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Polygamy relation for the Rényi-α entanglement of assistance in multi-qubit systems
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We prove a new polygamy relation of multi-party quantum entanglement in terms of Rényi-α entanglement of

assistance for
(√

7− 1
)

/2 ≤ α ≤
(√

13− 1
)

/2. This class of polygamy inequality reduces to the polygamy

inequality based on entanglement of assistance since Rényi-α entanglement is a generalization of entanglement

of formation. We further show that the polygamy inequality also holds for the µth power of Rényi-α entangle-

ment of assistance.

PACS numbers: 03.67.Mn, 03.65.Ud, 03.65.Yz

One fundamental property of quantum entanglement is in

its limited shareability in multi-party quantum systems[1].

For example, if the two subsystems are more entangled with

each other, then they will share a less amount of entangle-

ment with the other subsystems with specific entanglement

measures. This restricted shareability of entanglement is

named as the monogamy of entanglement (MoE). The con-

cept of monogamy is an essential feature allowing for se-

curity in quantum key distribution[3]. It also plays an im-

portant role in many field of physics such as foundations

of quantum mechanics[4–6], condensed matter physics[7, 8],

statistical mechanics[4], and even black-hole physics[9, 10].

Monogamy inequality was first built for three-qubit systems

using tangle as the bipartite entanglement measure[2], and

generalized into multi-qubit systems in terms of various en-

tanglement measures[11–42].

On the other hand, the assisted entanglement, which is a

dual concept to bipartite entanglement measures, is known to

have a dually monogamous or polygamous property in multi-

party quantum systems. The polygamous property can be re-

garded as another kind of entanglement constraints in multi-

qubit systems, and Gour et al[43] established the first dual

monogamy inequality or polygamy inequality for multi-qubit

systems using concurrence of assistance (CoA). For a three-

qubit pure state |ψ〉A1A2A3
, a polygamy inequality was intro-

duced as:

C2

(

|ψ〉A1|A2A3

)

≤ [Ca (ρA1A2
)]2 + [Ca (ρA1A3

)]2 , (1)

where CoA for a bipartite state ρAB is defined as:

Ca (ρAB) = max
∑

i piC (|ψi〉AB), with the maximum

is taken over all possible pure state decompositions of

∗Electronic address: jianzhou8627@163.com(Corresponding˜author)

ρAB =
∑

i pi |ψi〉AB 〈ψi| and C (|ψi〉AB) denotes the

concurrence[44] of |ψi〉AB . Furthermore, it is shown that for

any pure state |ψ〉A1A2···An
in a n-qubit system[45], we have

C2

(

|ψ〉A1|A2···An

)

≤ [Ca (ρA1A2
)]
2
+ · · ·+ [Ca (ρA1An

)]
2
.

(2)

Later, polygamy inequalities was generalized in terms of

Tsallis entanglement of assistance(TEoA)[46] or unified en-

tanglement of assistance[47], and polygamy inequalities in

higher-dimensional systems were also shown using the entan-

glement of assistance(EoA)[48] or TEoA[49]. In this paper,

we establish a new polygamy relation of multi-party quantum

entanglement in terms of Rényi-α entropy (ERαE)[31]. As an

important generalization of entanglement of formation(EoF),

ERαE is a well-defined entanglement measure which has a

continuous spectrum parametrized by the non-negative real

parameterα. It reduces to the standard EoF when α tends to 1.

Thus our polygamy inequalities including previous polygamy

relation of EoF as a special case[48]. Furthermore, we gener-

alize the polygamy inequalities in terms of the µth power of

Rényi-α entanglement of assistance.

For a bipartite pure state |ψ〉AB , the ERαE is defined as

Eα(|ψ〉AB) := Sα(ρA) :=
1

1− α
log(trραA), (3)

where Sα(ρA) is the Rényi-α entropy. The Rényi-α entropy

has found important applications in characterizing quantum

phases with differing computational power [50], ground state

properties in many-body systems [51], and topologically or-

dered states [52, 53]. The ERαE of a bipartite mixed state

ρAB can be defined using the convex roof technique

Eα(ρAB) = min
∑

i

piEα(|ψi〉AB). (4)
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It is known that Rényi-α entropy converges to the von Neu-

mann entropy when α tends to 1. So the entanglement Rényi-

α entropy reduces to the EoF when α tends to 1. For any

two-qubit state ρAB with α ≥
(√

7− 1
)

/2, there exist an

analytic formula of ERαE[31, 54]

Eα (ρAB) = fα (C (ρAB)) , (5)

where

fα (x) =
1

1− α
log

[(

Θ(x)

2

)α

+

(

Ξ (x)

2

)α]

, (6)

with Θ(x) = 1 +
√
1− x2,Ξ (x) = 1−

√
1− x2.

As a dual concept to ERαE, we define the Rényi-α entan-

glement of assistance(REoA) as

Ea
α (ρAB) := max

∑

i
piEα (|ψi〉AB) , (7)

where the maximum is taken over all possible pure state de-

compositions of ρAB =
∑

i pi |ψi〉AB 〈ψi|.
For 0 < α < 1, we can derive a upper bound of REoA.

From the definition of entanglement of REoA, we have

Ea
α (ρAB) = max

∑

i
piEα (|ψi〉AB)

= max
∑

i
piSα (ρiA)

≤ Sα

(

∑

i
piρiA

)

= Sα (ρA) , (8)

where ρiA is the reduced density matrix of |ψi〉AB , and

the inequality holds due to the concave property of Sα (ρ)
for 0 < α < 1[55–57]. Similarly, we can derive

Ea
α (ρAB) ≤ Sα (ρB). Thus we have Ea

α (ρAB) ≤
min{Sα (ρA) , Sα (ρB)}

Before showing the main result of this paper, we first give

two lemmas as follows.

Lemma 1. For any two-qubit state ρAB and α ≥
(√

7− 1
)

/2, we have

Ea
α (ρAB) ≥ fα (Ca (ρAB)) , (9)

where Ea
α (ρAB) and Ca (ρAB) are the REoA and CoA of

ρAB , respectively.

Proof. Suppose that the optimal decomposition for

Ca (ρAB) is {pi, |ψi〉AB}, we have

fα (Ca (ρAB)) = fα

(

∑

i
piC (|ψi〉AB)

)

≤
∑

i
pifα (C (|ψi〉AB))

=
∑

i
piEα (|ψi〉AB) ≤ Ea

α (ρAB) ,(10)

where in the first inequality we have used the convex property

of fα(x) as a function of x for α ≥
(√

7− 1
)

/2, and the

second inequality is due to the definition of EoA. �
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FIG. 1: (color online) The plots of the equations(a)∂hα/∂x = 0;

(b)∂hα/∂α = 0 for 0 ≤ x ≤ 1, 0 ≤ α ≤ 2.

Lemma 2. For any
(√

7− 1
)

/2 ≤ α ≤
(√

13− 1
)

/2
and the function fα (x) defined on the domain D =
{

(x, y) |0 ≤ x, y ≤ 1, 0 ≤ x2 + y2 ≤ 1
}

, we have

fα(
√

x2 + y2) ≤ fα(x) + fα(y). (11)

Proof. We define a two-vairable function

gα (x, y) = fα(
√

x2 + y2)− fα(x)− fα(y), (12)

on the domain D. Then it is sufficient to show that gα (x, y) is

a non-negative function onD. Since gα (x, y) is analytic in the

interior of D, and continuous on D, its maximum or minimum

value arises only on the critical points or on the boundary of

D. The critical points of gα (x, y) satisfy the condition

∇gα (x, y) = (
∂gα (x, y)

∂x
,
∂gα (x, y)

∂y
) = (0, 0), (13)

where

∂gα (x, y)

∂x

=

Cx

[

(

Θ
(

√

x2 + y2
))α−1

−
(

Ξ
(

√

x2 + y2
))α−1

]

√

1− x2 − y2
[(

Ξ
(

√

x2 + y2
))α

+
(

Θ
(

√

x2 + y2
))α]

−
Cx
[

(Θ (x))α−1 − (Ξ (x))α−1

]

√
1− x2 [(Ξ (x))α + (Θ (x))α]

, (14)
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FIG. 2: (color online). The plot of hα (x) |
α=(

√
13−1)/2 as a function

of x for 0 ≤ x ≤ 1.

and

∂gα (x, y)

∂y

=

Cy

[

(

Θ
(

√

x2 + y2
))α−1

−
(

Ξ
(

√

x2 + y2
))α−1

]

√

1− x2 − y2
[(

Ξ
(

√

x2 + y2
))α

+
(

Θ
(

√

x2 + y2
))α]

−
Cy
[

(Θ (y))
α−1 − (Ξ (y))

α−1
]

√

1− y2 [(Ξ (y))
α
+ (Θ (y))

α
]
. (15)

Suppose that there exists (x0, y0) in the interior of D such

that ∇gα (x0, y0) = (0, 0). From Eq.(14) and Eq.(15), we

have

lα (x0) = lα (y0) , (16)

where lα (x) is defined as

lα (x) :=

[

(Θ (x))
α−1 − (Ξ (x))

α−1
]

√
1− x2 [(Ξ (x))

α
+ (Θ (x))

α
]
, (17)

for 0 < x < 1. We divide the proof into two cases. We first

show that lα (x) is a strictly monotone-decreasing function

for 0 < x < 1, 1 < α <
(√

13− 1
)

/2, then it is sufficient

to consider the first-order derivative of lα (x). After a direct

calculation, we have

dlα (x)

dx
=

αx
[

(Θ (x))
α−1 − (Ξ (x))

α−1
]2

(1− x2) [(Ξ (x))
α
+ (Θ (x))

α
]

−
(α− 1)x

[

(Θ (x))α−2 + (Ξ (x))α−2

]

(1 − x2) [(Ξ (x))α + (Θ (x))α]

+
x
[

(Θ (x))
α−1 − (Ξ (x))

α−1
]

√

(1− x2)3 [(Ξ (x))
α
+ (Θ (x))

α
]
. (18)

In order to show the negativity of the first-order deriva-

tive of lα (x), let us consider the value of the two-

variable function hα (x) := dlα (x) /dx on the domain
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FIG. 3: (color online). The plot of hα (x) |x→1 as a function of α for

1 ≤ α ≤
(√

13− 1
)

/2.
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FIG. 4: (color online). The plot of hα (x) |α=(
√
7−1)/2 as a function

of x for 0 ≤ x ≤ 1.

D1 =
{

(α, x) |1 ≤ α ≤
(√

13− 1
)

/2, 0 ≤ x ≤ 1
}

. The

maximum or minimum values of hα (x) can arise only at

the critical points or on the boundary of D1. The crit-

ical points of hα (x) satisfy the condition ∇hα (x) =
(∂hα (x) /∂α, ∂hα (x) /∂x) = (0, 0). It is shown in Fig.1(a)

and (b) that there are no common solutions on the inte-

rior of domain D1 which indicate that hα (x) has no critical

points on the interior of D1. Then we consider the func-

tion value of hα (x) on the boundary of D1. If α = 1,

we have hα (x) |α=1 = 0. If α =
(√

13− 1
)

/2, we plot

hα (x) |α=(√13−1)/2 as a function of x in Fig.2, which il-

lustrates that hα (x) |α=(√13−1)/2 is a monotone-increasing

function for 0 ≤ x ≤ 1 and obtain its maximum value

0 on x = 1. When x → 1, we have hα (x) |x→1 =
2
(

q3 − 4q + 3
)

/3 which is always negative for 1 < α <
(√

13− 1
)

/2 as shown in Fig.3. Thus we have shown that

hα (x) is always negative on the interior of domain D1 which

indicate that lα (x) is a strictly monotone-decreasing function

for 0 < x < 1, 1 < α <
(√

13− 1
)

/2. Similarly, we can

show that lα (x) is a strictly monotone-increasing function for
(√

7− 1
)

< α < 1. In this case, it is enough to prove the

non-negative of the function hα (x) := dlα (x) /dx on the

domain D2 =
{

(α, x) |
(√

7− 1
)

/2 ≤ α ≤ 1, 0 ≤ x ≤ 1
}

.

Because hα (x) has no critical points on the interior of D2

as shown in Fig.1, we consider the function value of hα (x)
on the boundary of D2. If x → 1, we can verify that the

function hα (x) |x→1 is always positive for
(√

7− 1
)

/2 <
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FIG. 5: (color online). The plot of ∂mα (x) /∂x = 0 for 0 ≤ x ≤
1,
(√

7− 1
)

/2 ≤ α ≤
(√

13− 1
)

/2.

α < 1. If α =
(√

7− 1
)

/2, it is shown in Fig.4 that

hα (x) |α=(√7−1)/2 is always positive for 0 < x < 1. There-

fore, hα (x) is always positive for
(√

7− 1
)

/2 < α < 1
which indicates that lα (x) is a strictly monotone-increasing

function in this case. Combining Eq.(16) we can derive x0 =
y0. However, from Eq.(13)-(15) and ∇gα (x0, x0) = (0, 0)

we have lα
(√

2x0
)

= lα (x0) which contradicts to the strict

monotonicity of lα (x) for 0 < x < 1. Therefore, we con-

clude that gα (x, y) has no critical points in the interior of D.

Next, we consider the function value of gα (x, y) on the

boundary of D. If x = 0 or y = 0, it is direct to check that

gα (x, y) = 0. When x2 + y2 = 1, gα (x, y) becomes a two-

variable function

mα (x) := 1− 1

1− a
log

[(

Θ(x)

2

)a

+

(

Ξ (x)

2

)a]

− 1

1− a
log

[(

Θ
(√

1− x2
)

2

)a

+

(

Ξ
(√

1− x2
)

2

)a]

.(19)

As shown in Fig.5, ∂mα (x) /∂x = 0 has only

one solution x = 1/
√
2 on the domain D3 =

{

(α, x) |
(√

7− 1
)

/2 ≤ α ≤
(√

13− 1
)

/2, 0 ≤ x ≤ 1
}

.

On the other hand, we plot ∂mα (x) /∂α|x=1/
√
2

in Fig.6

and we can see that the function is always positive for
(√

7− 1
)

/2 ≤ α ≤
(√

13− 1
)

/2, which shows that

mα (x) has no critical points on the interior of domain D3.

Then we consider the value of mα(x) on the boundary of D3.

If x = 0 or 1, we have mα(x) = 0. When α =
(√

7− 1
)

/2

or α =
(√

13− 1
)

/2, it is direct to check that mα (x) is

always a non-positive function. In Fig.7 we plot mα (x) as a

function of x and α, which illustrates our result.

Combining the case for α = 1 which has been proved in

Ref.[48], we have completed the proof of Lemma 2. �

Now we can prove the main result of this paper.

Theorem. For
(√

7− 1
)

/2 ≤ α ≤
(√

13− 1
)

/2, and any

n-qubit state ρA1A2···An
, we have
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Α
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0.40
0.42
0.44

FIG. 6: (color online). The plot of ∂mα (x) /∂α|x=1/
√

2
as a func-

tion of α for
(√

7− 1
)

/2 ≤ α ≤
(√

13− 1
)

/2.

FIG. 7: (color online). The plot of mα (x) as a function of x and α
for 0 ≤ x ≤ 1,

(√
7− 1

)

/2 ≤ α ≤
(√

13− 1
)

/2.

Ea
α

(

ρA1|A2···An

)

≤ Ea
α (ρA1A2

) + · · ·+ Ea
α (ρA1An

),

(20)

where Ea
α

(

ρA1|A2···An

)

denotes the REoA in the partition

A1|A2 · · ·An, and Ea
α (ρA1Ai

) is the REoA of the two-qubit

subsystem A1Ai for i = 2, . . . , n.

Proof. We first prove the polygamy relation for the pure

state |ψ〉A1|A2···An
. Assuming that C2

(

ρA1|A2···An

)

≤
[Ca (ρA1A2

)]
2
+ · · ·+ [Ca (ρA1An

)]
2 ≤ 1 in Eq.(2), then we

have

Eα

(

|ψ〉A1|A2···An

)

= fα
(

C
(

ρA1|A2···An

))

≤ fα

(
√

[Ca (ρA1A2
)]
2
+ · · ·+ [Ca (ρA1An

)]
2

)

≤ fα (Ca (ρA1A2
))

+ fα

(

√

[Ca (ρA1A3
)]2 + · · ·+ [Ca (ρA1An

)]2
)

≤ fα (Ca (ρA1A2
)) + · · ·+ fα (Ca (ρA1An

))

≤ Ea
α (ρA1A2

) + · · ·+ Ea
α (ρA1An

), (21)

where in the first inequality we have used the monotonically

increasing property of fα(x) for α ≥
(√

7− 1
)

/2, the sec-
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ond and third inequalities are obtained by the successive ap-

plication of Lemma 2, and the last inequality is due to Lemma

1.

Then we consider the case C2
(

ρA1|A2···An

)

≤
1 ≤ [Ca (ρA1A2

)]2 + · · · + [Ca (ρA1An
)]2.

There must exist k ∈ {2, . . . , n− 1} such that

[Ca (ρA1A2
)]
2
+ · · · + [Ca (ρA1Ak

)]
2 ≤ 1, [Ca (ρA1A2

)]
2
+

· · · +
[

Ca
(

ρA1Ak+1

)]2
> 1. By defining T :=

[Ca (ρA1A2
)]
2
+ · · · +

[

Ca
(

ρA1Ak+1

)]2 − 1 > 0, we

can derive

Eα

(

|ψ〉A1|A2···An

)

= fα
(

C
(

ρA1|A2···An

))

≤ fα (1)

= fα

(

√

[Ca (ρA1A2
)]2 + · · ·+

[

Ca
(

ρA1Ak+1

)]2 − T

)

≤ fα

(

√

[Ca (ρA1A2
)]
2
+ · · ·+ [Ca (ρA1Ak

)]
2

)

+ fα

(

√

[

Ca
(

ρA1Ak+1

)]2 − T

)

≤ fα (Ca (ρA1A2
)) + · · ·+ fα

(

Ca
(

ρA1Ak+1

))

≤ Ea
α (ρA1A2

) + · · ·+ Ea
α (ρA1An

), (22)

where we have used the monotonically increasing property of

fα(x) in the first equality, in the second inequality we have

used Lemma 2, the third inequality is obtained by the succes-

sive application of Lemma 2, and the last inequality is due to

Lemma 1.

Using the polygamy relation for the pure state we can prove

the Theorem in the mixed state. Suppose that the optimal

decomposition for Ea
α

(

ρA1|A2···An

)

is
{

pj , |ψj〉A1|A2···An

}

,

then we have

Ea
α

(

ρA1|A2···An

)

=
∑

i
pjEα

(

|ψj〉A1|A2···An

)

≤
∑

j
pj

(

Ea
α

(

ρjA1A2

)

+ · · ·+ Ea
α

(

ρjA1An

))

≤ Ea
α (ρA1A2

) + · · ·+ Ea
α (ρA1An

) , (23)

where ρjA1Aj
is the reduced density matrix of |ψj〉A1A2···An

onto the two-qubit subsystem A1Aj for each i = 2, . . . , n,

in the first inequality we have used the polygamy relation for

each pure state decomposition state |ψj〉A1|A2···An

Eα

(

|ψj〉A1|A2···An

)

≤ Ea
α

(

ρjA1A2

)

+ · · ·+ Ea
α

(

ρjA1An

)

,

(24)

and the last inequality is due to the definition of REoA for

each ρA1Ai
. Thus we have completed the proof of Theorem.

�

Furthermore, we can establish the following µth power

polygamy inequalities for the Rényi-α entanglement of assis-

tance.

Corollary. For
(√

7− 1
)

/2 ≤ α ≤
(√

13− 1
)

/2, 0 ≤
µ ≤ 1, and any n-qubit state ρA1A2···An

, we have

[

Ea
α

(

ρA1|A2···An

)]µ ≤ [Ea
α (ρA1A2

)]
µ
+ · · ·+ [Ea

α (ρA1An
)]
µ

.(25)

This inequality holds because
[

Ea
α

(

ρA1|A2···An

)]µ ≤
[Ea

α (ρA1A2
) + · · ·+ Ea

α (ρA1An
)]µ ≤ [Ea

α (ρA1A2
)]µ+ · · ·+

[Ea
α (ρA1An

)]
µ

, where the last inequality is due to the concave

property of xµ for 0 ≤ µ ≤ 1.

By introducing the dual concept of REoA, we have es-

tablished polygamy relations for the Rényi-α entanglement

of assistance in multi-qubit systems. We have also general-

ized the polygamy inequalities into the µth power of REoA.

These derived polygamy relations provide a lower bound for

distribution of bipartite REoA in a multi-party system. The

monogamy and polygamy relations are not only fundamental

property of entanglement in multi-party systems but also pro-

vide us an efficient way of characterizing multipartite entan-

glement. In Ref. [39], we have proved that squared Rényi-α
entanglement with the order α ≥ (

√
7− 1)/2 obeys a general

monogamy relation in an arbitrary n-qubit mixed state. It is

further shown that we can construct the multipartite entangle-

ment indicators in terms of ERαE which still work well even

when the indicators based on the concurrence and EoF lose

their efficacy. Thus our polygamy inequalities together with

previous monogamy inequalities in terms of ERαE might pro-

vide a useful tool to understand the property of multi-party

quantum entanglement.
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