)
PSswTB andF (opt)

TBswTB as functions ofr12, at
the same different fixed values ofr34. For comparison, in the
same inset we report also the corresponding optimized fideli-
tiesF (opt)

SB , F (opt)
PS , andF (opt)

TB associated with the same non-
swapped resources (equivalentlyr34 → ∞). For a fixed finite
value ofr34 the fidelitiesF (opt)

XswTB are always lower than the

ideal onesF (opt)
X ; as expected, for large values of the swap-

ping squeezing strengthr34, the fidelitiesF (opt)
XswTB tend to the

ideal fidelities. The saturation level that is featured at large
values of the squeezing of the swapped resourcer12, is higher
and tends to the ideal value one for larger fixed values ofr34.

We now consider the case in which both the input state and
the swapping resource are non-Gaussian, and we thus study
the optimized fidelitiesF (opt)

XswX with X = SB, PS, TB. In
this instance, although it is possible to obtain the exact analyt-
ical expressions for eachFXswX , their optimization over the
set of free parameters must be carried out numerically.

In Fig. 3 we report the relative teleportation fidelities
∆F (TBswTB)

SBswSB and∆F (PSswPS)
SBswSB as functions of the squeezing

parameterr12 of the input entangled state, for different values
of the squeezing parameterr34 of the swapping resource. For
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the relative fidelity∆F (TBswTB)
SBswSB , the curves corresponding

to different values ofr34 intersect atr12 ≃ 0.4.
The relative fidelities feature maximal enhancement when

using swapped non-GaussianSB resources, especially with
respect to the use of swapped GaussianTB resources. Re-
markably, the use of non-GaussianSB swapping resources
guarantees a constant, finite and non-vanishing improvement
in the teleportation fidelity for sufficiently large values of the
input squeezingr12. Indeed, in the complete non-Gaussian in-
stance the optimized (swapped)SB resources never collapse
onto the optimized (swapped)PS resources. Correspond-
ingly, the relative fidelitynever vanishes.

Finally, we consider a situation in which a certain number
of identical copies of entangled resource states is available.
Such case allows for a minimization of the experimental costs
required for the generation of the same resources and for the
optimization of the experimentally tunable free parameters. In
this instance, the swapping resources are identical to the input
states of the swapping protocol, so thatr34 = r12, δ34 = δ12
for the most general case ofSB resources. In Fig. 4, we report
the relative teleportation fidelities∆F (XswX)

SBswSB as functions of
the squeezing parameterr12 = r34, optimized over the free
parametersδ12 = δ34.
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FIG. 4: (Color online) Relative teleportation fidelities∆F(XswX)
SBswSB

as functions of the input squeezing parameterr12, in the fully sym-
metric instancer34 = r12, δ34 = δ12. Full red curve: caseX = TB.
Dashed black curve: caseX = PS. For comparison, we also report
the relative fidelities∆F(X)

SB associated with the corresponding non-
swapped resources(r34 → ∞), drawn in the same plot style, but
with tinier line and lighter color. Inset: optimized absolute fidelities
of teleportationF(opt)

XswTB as functions ofr12, with X = SB (full
blue line),X = PS (dashed red line), andX = TB (dotted black
line). For comparison, we also report the ideal fidelitiesF(opt)

X as-
sociated with the corresponding non-swapped resources (r34 → ∞),
drawn with the same plot style, but with tinier line and lighter color.

Summing up, the ideal case non-GaussianSB resources al-
ways outperform both GaussianTB and non-GaussianPS
resources at small values of the input two-mode squeezing
r12. The relative teleportation fidelities decrease and vanish
asymptotically with arbitrarily increasing values of the two-
mode squeezingr12, when using GaussianTB swapping re-
sources (see Fig. 2). Indeed, in the infinite squeezing limit,
both GaussianTB and non-GaussianSB resources approach

the idealEPR state, yielding unit teleportation fidelity. The
same asymptotic behavior occurs in the symmetric case, for
which the swapping resources coincide with the input entan-
gled states (see Fig. 4).

In the case of non-Gaussian resources on demand, the ad-
vantage in usingSB states persists for any value of the input
two-mode squeezingr12, asymptotically yielding a constant,
finite and non-vanishing improvement in the performance of
the entanglement swapping protocol (see Fig. 3).

B. Realistic swapping protocol

Here we investigate the relative performance of Gaussian
and non-Gaussian swapped resources in a realistic swapping
protocol. We consider the situation of complete prior knowl-
edge of the experimental parameters describing losses, im-
perfections, and decoherence effects. From an operational
point of view this corresponds to the complete characteriza-
tion of the experimental apparatus, including the inefficiencies
of the photo-detectors, the lengths, and the damping rates of
the noisy channels.

FIG. 5: (Color online) Relative teleportation fidelities∆F(Y swTB)
SBswTB

with Y = TB (full line) andY = PS (dashed line), as functions of
the squeezing parameterr12 of the swapped input state. The squeez-
ing parameter of the swappingTB resource is fixed at the values
r34 = 0.5, 0.7, 1, 1.5, corresponding to the curves ordered at
r12 = 0 from bottom to top. The parameters of the experimental
apparatus are fixed as:τ1 = 0.1, nth,1 = 0, τ4 = 0.2, nth,4 = 0,
R2 =

√
0.05, R3 =

√
0.05. In the inset are plotted optimized fideli-

ties of teleportationF(opt)
XswTB , with X = SB (full line), X = PS

(dashed line), andX = TB (dotted line), as functions ofr12. The
curves corresponding to a given resource (same plot style) are or-
dered from both to top for growingr34 = 0.5, 0.7, 1, 1.5.

In the following, we proceed as in the previous subsection.
In particular, we carry out the optimization of the fidelities
once the values of the parameters associated with the experi-
mental apparatus have been fixed.

In Fig. 5 we report the relative teleportation fidelities
∆F (Y swTB)

SBswTB for Y = TB , PS, as functions of the input
two-mode squeezingr12. In the inset we also report the opti-
mized absolute fidelities of teleportation.

For sufficiently small values of the two-mode squeezingr12
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the behavior of the relative teleportation fidelities is analogous
to that of the same quantities in the ideal instance (see Fig.2).

The behavior changes dramatically at intermediate and
large values ofr12. For growing input squeezingr12, de-
coherence affects more and more severely the quality of the
swapping resources, as an initially larger number of squeezed
photons feeding the lossy channel is rapidly converted intoa
larger number of incoherent, thermal photons.

FIG. 6: (Color online) Relative teleportation fidelities∆F(XswX)
SBswSB

with X = TB (full line) and X = PS (dashed line), as func-
tions of the squeezing parameterr12 of the swapped input state. The
squeezing parameter of the swapping resource is fixed at the values
r34 = 0.5, 0.7, 1, 1.5, corresponding to the curves ordered at
r12 = 0 from bottom to top. The parameters of the experimental
apparatus are fixed as in Fig. 5. In the instanceX = TB, the curves
associated with differentr34 show an intersection at a certainr12.
In the inset are plotted optimized fidelity of teleportationF(opt)

XswTB ,
with X = SB (full line), X = PS (dashed line), andX = TB

(dotted line), as functions ofr12. The curves corresponding to a
given resource (same plot style) are ordered from bottom to top for
growingr34 = 0.5, 0.7, 1, 1.5.

However, decoherence affects differently the different re-
sources. The strongest deterioration is felt by the Gaussian
TB resource and by the non-GaussianPS resource, while
the non-GaussianSB resource turns out to be more resilient.
Indeed, as shown in Fig. 5, the use ofSB entangled states al-
lows for a relative teleportation fidelity that is monotonically
improving with increasing two-mode squeezingr12.

Resilience against decoherence effects with the use ofSB
resources is even more striking under the assumption of non-
Gaussian entangled states available on demand, as shown in
Fig. 6. A similar behavior is observed when one considers also
the symmetric case, when the swapping resources are equal to
the input ones, as reported in Fig. 7.

The highest achievable values of two-mode squeezing in
the optical regime are currently limited tor12 ≃ 2 [72]. In
the near future, foreseeable advance towards the experimen-
tal accessibility of higher squeezing values and capability of
routinely generating non-Gaussian resources by linear optics
and precise conditional measurements [65], will make the use
non-GaussianSB entangled resources quite compelling in or-
der to control and reduce the disruptive effects of environmen-
tal decoherence.

FIG. 7: (Color online) Relative teleportation fidelities∆F(XswX)
SBswSB

with X = TB (full line) andX = PS (dashed line), as functions
of the squeezing parameterr12, in the fully symmetric instance, i.e.
r34 = r12, δ34 = δ12. In the inset are plotted optimized fidelities of
teleportationF(opt)

XswTB , with X = SB (full line), X = PS (dashed
line), andX = TB (dotted line), as functions ofr12. The parameters
of the experimental apparatus are fixed as in Fig. 5.

IV. CONCLUSIONS

The present paper is part of a wide investigation on the
effectiveness of non-Gaussian resources for the implemen-
tation of Quantum Information and Communication proto-
cols. This investigation has included till now the introduc-
tion of a general class of non-Gaussian entangled resources
(the Squeezed Bell states) which encompasses many Gaussian
and non-Gaussian entangled states [12], the study of their ef-
ficiency in implementing Quantum Teleportation protocols in
ideal and in realistic conditions [12, 13, 15], and the proposal
of a generating scheme for this class of states [65].

By using the Squeezed Bell states as non-Gaussian entan-
gled resources, we investigated the efficiency of the vLB CV
quantum swapping protocol for the transmission of quantum
states and entanglement. In order to evaluate the performance
of the swapping protocol we have exploited a criterion based
on the ideal teleportation of input coherent states using asen-
tangled resources the swapped states. In particular, the tele-
portation fidelity has been assumed as a convenient indicator
to quantify the performance levels.

Non-Gaussian Squeezed Bell resources allow for optimiza-
tion procedures, providing high values of the fidelities both
in the ideal and in the realistic instances. In realistic condi-
tions, the tunable parameters measuring the degree of non-
Gaussianity of the squeezed Bell resources allow for an effec-
tive control of the decoherence effects caused by losses and
inefficiencies.

In all cases, we carried out a detailed comparison of the per-
formance of optimized squeezed Bell resources with respect
to the most significant currently available reference classes of
entangled resources: Gaussian twin beams and non-Gaussian
photon-subtracted squeezed states. The bottom line of our
study is that the use of Squeezed Bell entangled resources be-
comes compelling in realistic conditions when going beyond
the low-squeezing regime.
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In future work, we will investigate the possibility of obtain-
ing further improvements in the efficiency of teleportationand
swapping protocols using non-Gaussian resources, by consid-
ering schemes that involve communication channels with di-
versified characteristics and varying sets of tunable parame-
ters [73].
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Appendix A: CV entanglement swapping protocol in the
characteristic function representation

The characteristic function representation provides a most
elegant and compact description of the CV teleportation pro-
tocol [68]. Such description proves to be particularly conve-
nient in the instance of non-Gaussian resources [12–15], and
has been generalized to include the non-ideal case [13]. In
this appendix, we apply this formalism to the description of
the realistic CV entanglement swapping protocol, schemati-
cally illustrated in Fig. 1.

Let ρA12 andρB34 denote the density matrices associated with
the two-mode entangled input pure state of modes1 and2,
and the two-mode entangled pure resource of modes3 and4,
respectively. The global four-mode initial state is the bisepa-
rable stateρ0 = ρA12⊗ρB34 and the corresponding initial global
characteristic functionχ0 associated withρ0 reads:

χ0(α1;α2;α3;α4) = Tr[

4
∏

j=1

Dj(αj)ρ0]

= χ12(α1;α2) χ34(α3;α4) , (A1)

whereTr denotes the trace operation,Dj(αj) denotes the
displacement operator of modej (j = 1, . . . , 4), χ12 is the
characteristic function of the two-mode input state, andχ34

is the characteristic function of the two-mode resource. By
introducing the quadrature operatorsXj = 1√

2
(aj + a

†
j)

andPj = i√
2
(a†j − aj), and the corresponding phase space

variablesxj = 1√
2
(αj + α∗

j ) andpj = i√
2
(α∗

j − αj), the
characteristic function can be written in terms ofxj , pj, i.e.
χ0(α1;α2;α3;α4) ≡ χ0(x1, p1;x2, p2;x3, p3;x4, p4).

The first step of the protocol consists of a Bell measure-
ment at the first user’s location. The modes2 and3 are mixed
at a balanced beam splitter; the effects of photon losses and
the inefficiencies of the photodetectors are simulated by two
additional fictitious beam splitters placed in front of the de-
tectors, characterized by the transmissivitiesT 2

j (reflectivity
R2

j = 1 − T 2
j ), j = 2, 3. Let us denote bỹx and p̃ the

homodyne measurements of the first quadrature of the mode

3 and of the second quadrature of the mode2, respectively.
The description of realistic Bell measurements using the for-
malism of the characteristic function is discussed in full de-
tail in Ref. [13]. Here we just provide the final expression
of the characteristic functionχBm(x1, p1;x4, p4) associated
with the entire measurement process:

χBm(x1, p1;x4, p4) =
P−1(p̃, x̃)

(2π)2

∫

dξdυ eiξp̃−ix̃υ

×χ12

(

x1, p1;
T2ξ√
2
,
T3υ√
2

)

χ34

(

T2ξ√
2
,−T3υ√

2
;x4, p4

)

× exp

[

−R
2
2

4
ξ2 − R2

3

4
υ2

]

, (A2)

where the functionP(p̃, x̃) is the distribution of the measure-
ment outcomes̃p andx̃, that is:

P(p̃, x̃) =
1

(2π)2

∫

dξdυ eiξp̃−ix̃υe−
R2

2

4
ξ2−R2

3

4
υ2

×χ12

(

0, 0;
T2ξ√
2
,
T3υ√
2

)

χ34

(

T2ξ√
2
,−T3υ√

2
; 0, 0

)

.(A3)

After measurement, modes1 and4 propagate in noisy chan-
nels (e.g. optical fibers) towards Alice’s and Bob’s locations,
respectively. The dynamics of a multimode system subject
to decoherence is described, in the interaction picture, bythe
following master equation for the density operatorρ [70, 71]:

∂tρ =
∑

i=1,4

Υi

2

{

nth,iL[a
†
i ]ρ+ (nth,i + 1)L[ai]ρ

}

, (A4)

where the Lindblad superoperators are defined asL[O]ρ ≡
2OρO† −O†Oρ− ρO†O, Υi is the mode damping rate, and
nth,i is the number of thermal photons in modei. Because
of decoherence due to propagation in the noisy channels, the
characteristic function (A2) can be rewritten in the following
form:

χt(x1, p1;x4, p4) =

χBm(e−
1

2
Υ1tx1, e

− 1

2
Υ1tp1; e

− 1

2
Υ4tx4, e

− 1

2
Υ4tp4)

× e−
1

2

∑
i=1,4

(1−e−Υit)( 1

2
+nth,i)(x2

i+p2

i ). (A5)

The description of the technical features of the experimen-
tal apparatus, e.g. the efficiency of the photodetectors, and
characteristics as the length of the channels (fibers), and the
temperature of the environment, is complete once the quanti-
tiesTj (equivalentlyRj , j = 2, 3), Υi, andnth,i (i = 1, 4)
are specified and fixed at certain given values.

In the last step of the protocol, two local unitary displace-
mentsλ1 andλ4 are performed at Alice’s and Bob’s locations;
a local unitary displacementλ1 = −g1(x̃ − ip̃) is performed
on mode1, and a local unitary displacementλ4 = g4(x̃+ ip̃)
is performed on mode4. The real parametersg1 andg4 de-
note the gain factors of the displacement transformations [67].
After such local unitary operations, the characteristic function
reads:

χD(x1, p1;x4, p4) = e−i
√
2x̃(g1p1−g4p4)−i

√
2p̃(g1x1+g4x4)

×χt(x1, p1;x4, p4) . (A6)
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Finally, in order to obtain the output characteristic function
χout(x1, p1;x4, p4), describing the output two-mode entan-
gled state of the entanglement swapping protocol, one must
take the average over all the possible outcomesp̃ andx̃ of the
Bell measurements:

χ
(swapp)
out (x1, p1;x4, p4) =

∫

dx̃dp̃P(p̃, x̃)χD(x1, p1;x4, p4),

(A7)
whereτi = Υit. The above integral yields the final expression
(3) for the characteristic function associated with the swapped
resource.

The core mathematical task is thus the explicit evaluation
of the characteristic functionχ(swapp)

out (x1, p1;x4, p4) associ-
ated with the output of the realistic swapping protocol, as
expressed by Eq. (3). We have determined its analytical ex-
pression for the most general non-Gaussian setting, that isthe
entanglement swapping ofSB input states usingSB states
as resources. As the class ofSB states contains as special
cases both the GaussianTB states and the non-GaussianPS
states, the general expression of the output characteristic func-
tion reduces to the explicit expression for these special Gaus-
sian and non-Gaussian cases as well. We do not report here

the explicit analytical expression ofχ(swapp)
out (x1, p1;x4, p4),

as it is exceedingly long and cumbersome and does not yield
any particularly useful physical insight. On the other hand,
having obtained the explicit expression of the output charac-
teristic function of the swapping protocol, it is straightforward
to compute the output characteristic functionχ(telep)

out (x4, p4)
of the subsequent ideal teleportation protocol, Eq. (5).

Finally, we have derived the analytical expression for the
teleportation fidelityFXswY , Eq. (6), which in the most gen-
eral instance isFSBswSB. Such a fidelity depends on the fol-
lowing parameters: the squeezing amplitudes and phasesr12,
φ12, r34, φ34 and the angles and phasesδ12, θ12, δ34, θ34 of
the input states and of the resources; the parameters associated
with the experimental apparatus are listed in Tab. II. Without
loss of generality, as already verified in Refs.[12, 13], onecan
obtain some significant simplifications by fixing the phases of
theSB states. Specifically, we set the non-Gaussian phases
θ12 = θ34 = 0 and the squeezing phasesφ12 = φ34 = π in
Eq. (1). With such choice, the teleportation fidelity depends
on the two gainsgi (i = 1, 4) through the total gain parameter
g̃ = g1 + g4, both in the ideal and in the realistic protocols.
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