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Abstract

We construct an extended quantum spin chain model by introducing new degrees of

freedom to the Fredkin spin chain. The new degrees of freedom called arrow indices

are partly associated to the symmetric inverse semigroup S3
1 . Ground states of the

model fall into three different phases, and quantum phase transition takes place at each

phase boundary. One of the phases exhibits logarithmic violation of the area law of

entanglement entropy and quantum criticality, whereas the other two obey the area

law. As an interesting feature arising by the extension, there are excited states due to

disconnections with respect to the arrow indices. We show that these states are localized

without disorder.

1 Introduction

Symmetry generated by a group acts as a guiding principle to construct models. As

an extension of this, we construct a model based on an action of a semigroup. Inverse

semigroups are discussed as symmetries of the tilings of Rn and aperiodic structures

like quasicrystals [1–3]. Symmetric inverse semigroups (SISs) that are analogous to

the permutation group Sn in the ordinary group is applied in constructing integrable

supersymmetric many-body systems [4].

In the previous paper [5], we have discussed extensions of the Motzkin spin chain [6,7]

based on the SISs S2
1 ,S3

1 ,S3
2 . In this paper, an analogous extension is made for the Fred-

kin spin chain [8, 9] based on the SIS S3
1 . The original Fredkin model has an unique

ground state, which corresponds to certain random paths on a 2D plane, called Dyck
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walks (DWs). The modification introduces arrow indices (partly associated to S3
1 ) to all

the steps of the DWs, which yields the ground state degeneracy (GSD). In addition, we

can introduce tunable parameters while maintaining the frustration-free nature of the

Hamiltonian. For ground states, we find three phases in the parameter space. One of the

phases exhibits a logarithmic violation of the area law of the entanglement entropy (EE),

which indicates quantum criticality. On the other hand, the remaining two phases pro-

vide area law behavior for the EE. As an interesting feature of this extension which has

no analog in the original model, there are excited states corresponding to disconnected

paths in DWs with arrow indices. For such states, any connected two-point correlation

function of local operators vanishes, when the two local operators act on states corre-

sponding to separate connected components of the paths. This implies that information

is confined to each of the connected components indicating localization. In contrast to

the ordinary case of localization [10–14], the localization in our system occurs without

introducing a random noise.

The paper is organized as follows. In the next section, we construct the extended

model of the Fredkin spin chain based on the SIS S3
1 . In section 3, we investigate the

structure of ground states and their degeneracies for the three phases. In section 4,

EEs of the ground states are computed, and quantum phase transitions are shown. In

section 5, we discuss excited states corresponding to disconnected paths in DWs with

arrow indices, and show that they are localized. Section 6 is devoted to summary of the

result, announcement of the forthcoming paper [15] and possible future directions.

2 The modified Fredkin chain

The local Hilbert space of the Fredkin spin chain consists of {|↑〉, |↓〉} states. These

states are mapped to “up” and “down” arrows in the 2D plane, pointing along (1, 1)

and (1,−1) respectively. With this interpretation, the states in the global Hilbert space,

constructed on a 1D chain of the tensor products of the local Hilbert spaces, can be

thought of as paths on the 2D plane. A particular set of such paths, called DWs, starts

at the origin and ends on the positive x-axis staying in the positive quadrant all along

the walk. The sum of such paths forms the ground state of the Fredkin spin chain.

The new Hilbert space - In the modified Fredkin chain, we replace the above local

Hilbert space with {|x1,2〉, |x1,3〉, |x2,3〉, |x2,1〉, |x3,1〉, |x3,2〉}. The states |xa,b〉 represent

up arrows when a < b and down arrows when a > b. Thus we have three ways to move

up using |x1,2〉, |x1,3〉 and |x2,3〉 and three ways to move down |x2,1〉, |x3,1〉 and |x3,2〉.
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This modification is partly associated to the SIS S3
1

1.

The modification can be understood as introducing an additional degree of freedom,

called the arrow index, to the two ends of the arrow (In the modified Motzkin case [5],

we called them the semigroup index). That is for the basis state |xa,b〉, a and b denote

the arrow indices with a, b ∈ {1, 2, 3}. On the other hand, in the colored case of the

modified Fredkin chain, apart from the arrow indices, we also include a color degree of

freedom to the arrow of each basis state [15]. The Hilbert spaces are illustrated in Fig. 1.

Henceforth we will use the words paths and states to mean the same thing.

|u〉

|d〉

:

:
|xa,b〉

a < b

a > b

:

:

a

a

b

b

Figure 1: Hilbert space for the modified Fredkin chain.

The introduction of the arrow indices brings about two important changes in the

paths of the modified DWs: different kinds of paths and a change in the maximum

heights reached in a given path.

The different kinds of paths - The paths now split as connected, totally discon-

nected and partially connected paths. Connected paths are those where a state, |xa,b〉i
on step i is followed by |xb,c〉i+1 on step i + 1 for all the steps i. That is the second

arrow index of step i has to match the first arrow index of step i + 1. If this property

is not satisfied for every step on the path then we have a totally disconnected path, and

the path is partially connected if this property is only satisfied for some of the steps.

Examples of these three kinds of paths are shown in Fig. 2.

Maximum heights - Finally the maximum height we can reach in the modified DWs

is no longer n as in the DWs of 2n steps but

hmax =

[
n− 2

3

]
+ 2, (2.1)

1 Note that if we include the elements |x1,1〉, |x2,2〉 and |x3,3〉 then the new basis of 9 elements carries the

representation of the SIS, S31 . This is the situation in the Motzkin spin chain where |xa,a〉 represent the flat

arrows [5]. However in the Fredkin case we do not have flat arrows and the remaining six elements do not

carry the representation of S31 . Hence we avoid calling this spin chain the S31 -Fredkin chain. However they do

carry the representation of S21 ⊕ S21 ⊕ S21
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1 1 1

1 1 1

1 1 1 1 1 1

2 2 2

2 2 2 2

2 2 2 2 2 2

3

3 3

Figure 2: The different kinds of paths possible in the modified Fredkin sys-

tem. The figure shows a fully connected, a partially connected and a totally

disconnected path from top to bottom on a 6-link path.

with [k] being the greatest integer not exceeding k, (see Fig. 3).

1 100 22 33 44 55

|u〉

|u〉

|u〉

|u〉

|u〉
hmax = 5 hmax = 3

1

12

23

3

Figure 3: Maximum heights reached in the DW and the modified DW for a

5-step walk.

2.1 The Hamiltonian HF

The different paths satisfying the conditions of the modified DWs can be mapped to each

other using local equivalence moves illustrated in Fig. 4. We build a local, frustration-
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free Hamiltonian by projecting out these local moves,

Uj,j+1,j+2 = Π
1√
2
[|(x1,2)j ,(x2,3)j+1,(x3,2)j+2〉−|(x1,2)j ,(x2,1)j+1,(x1,2)j+2〉]

Dj,j+1,j+2 = Π
1√
2
[|(x2,3)j ,(x3,2)j+1,(x2,1)j+2〉−|(x2,1)j ,(x1,2)j+1,(x2,1)j+2〉]

Wj,j+1 = Π
1√
2
[|(x1,2)j ,(x2,1)j+1〉−|(x1,3)j ,(x3,1)j+1〉]

+λ1Π
1√
2
[|(x3,1)j ,(x1,3)j+1〉−|(x3,2)j ,(x2,3)j+1〉], (2.2)

respectively with Π|ψ〉 denoting a projector to the normalized state |ψ〉 and λ1(≥ 0) a

tunable parameter. Here j ∈ {1, · · · , n− 2} for U and D, and j ∈ {1, · · · , n− 1} for W .

Together they make up Hbulk, connected.

∼

∼

∼ ∼

x1,2 x1,2 x1,2

x1,2

x1,2

x2,1

x2,1

x2,1 x2,1x2,1

x2,3

x2,3

x2,3

x3,2

x3,2

x3,2

x1,3

x1,3

x3,1

x3,1

Figure 4: The local equivalence moves for the modified Fredkin chain.

The boundary terms are given by

Hleft = Π|(x2,1)1〉 + Π|(x3,1)1〉 + Π|(x3,2)1〉 + Π|(x1,3)1,(x3,2)2,(x2,1)3〉, (2.3)

Hright = Π|(x1,2)n〉 + Π|(x1,3)n〉 + Π|(x2,3)n〉 + Π|(x1,2)n−2,(x2,3)n−1,(x3,1)n〉, (2.4)

where the first three terms prevent the walks from moving below the x-axis at the origin

and upward at (n, 0), and the last terms are new and have no analog in the original

Fredkin model. They are added to suppress additional ground states not corresponding

to the modified DWs 2.

2 Without the last terms of Hleft and Hright, we can see that there are additional ground states except for

the case starting and ending with the arrow index 2. For examples, x1,3x3,2x2,1x1,2x2,3x3,1 for length 6 and

x1,3x3,2x2,1x1,3x3,2 for length 5. As another choice of the boundary terms, we can restrict ground states to
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We include a “balancing” term given by

Bj,j+1 = Π|(x1,3)j ,(x3,2)j+1〉 + Π|(x2,3)j ,(x3,1)j+1〉. (2.7)

This term implies that if we go up with |(x1,3)〉 or |(x2,3)〉 we have to come down with

|(x3,1)〉 or |(x3,2)〉, and is crucial for the phase transitions in this system.

Finally we include the term

Hbulk, disconnected =
n−1∑

j=1

3∑

a,b,c,d=1;a6=b, b 6=c, c 6=d
Π

∣∣∣(xa,b)j ,(xc,d)j+1

〉
(2.8)

which keeps the disconnected paths out of the ground state sector.

With this the total Hamiltonian is

HF = Hleft +Hbulk, connected +Hright + λ2

n−1∑

j=1

Bj,j+1 +Hbulk, disconnected. (2.9)

with λ2(≥ 0) another tunable parameter. Notice that each of the terms inHbulk, disconnected

commutes with the rest of HF , block diagonalizing the Hamiltonian into inequivalent sec-

tors distinguished by the number of disconnections.

We can see that the Hamiltonian is frustration-free only when λ1 or λ2 vanishes. In

what follows, let us consider these cases.

3 Ground states

We discuss the structure of the ground states for the three cases

• λ1 > 0, λ2 = 0

• λ1 = λ2 = 0

• λ1 = 0, λ2 > 0

separately.

the case starting and ending at the arrow index 2 by

Hleft = Π|(x2,1)1〉 + Π|(x3,1)1〉 + Π|(x3,2)1〉 +

3∑

a=2

Π|(x1,a)1〉, (2.5)

Hright = Π|(x1,2)n〉 + Π|(x1,3)n〉 + Π|(x2,3)n〉 +

3∑

a=2

Π|(xa,1)n〉. (2.6)
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3.1 For λ1 > 0, λ2 = 0 :

The arrow indices split the paths according to different equivalence classes that cannot

be mapped into each other by local equivalence moves of Fig. 4. That is if we start with

the arrow index 1, that is with vectors |(x1,2)〉 or |(x1,3)〉 on the first step, we can end

with either 1 or 2 as the arrow index on the last step. Thus we get two equivalences

classes denoted by {11} and {12}. In a similar manner we obtain the equivalence classes

{22}, {21}, making the GSD 4, independent of the size of the chain. It is worth noting

that this degeneracy does not arise due to the geometry or topology of the lattice but

rather the additional degrees of freedom.

In particular, there is no symmetry transformation mapping one equivalence class to

another (except reversing the paths exchanging {12} and {21}), which will be evident

by seeing that the number of the paths in each equivalence class is different as (3.17).

The absence of the symmetry comes from the constraint that the DWs are forbidden to

enter the y < 0 region.

This GSD is stable to local perturbations in the bulk of the chain that preserve the

local equivalence moves, but are sensitive to the boundary perturbations that can lift

some of the states out of the ground state sector. For example, a local perturbation at

a boundary by Π|(x1,2)1〉 + Π|(x1,3)1〉 lifts {11} and {12} making the GSD 2.

To understand the ground states in the different equivalence classes, we need to

count the number of paths that satisfy the condition of the modified DWs which is the

normalization of these states.

Normalization of the ground states for λ1 > 0, λ2 = 0

Pn, a→b denotes the formal sum of all possible connected paths on n steps starting (end-

ing) at the arrow index a (b). For example, P4, 1→1 is given as

P4, 1→1 = x1,2x2,1x1,2x2,1 + x1,3x3,1x1,2x2,1 + x1,2x2,1x1,3x3,1

+ x1,3x3,1x1,3x3,1 + x1,3x3,2x2,3x3,1 + x1,2x2,3x3,2x2,1, (3.1)

shown in Fig.5.

Definition: Let Nn, a→b be the number of walks included in Pn, a→b, which is

obtained by setting all the xa,b in Pn, a→b to 1. For instance, N4, 1→1 = 6.

We can see that Nn, a→b = Nn, b→a by considering the reversed path starting from

(n, 0) and ending at (0, 0). Also, Nn, 3→a = Nn, a→3 = 0 with a = 1, 2, 3. We use recursion

relations to compute Nn, a→b.

7



+ +
3∑

a,b=2
1 1 1 1 1 1 12

2 23 3

3

a b

Figure 5: Graphical expressions for the six terms of P4, 1→1.

Recursions for paths ending at height zero

By looking at the first step of the walks, we can write down the following recursions (for

example see Fig. 6):

Pn, 1→1 = x1,2

n−2∑

i=0

Pi, 2→2 x2,1 Pn−2−i, 1→1

+x1,3 x3,1 Pn−2, 1→1 + x1,3 x3,2 Pn−2, 2→1, (3.2)

Pn, 2→2 = x2,3 x3,2 Pn−2, 2→2 + x2,3 x3,1 Pn−2, 1→2, (3.3)

Pn, 2→1 = x2,3 x3,2 Pn−2, 2→1 + x2,3 x3,1 Pn−2, 1→1. (3.4)

+ +

Pn−2−i, 1→1Pi, 2→2

1 1

1 1 1

2 2

2

3 3Pn−2, 1→1 Pn−2, 2→1

Figure 6: The recursion in (3.2) illustrated.

These lead to recursions for Nn, a→b as 3

Nn, 1→1 =

n−2∑

i=0

Ni, 2→2Nn−2−i, 1→1 +Nn−2, 1→1 +Nn−2, 2→1, (3.5)

Nn, 2→2 = Nn−2, 2→2 +Nn−2, 2→1, (3.6)

Nn, 2→1 = Nn−2, 2→1 +Nn−2, 1→1, (3.7)

3These are valid for n ≥ 1. The terms of
∑n−2

i=0 are regarded as null for n = 1.
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where we use the invariance under the reversal property of the paths. By introducing

the generating functions 4

Na→b(x) ≡
∞∑

n=0

Nn, a→b x
n with N0, a→b = δa,b, (3.8)

(3.5)-(3.7) are recast as

N1→1(x)− 1 = x2N2→2(x)N1→1(x) + x2N1→1(x) + x2N2→1(x), (3.9)

N2→2(x)− 1 = x2N2→2(x) + x2N2→1(x), (3.10)

N2→1(x) = x2N2→1(x) + x2N1→1(x), (3.11)

which are solved as

N1→1(x) =
1− x2

2x3X

[
1−

√
1− 4X2

]
, (3.12)

N2→2(x) =
1

1− x2

[
1 +

x

2X

(
1−

√
1− 4X2

)]
, (3.13)

N2→1(x) =
1

2xX

[
1−

√
1− 4X2

]
(3.14)

with

X ≡ x3

1− 3x2
. (3.15)

Among the singularities of (3.12), (3.13) and (3.14), the nearest from the origin is

x = ±1/2. Around these points, they behave as

N1→1(x) = 6− 18
√

2
√

1∓ 2x+O(1∓ 2x),

N2→2(x) = 2− 2
√

2
√

1∓ 2x+O(1∓ 2x),

N2→1(x) = 2− 6
√

2
√

1∓ 2x+O(1∓ 2x). (3.16)

Since (3.12)-(3.14) are even functions of x, we should equally take into account both

contributions from x = 1/2 and x = −1/2, in order to obtain the large order behavior

of coefficients. Looking at the large order behavior in the expansion of
√

1∓ 2x around

x = 0, we can read off the large order behavior of the coefficients:

Nn, 1→1 ∼
1 + (−1)n

2

18
√

2√
π

2n

n3/2
, Nn, 2→2 ∼

1 + (−1)n

2

2
√

2√
π

2n

n3/2
,

Nn, 2→1 ∼
1 + (−1)n

2

6
√

2√
π

2n

n3/2
(3.17)

as n→∞.

4 The initial conditions N0, a→b = δa,b are determined by (3.5)-(3.7) at n = 2.
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Recursions for paths ending at nonzero height

For later convenience, we also consider n-step walks obeying similar rules but starting

at (0, 0) with the arrow index a and ending at (n, h) with the index b. h is a positive

integer, and the paths never pass below the x-axis. P
(h)
n, a→b denotes the sum of such

walks, and N
(h)
n, a→b counts the number of the walks in P

(h)
n, a→b. For example,

P
(2)
6, 1→2 = (x1,2x2,1 + x1,3x3,1)x1,2x2,3x3,1x1,2 + x1,2x2,3x3,1x1,2x2,3x3,2

+x1,2x2,3x3,1 (x1,2x2,1 + x1,3x3,1)x1,2 + x1,2x2,3x3,2x2,3x3,1x1,2, (3.18)

N
(2)
6, 1→2 = 6. (3.19)

The six paths in the r.h.s. of (3.18) are depicted in Fig. 7. It is easy to see

N
(h)
n, 3→b = 0 for b = 1, 2, 3, and h ≥ 1. (3.20)

Namely, there exists no path starting with the arrow index 3 for any positive height.

1 1

1

1 1

1

1

1

1

1 1

1

1 1

1

1

2 2

2

2

2

2

2 2

2

2 2

2

2

2 2

2

3

3

3 3

3

3 3 3 3 3

Figure 7: Graphical expressions for the six terms of P
(2)
6, 1→2.

We obtain recursion relations for these walks similar to the case of zero height. This

is illustrated in Fig. 8 for the N
(h)
n, 1→1 case. The result is 5

N
(h)
n, 1→b = N

(h−1)
n−1, 2→b + δb,3δh,1δn,1 +

n−2∑

i=0

Ni, 2→2N
(h)
n−2−i, 1→b

+N
(h)
n−2, 1→b +N

(h)
n−2, 2→b, (3.21)

N
(h)
n, 2→b = δb,3δh,1δn,1 +N

(h)
n−2, 1→b +N

(h)
n−2, 2→b, (3.22)

for b = 1, 2, 3, n ≥ 1 and h ≥ 1. In terms of the generating functions

N
(h)
a→b(x) ≡

∞∑

n=0

N
(h)
n, a→b x

n with N
(h)
0, a→b = 0 (3.23)

5 Here, N
(0)
n, a→b is regarded as Nn, a→b.
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P
(h−1)
n−1, 2→1 P

(h)
n−2−i, 1→1+

+ +

h h

h h

Pi, 2→2

1 1 1

1 1 1

2 2 2

2

3 3P
(h)
n−2, 1→1 P

(h)
n−2, 2→1

Figure 8: The recursion in (3.21) illustrated for the b = 1 case.

together with (3.8), we find that the pair of the equations (3.21) and (3.22) is closed for

each b. Noting the relation from the zero height case

N
(0)
2→b(x) =

x2

1− x2
N

(0)
1→b(x) + δb,2

1

1− x2
, (3.24)

we eventually obtain

N
(h)
2→1(x) =

1

x

(
x3

1− x2
N1→1(x)

)h+1

, (3.25)

N
(h)
1→1(x) =

1− x2

x3

(
x3

1− x2
N1→1(x)

)h+1

, (3.26)

N
(h)
2→2(x) =

1

1− x2

(
x3

1− x2
N1→1(x)

)h{
x4

1− x2
N1→1(x) + 1

}
, (3.27)

N
(h)
1→2(x) =

1

x2

(
x3

1− x2
N1→1(x)

)h{
x4

1− x2
N1→1(x) + 1

}
, (3.28)

N
(h)
2→3(x) =

x

1− x2

(
x3

1− x2
N1→1(x)

)h−1{
x2

1− x2
N1→1(x) + 1

}
, (3.29)

N
(h)
1→3(x) = −δh,1

1

x
+

1

x

(
x3

1− x2
N1→1(x)

)h−1{
x2

1− x2
N1→1(x) + 1

}
. (3.30)

Plugging (3.16) into these, we can read off the large order behavior of N
(h)
n, a→b, which is

useful for a fixed h as n → ∞ but not for cases where both n and h are growing. In

order to find useful expressions even for the latter cases, we use the identity:

Xh

{
1

2X2

(
1−

√
1− 4X2

)}h+1

=

∞∑

n=0

N (h)
n Xn (3.31)

(see eq.(3.15)) with

N (h)
n =

1 + (−1)n+h

2

h+ 1
n+h

2 + 1

(
n
n+h

2

)
. (3.32)

11



This is derived in appendix A in [5] by computing the number of the DWs in two different

ways.

N
(h)
p, 2→1 :

First, let us obtain the large order behavior of N
(h)
p, 2→1 as p → ∞. Applying (3.31) to

(3.25) with (3.12) leads to

N
(h)
2→1(x) =

1

x

∞∑

n=0

N (h)
n Xn+1. (3.33)

From (3.15), Xn+1 has the expansion

Xn+1 =

∞∑

k=0

(
n+ k

k

)
3k x3n+2k+3. (3.34)

Plugging these two, we have

N
(h)
p, 2→1 =

∗∑

n≥0

N (h)
n

(
p−n

2 − 1

n

)
3

p−3n
2
−1, (3.35)

where the asterisk (*) on the summation means n running under the condition for p−3n

to be even and no less than 2. It is found that the summand of (3.35) has a saddle point

(a stable point with respect to the deviation n→ n+ 2) at

n ∼ 1

9
p (3.36)

for p large.

By using Stirling’s formula (n! '
√

2π nn+ 1
2 e−n), the asymptotic form of N

(h)
n be-

comes

N (h)
n ' 1 + (−1)n+h

2
(h+ 1)

23/2

√
π

2n

n3/2

× exp

[
1− n+ h+ 3

2
ln

(
1 +

h+ 2

n

)
− n− h+ 1

2
ln

(
1− h

n

)]

×
[
1 +O

(
n−1

)]
. (3.37)

The power of the exponential is expanded in large n as

− (h+ 1)2

2n
− 3

2n
+

(h+ 1)2

n2
+

2

3n2
+O

(
h4

n3

)
, (3.38)

in which the first term provides the Gaussian factor rapidly decaying for h >
√
n. Bring-

ing down the other terms from the exponential, we obtain

N (h)
n ' 1 + (−1)n+h

2
(h+1)

23/2

√
π

2n

n3/2
e−

1
2n

(h+1)2×
[
1 +

(h+ 1)2

n2
+O

(
1

n
,
h4

n3

)]
. (3.39)
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Note that due to the Gaussian factor the order of h is effectively at most O (
√
n). So, we

can regard the terms of (h+1)2

n2 and h4

n3 as O
(
n−1

)
quantities. (3.39) can be written as

N (h)
n ' 1 + (−1)n+h

2
(h+ 1)e−

1
2n

(h+1)2 ×
{
N

(0)
n (h: even)

1
2N

(1)
n (h: odd)

}

×
[
1 +O

(
n−1

)]
(3.40)

with N
(0)
n ∼ 1

2N
(1)
n ∼ 23/2√

π
2n

n3/2 ×
[
1 +O

(
n−1

)]
. We plug (3.40) to (3.35) and evaluate

the sum over n in the saddle point method around (3.36). For the case of h even, by

putting h = 2k, n = 2m and p = 2q, (3.35) is expressed as

N
(2k)
2q, 2→1 ' (2k + 1)

[ q−1
3 ]∑

m=0

e−
(2k+1)2

4m N
(0)
2m

(
q −m− 1

2m

)
3q−3m−1. (3.41)

After expanding the summand around the saddle point m = 1
9q+ x with x denoting the

fluctuation, we have

N
(2k)
2q, 2→1 ' (2k + 1)e

− 9
4q

(2k+1)2 37/2

4π

22q

q2

∫ ∞

−∞
dx e

− 9·27
16q

x2

×
[
1− 27

16q
x+O

(
x2

q2
,
x3

q2

)]

× exp

[
92

4q2
(2k + 1)2x− 93

4q3
(2k + 1)2x2 + · · ·

]
, (3.42)

where the sum is converted to the integral. The second line comes from the fluctuation

in the factor N
(0)
2m

(
q −m− 1

2m

)
3q−3m−1, while the third line from the fluctuation in

e−
(2k+1)2

4m . The integral is evaluated by expanding the exponential in the third line. The

linear terms in x appear because 1
9q is an approximate saddle point. Although they are

at most of the order O(q−1/2), they do not contribute to the integral due to the parity.

It is easy to see that higher orders in x yield contributions at most to O(q−1), and the

final result takes the form:

N
(2k)
2q, 2→1 ' (2k + 1)e

− 9
4q

(2k+1)2 3 · 23/2

√
π

22q

(2q)3/2
×
[
1 +O(q−1)

]
. (3.43)

We can evaluate similarly for the case of h odd, and summarize the results for both of

the cases as

N
(h)
p, 2→1 ∼

1 + (−1)p+h

2
(h+ 1)e

− 9
2p

(h+1)2 6
√

2√
π

2p

p3/2
×
[
1 +O

(
p−1
)]
. (3.44)
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Other coefficients:

Once we know (3.44), it is straightforward to obtain the large order behavior for the other

coefficients from (3.25)-(3.30). For instance, we find N
(h)
p, 1→1 = N

(h)
p+2, 2→1 −N

(h)
p, 2→1 from

(3.26). Eventually, we have the expressions (up to multiplicative factors of
[
1 +O

(
p−1
)]

):

N
(h)
p, 1→1 ∼

1 + (−1)p+h

2
(h+ 1)e

− 9
2p

(h+1)2 18
√

2√
π

2p

p3/2
, (3.45)

N
(h)
p, 1→2 ∼

1 + (−1)p+h

2

[
2he
− 9

2p
h2

+ (h+ 1)e
− 9

2p
(h+1)2

] 6
√

2√
π

2p

p3/2
, (3.46)

N
(h)
p, 2→2 ∼

1 + (−1)p+h

2

[
2he
− 9

2p
h2

+ (h+ 1)e
− 9

2p
(h+1)2

] 2
√

2√
π

2p

p3/2
, (3.47)

N
(h)
p, 2→3 ∼

1 + (−1)p+h

2

[
2he
− 9

2p
h2 − (h− 1)e

− 9
2p

(h−1)2
] 2
√

2√
π

2p

p3/2
, (3.48)

N
(h)
p, 1→3 ∼

1 + (−1)p+h

2

[
2he
− 9

2p
h2 − (h− 1)e

− 9
2p

(h−1)2
] 6
√

2√
π

2p

p3/2
(3.49)

for h ≥ 1.

As a consistency check, we can see that (3.44)-(3.49) together with (3.17) satisfy the

composition law 6:
∞∑

h=0

3∑

b=1

N
(h)
p+r, a→bN

(h)
p−r, c→b = N2p, a→c (3.50)

for both of p+ r and p− r being O(p). This holds except for errors of O
(
p−1
)
.

3.2 For λ1 = λ2 = 0 :

In this case, there is no equivalence move of x3,1 x1,3 ∼ x3,2 x2,3, which amounts to a

degeneracy in each of the equivalence classes, {11}, {12}, {21} and {22}. For example,

for length-4 paths, each of the four sectors splits into two inequivalent paths:

{11} → (x1,2x2,1 + x1,3x3,1)2 + x1,2x2,3x3,2x2,1, x1,3x3,2x2,3x3,1, (3.51)

{12} → x1,2x2,1x1,3x3,2 + x1,3x3,1x1,3x3,2, x1,3x3,2x2,3x3,2, (3.52)

{21} → x2,3x3,1x1,2x2,1 + x2,3x3,1x1,3x3,1, x2,3x3,2x2,3x3,1, (3.53)

{22} → x2,3x3,1x1,3x3,2, (x2,3x3,2)2 , (3.54)

making the total GSD 8.

For the {11} sector, we can see that any length-2n path obtained from (x1,2x2,1)n

by successively applying the allowed equivalence moves cannot exceed height 2. In all of

6 Note that the number of p-step paths from height h with the arrow index b to height 0 with the index c

is equal to N
(h)
p, c→b. The sum over h can be computed by converting it to the integral.
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these paths, the arrow indices 1 and 2 appear only at height 0 and 1 respectively, and

the index 3 at height 1 or 2. The first part of (3.51) gives the case of n = 2.

To expose the degeneracy we start with paths inequivalent to (x1,2x2,1)n and obtain

paths exceeding height 2. For example, consider a length-10 path:

x1,2x2,3x3,1 (x1,2x2,1)2 x1,3x3,2x2,1. (3.55)

The equivalence moves provide the path that reaches height 3:

x1,2x2,3x3,1x1,2x2,3x3,2x2,1x1,3x3,2x2,1 (3.56)

as in Fig. 9. Note that x1,2x2,3x3,1 and x1,3x3,2x2,1 in the left and right edges are

1

1 1 1

1

1

1 1

1

2

2 2

2

2

2 2

2

3 3

3

3

3

Figure 9: The path (3.55) is connected to the path (3.56) of height 3 by the

equivalence moves.

unchanged by the moves, and only the middle part is affected. What is relevant for

the EE is the middle part. As a result of the equivalence moves, that part gives rise to

the first of the two inequivalent paths in (3.51), and the problem reduces to the case of

(x1,2x2,1)2. This observation can be generalized to longer paths. In addition, if we start

with the following path of length 2(n1 + n2) + 4:

(x1,2x2,1)n1 x1,3x3,2x2,3x3,1 (x1,2x2,1)n2 , (3.57)

the middle part x1,3x3,2x2,3x3,1 is unchanged by the moves, and the two parts (x1,2x2,1)n1

and (x1,2x2,1)n2 are separately affected by the moves. This again reduces to the case

(x1,2x2,1)n.

This is also valid for the other sectors. For sectors of {12}, {21} and {22}, length-2n

paths obtained from

(x1,2x2,1)n−1 x1,3x3,2, x2,3x3,1 (x1,2x2,1)n−1 , and x2,3x3,1 (x1,2x2,1)n−2 x1,3x3,2

(3.58)
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are the most relevant, respectively. Since the edge part x1,3x3,2 or x2,3x3,1 does not

change through the moves, the problem reduces to the case (x1,2x2,1)n. Thus, although

we have numerous GSD growing with the length in the case of λ1 = λ2 = 0, we can

conclude that the ground state corresponding to paths obtained from (x1,2x2,1)n through

the equivalence moves is the most relevant for the computation of the EE. So we will

only compute the EE of the state arising from acting on (x1,2x2,1)n with the equivalence

moves.

Normalization of the ground states for λ1 = λ2 = 0

Let Q2n, 1→1 be the formal sum of all possible length-2n paths obtained from (x1,2x2,1)n

by the equivalence moves. We can write down a recursion relation as

Q2n, 1→1 = (x1,2x2,1 + x1,3x3,1)Q2n−2, 1→1

+
n−1∑

k=1

x1,2 (x2,3x3,2)k x2,1Q2n−2k−2, 1→1 (3.59)

with Q0, 1→1 = 1. For M2n, 1→1 denoting the number of paths in Q2n, 1→1, the corre-

sponding recursion reads

M2n 1→1 = 2M2n−2, 1→1 +

n−1∑

k=1

M2n−2k−2, 1→1 (3.60)

for n ≥ 1. By introducing the generating function

M1→1(y) ≡
∞∑

n=0

M2n, 1→1 y
n with M0, 1→1 = 1, (3.61)

(3.60) is recast as

M1→1(y)− 1 = 2yM1→1(y) +
y2

1− yM1→1(y). (3.62)

Here, we treated the double sum
∑∞

m=1

∑m−1
`=0 M2`, 1→1 y

m by changing the order of the

sums as
∑∞

m=1

∑m−1
`=0 · · · =

∑∞
`=0

∑∞
m=`+1 · · · . The solution of (3.62) reads

M1→1(y) =
1− y

1− 3y + y2
. (3.63)

The singularity of M1→1(y) nearest from the origin is

y− =
3−
√

5

2
=

(√
5− 1

2

)2

, (3.64)
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around which M1→1(y) behaves as

M1→1(y) =

√
5− 1

2
√

5

1

y− − y
+O

(
(y− − y)0

)
. (3.65)

This determines the asymptotic behavior of the coefficient M2n, 1→1 as

M2n, 1→1 ∼
√

5− 1

2
√

5

1

yn+1
−

=
1√
5

(√
5 + 1

2

)2n+1

(3.66)

Paths ending at nonzero height

In order to compute the EE in section 4.2, we consider paths ending at nonzero height

(h = 1, 2). For h = 1, let Q
(1)
2n+1, 1→a with a = 2, 3 be the sum of paths obtained from

(x1,2x2,1)n x1,a by the equivalence moves, and for h = 2, Q
(2)
2n, 1→3 denotes the sum of

paths obtained from (x1,2x2,1)n−1 x1,2x2,3.

By looking at final steps, we find the recursion relations as

Q
(1)
2n+1, 1→2 =

n∑

k=0

Q2n−2k, 1→1 x1,2 (x2,3x3,2)k , (3.67)

Q
(1)
2n+1, 1→3 = Q2n, 1→1 x1,3, (3.68)

Q
(2)
2n, 1→3 = Q

(1)
2n−1, 1→2 x2,3. (3.69)

For the number of paths in Q
(1)
2n+1, 1→2, denoted by M

(1)
2n+1, 1→2, the corresponding equa-

tion can be solved in a similar manner to the zero height case. The result is

M
(1)
2n+1, 1→2 ∼

1√
5

(√
5 + 1

2

)2n+2

. (3.70)

Then, the numbers of paths in the other two, M
(1)
2n+1, 1→3 and M

(2)
2n, 1→3, are

M
(1)
2n+1, 1→3 = M2n, 1→1 ∼

1√
5

(√
5 + 1

2

)2n+1

, (3.71)

M
(2)
2n, 1→3 = M

(1)
2n−1, 1→2 ∼

1√
5

(√
5 + 1

2

)2n

. (3.72)

As a consistency check, we can see that the results satisfy the composition law

M2n, 1→1 =




Mn+r, 1→1Mn−r, 1→1 +M

(2)
n+r, 1→3M

(2)
n−r, 1→3 (n+ r : even)

M
(1)
n+r, 1→2M

(1)
n−r, 1→2 +M

(1)
n+r, 1→3M

(1)
n−r, 1→3 (n+ r : odd).

(3.73)
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3.3 For λ1 = 0, λ2 > 0 :

Compared with the case of λ1 > 0 and λ2 = 0, in this case there is a drastic change in

the behavior of the ground states as the maximum height we can reach in a given path

is only 2. This is due to the fact that we are no longer allowed to come down by |(x3,1)〉
(or |(x3,2)〉) once we go up by |(x2,3)〉 (or |(x1,3)〉). Thus we lose two of the equivalence

classes, {12} and {21} reducing the GSD from 4 to 2.

This choice of the parameters changes the recursion relations of the generating func-

tions for computing the normalization of the state in the zero height case to

N1→1(x)− 1 = x2 (N2→2(x)N1→1(x) +N1→1(x)) , (3.74)

N2→2(x)− 1 = x2N2→2(x). (3.75)

The solution of the last equation, N2→2(x) = 1
1−x2 , can be understood from the ob-

servation that there is just one state in the {22} equivalence class and this is given by
n∏
j=1

∣∣∣(x2,3)2j−1

〉
⊗
∣∣∣(x3,2)2j

〉
for length-2n. Solving for N1→1(x) leads to

N1→1(x) =
1− x2

1− 3x2 + x4
(3.76)

which is an even function making the odd coefficients, N2n+1, 1→1 = 0. This is expected

for the Dyck paths which make sense only for an even number of paths.

The leading order behavior of the coefficients of these two terms is given by

Nn, 1→1 ∼
1 + (−1)n

2

1√
5

(√
5 + 1

2

)n+1

, Nn, 2→2 =
1 + (−1)n

2
. (3.77)

The generating functions for the normalizations in the case of nonzero heights are

obtained as

N
(1)
1→2(x) =

x

1− 3x2 + x4
, (3.78)

N
(1)
1→3(x) =

x(1− x2)

1− 3x2 + x4
, (3.79)

N
(2)
1→3(x) =

x2

1− 3x2 + x4
, (3.80)

N
(1)
2→3(x) =

x

1− x2
. (3.81)

The rest are zero due to the height restriction as noted earlier.
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The leading order behavior of these coefficients are given by

N
(1)
n, 1→2 ∼

1− (−1)n

2

1√
5

(√
5 + 1

2

)n+1

, (3.82)

N
(1)
n, 1→3 ∼

1− (−1)n

2

1√
5

(√
5 + 1

2

)n
, (3.83)

N
(2)
n, 1→3 ∼

1 + (−1)n

2

1√
5

(√
5 + 1

2

)n
, (3.84)

N
(1)
2→3 =

1− (−1)n

2
. (3.85)

4 Entanglement entropy of the ground states

4.1 For λ1 > 0, λ2 = 0 :

The normalized ground state {11} for the system of length 2n is expressed as

|P2n, 1→1〉 =
1√

N2n, 1→1

∑

w∈P2n, 1→1

|w〉, (4.1)

where w runs over paths in P2n, 1→1. We split the system of length 2n into two subsystems

A and B of length n+r and n−r, respectively. Consider paths in P2n, 1→1 that reach the

point (n, h), with the arrow index a. The paths belonging to A are P
(h)
n+r, 1→a ≡ P

(0→h)
n+r, 1→a

to denote that it starts at height 0 and ends at height h. And for B we have the reversed

paths of P
(h)
n−r, 1→a denoted by P

(h→0)
n−r, a→1. Their corresponding normalized states are

expressed by

∣∣∣P (0→h)
n+r, 1→a

〉
=

1√
N

(h)
n+r, 1→a

∑

w∈P (0→h)
n+r, 1→a

|w〉,
∣∣∣P (h→0)
n−r, a→1

〉
=

1√
N

(h)
n−r, 1→a

∑

w∈P (h→0)
n−r, a→1

|w〉,

(4.2)

respectively.

The Schmidt decomposition of (4.1) leads to the following formula for the EE

|P2n, 1→1〉 =
∑

h≥0

3∑

a=1

√
p

(h)
n+r,n−r, 1→a→1

∣∣∣P (0→h)
n+r, 1→a

〉
⊗
∣∣∣P (h→0)
n−r, a→1

〉
, (4.3)

where p
(h)
n+r,n−r, 1→a→1 ≡

N
(h)
n+r, 1→aN

(h)
n−r, 1→a

N2n, 1→1
satisfies

∑

h≥0

3∑

a=1

p
(h)
n+r,n−r 1→a→1 = 1 (4.4)

19



due to (3.50) with a = c = 1.

The reduced density matrix for the subsystem A takes the diagonal form as

ρA, 1→1 = TrB|P2n, 1→1〉 〈P2n, 1→1| =
∑

h≥0

3∑

a=1

p
(h)
n+r,n−r, 1→a→1

∣∣∣P (0→h)
n+r, 1→a

〉〈
P

(0→h)
n+r, 1→a

∣∣∣,

(4.5)

from which the EE reads

SA, 1→1 = −
3∑

a=1

∑

h≥0

p
(h)
n+r,n−r, 1→a→1 ln p

(h)
n+r,n−r, 1→a→1. (4.6)

By using (3.17), (3.45), (3.46) and (3.49), we find the logarithmic violation of the

area law showing quantum criticality:

SA, 1→1 =
1

2
ln

(n+ r)(n− r)
n

+
1

2
ln
π

4
+ γ − 1

2
+ (terms vanishing as n→∞) (4.7)

with γ being the Euler constant. We can see that this behavior including the constant

term coincides with the case of the uncolored Fredkin spin chain [9] 7 . For other ground

states in equivalence classes {12}, {21} and {22}, we obtain the same result.

4.2 For λ1 = λ2 = 0 :

In this case, we compute the EE of the ground state corresponding to paths equivalent

to (x1,2x2,1)n. The EE denoted by S̄A, 1→1 takes the same form as (4.6), where

p
(h)
n+r,n−r, 1→a→1 =

M
(h)
n+r, 1→aM

(h)
n−r, 1→a

M2n, 1→1
(4.8)

with M
(0)
n±r, 1→a ≡Mn±r, 1→a. From (3.66), (3.70), (3.71) and (3.72), we find

p
(0)
n+r,n−r, 1→1→1 ∼

1 + (−1)n+r

2

√
5 + 1

2
√

5
, p

(1)
n+r,n−r, 1→2→1 ∼

1− (−1)n+r

2

√
5 + 1

2
√

5
,

p
(1)
n+r,n−r, 1→3→1 ∼

1− (−1)n+r

2

√
5− 1

2
√

5
, p

(2)
n+r,n−r, 1→3→1 ∼

1 + (−1)n+r

2

√
5− 1

2
√

5
,

(4.9)

and all the others vanish. The results immediately lead to the expression of the EE:

S̄A, 1→1 =
1√
5

ln

√
5− 1

2
+

1

2
ln 5 + (terms vanishing as n→∞), (4.10)

which exhibits the area law behavior.

7 For the uncolored Fredkin model, the number of paths of the Dyck walks N
(h)
n in (3.32) is relevant,

and its asymptotic form is given by (3.40). In terms of p
(h)
n+r,n−r ≡

N
(h)
n+rN

(h)
n−r

N
(0)
2n

, the EE is expressed as SA =

−∑h≥0 p
(h)
n+r,n−r ln p

(h)
n+r,n−r.
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4.3 For λ1 = 0, λ2 > 0 :

In this case, the EE SA, 1→1 takes the same form as (4.6), with p
(h)
n+r,n−r, 1→a→1 computed

using (3.82)-(3.85). The non-zero terms are given by

p
(0)
n+r,n−r, 1→1→1 ∼

1 + (−1)n+r

2

√
5 + 1

2
√

5
, p

(1)
n+r,n−r, 1→2→1 ∼

1− (−1)n+r

2

√
5 + 1

2
√

5

p
(1)
n+r,n−r, 1→3→1 ∼

1− (−1)n+r

2

√
5− 1

2
√

5
, p

(2)
n+r,n−r, 1→3→1 ∼

1 + (−1)n+r

2

√
5− 1

2
√

5
.

(4.11)

Thus, the resulting EE can be easily computed as

SA, 1→1 =
1√
5

ln

√
5− 1

2
+

1

2
ln 5 + (terms vanishing as n→∞). (4.12)

For the {22} equivalence class, the ground state is a product state corresponding to

(x2,3x3,2)n, whose EE vanishes (SA, 2→2 = 0).

4.4 Quantum phase transitions :

The phase diagram for the Hamiltonian (2.9) in terms of the tunable parameters λ1 and

λ2 is shown in Fig. 10. We discuss three cases, 1) λ1 > 0, λ2 = 0, 2) λ1 = λ2 = 0 and

3) λ1 = 0, λ2 > 0. The latter two cases have ground states obeying the area law but are

not the same phase as the GSD is not the same in them.

0

λ1

λ2

S
n
∝

lo
g
n

Sn = O(1)

Figure 10: The phase diagram for the modified Fredkin chain Hamiltonian in

(2.9). Area law is seen for values λ2 ≥ 0 with λ1 = 0, and the logarithmic

violation of the area law is for λ1 > 0, λ2 = 0. We do not discuss the case where

λ1, λ2 > 0.
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5 Excitations due to disconnections

In this section, we discuss excited states corresponding to disconnected paths and their

localization properties in the modified Fredkin spin chain (2.9) with λ1 > 0 and λ2 = 0.

Such states gain positive energy only from Hbulk, disconnected (2.8).

5.1 Excited states with one disconnection

Before discussing general cases, let us start with an example of a length-5 path with one

disconnection:

x1,2x2,1|x2,3x3,2x2,1, (5.1)

which consists of the two connected components x1,2x2,1 and x2,3x3,2x2,1. The red vertical

line denotes the disconnection. In drawing this configuration, a priori there is no way to

determine the relative height between the points across the disconnection. Here and in

what follows, we take a convention that the initial and final points of paths of the total

length n are (0, 0) and (n, 0), respectively. Then, (5.1) is depicted in Fig. 11.

11 1

22 2

3

Figure 11: The disconnected path (5.1) is depicted by following the convention.

As a result of the local equivalence moves, we have

(x1,2x2,1 + x1,3x3,1) | (x2,3x3,2x2,1 + x2,1x1,2x2,1 + x2,1x1,3x3,1) = P
(0→0)
2, 1→1|P

(1→0)
3, 2→1. (5.2)

Note that the equivalence moves keep the disconnection intact, and just affect each

of the connected components. The moves preserve the arrow indices of the two ends

and the relative height between the end points of the connected components. The state

corresponding to (5.2),
∣∣∣P (0→0)

2, 1→1

〉
⊗
∣∣∣P (1→0)

3, 2→1

〉
, costs energy only at the disconnected point,

and thus has eigenvalue 1.

In general, an excited state corresponding to length-n paths starting (ending) at the

arrow index a (c) and possessing one disconnection at the site i (0 < i < n) is written as
∣∣∣P (0→hi)
i, a→bi

〉
⊗
∣∣∣P (h′i→0)

n−i, b′i→c

〉
(bi 6= b′i), (5.3)

where the disconnection requires bi 6= b′i. The heights hi and h′i take nonnegative integers,

and they can take the same value. The local equivalence moves act only on the connected

components of (5.3). The energy of the state is 1 due to the single disconnection.

22



5.2 Excited states with two disconnections

We first consider an example of a length-6 path with two disconnections:

x1,2x2,1|x3,1x1,3|x1,3x3,1. (5.4)

In drawing this, the heights of the first and third connected components are fixed by the

above convention, but the height of the second one is not. In general, the heights of the

connected components are not fixed except for those of the first and the last ones. We

will discuss without giving a definite prescription for the issue. So, note that the path

(5.4) can be depicted in different ways as shown in Fig. 12.

1

1

1

1

1

1

1 1

1
1

1 1

1

1

1

2

2

2

3

3

3

3 3

3 3

3 3

Figure 12: These three figures represent the same path (5.4). In the middle

figure, the red vertical lines are added in order to clarify the disconnections.

Applying the equivalence moves to (5.4) amounts to the paths

P
(0→0)
2, 1→1| (x3,1x1,3 + x3,2x2,3) |P (0→0)

2, 1→1. (5.5)

The corresponding state

∣∣∣P (0→0)
2, 1→1

〉
⊗ 1√

2

{∣∣(x3,1)3 , (x1,3)4

〉
+
∣∣(x3,2)3 , (x2,3)4

〉)
} ⊗

∣∣∣P (0→0)
2, 1→1

〉
(5.6)

has eigenvalue 2 due to the two disconnections.
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We can write a general excited state corresponding to length-n paths starting (ending)

at the arrow index a (c) and possessing two disconnections at the sites i and j (0 < i <

j < n) as

∣∣∣P (0→hi)
i, a→bi

〉
⊗
∣∣∣P̄ (h′i→hj)

j−i, b′i→bj

〉
⊗
∣∣∣∣P

(h′j→0)

n−j, b′j→c

〉
(bi 6= b′i, bj 6= b′j), (5.7)

where the arrow indices should be bi 6= b′i and bj 6= b′j for the disconnections. We take all

the heights hi, h
′
i, hj and h′j nonnegative integers. The length-(j − i) paths P̄

(h′i→hj)

j−i, b′i→bj
,

appearing in the middle, start (end) at the height h′i (hj) and the arrow index b′i (bj), but

not restricted to the region y ≥ 0. Note that the first and the last connected components

P
(0→hi)
i, a→bi and P

(h′j→0)

n−j, b′j→c
have the restriction due to the boundary terms Hleft and Hright.

The definition of the state
∣∣∣P̄ (h′i→hj)

j−i, b′i→bj

〉
is similar to (4.2), normalized by the number of

the connected paths P̄
(h′i→hj)

j−i, b′i→bj
. This excited state has energy 2.

5.3 Excited states with K disconnections

A general excited state possessing K disconnections at the sites i1, · · · , iK (0 < i1 <

· · · < iK < n) is expressed as

∣∣∣P (0→hi1 )

i1, a→bi1

〉
⊗
∣∣∣∣P̄

(h′i1
→hi2 )

i2−i1, b′i1→bi2

〉
⊗ · · · ⊗

∣∣∣∣P̄
(h′iK−1

→hiK )

iK−iK−1, b
′
iK−1

→biK

〉
⊗
∣∣∣∣P

(h′iK
→0)

n−iK , b′iK→c

〉

(bi1 6= b′i1 , · · · , biK 6= b′iK ), (5.8)

whereK disconnections mean bi1 6= b′i1 , · · · , biK 6= b′iK . All the heights hi1 , h
′
i1
, · · · , hiK , h′iK

are nonnegative integers. The connected components except the first and last are not

restricted to y ≥ 0. The energy eigenvalue of the state is K, which is equal to the number

of the disconnections.

The K = n− 1 case yields totally disconnected paths. The corresponding states are

not entangled at all, and gain the maximal energy n− 1 due to the disconnections. An

example of such paths and its corresponding state are

x1,2 · · ·x1,2|x3,1, (5.9)
∣∣(x1,2)1

〉
⊗ · · · ⊗

∣∣(x1,2)n−1

〉
⊗
∣∣(x3,1)n

〉
(5.10)

which is depicted in Fig. 13.
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0 1 nn− 1n− 2

Figure 13: The totally disconnected path (5.9). The red vertical line denotes

the disconnection.

5.4 Excited states with localization

5.4.1 Highly excited localized states

For excited states with localization, we first consider highly excited states for the Hamil-

tonian HF , which are partially connected with a large region being totally disconnected

and the complement being fully connected. One such state is given by

|he〉 =
(
⊗ri=1

∣∣(x1,2)i
〉)
⊗ |Pn−r, 1→1〉, (5.11)

with r of the links totally disconnected and the remaining n − r links being the fully

connected {11} state (a ground state for just the n−r links). Such a state has the energy

eigenvalue r. When r is large, the state is highly excited as he in the l.h.s. denotes. This

is shown in Fig. 14.

r n− r

Pn−r, 1→1

1 1 1 1

2 2 2 2

Figure 14: A highly excited state where r links are totally disconnected and the

remaining n− r links are fully connected to the state {11}.

We expect this state to be localized that is the connected part does not interact with

the totally disconnected region, implying no spread of information between these two

regions. To show this, we study the connected time correlations of local operators acting

on these two regions

〈he|θi(t)θj(0)|he〉 − 〈he|θi(t)|he〉〈he|θj(0)|he〉, (5.12)

for local operators at the site i and j: θi and θj . We take j to index a link inside the

connected part of the state on the n− r links and the index i to label a link in the first
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r steps of the chain. We will show that this correlation is zero for the operators acting

on the local Hilbert spaces in this system. These operators include the flip operators

θ
(a1,b1; a2,b2)
i (0) ≡ |xa1,b1〉i〈xa2,b2 |, a1 6= a2 or b1 6= b2, (5.13)

with the arrow indices a1, a2, b1, b2 ∈ {1, 2, 3}, and the diagonal operators

θ
(a,b)
i (0) ≡ |xa,b〉i〈xa,b|, a, b ∈ {1, 2, 3} and a 6= b. (5.14)

When θj(0) is a flip operator, it is easy to note that θ
(a1,b1; a2,b2)
j (0)|he〉 disconnects

the fully connected state on the n−r links and produces a partially connected eigenstate

with a single disconnection, which is not modified by further applying the operator (5.13)

or (5.14) with time evolution θi(t) = eiHF tθi(0)e−iHF t. Since this partially connected

excitation does not have an overlap with |he〉 as the |he〉 has a connected component on

n−r links, we can see that the first and second terms in the correlation (5.12) separately

vanish. Thus, (5.12) is zero.

For cases that operators θm(0) (m = i, j) are diagonal in the local Hilbert space, we

work with

θ
{κ}
i (0) =

3∑

a,b=1,a6=b
κab θ

(a,b)
i (0), θ

{κ′}
j (0) =

3∑

a,b=1,a 6=b
κ′ab θ

(a,b)
i (0), (5.15)

where κab, κ
′
ab are coefficients. The computation goes as follows

θ
{κ′}
j (0)|he〉 =

∑

α

bα|α〉, (5.16)

where |α〉 are partially connected energy eigenstates of HF that have the same form

as |he〉. Namely, the first r links are occupied by the |x1,2〉 state and the remaining

n − r links are connected components in the {11} equivalence class. One of the states

|α〉 also coincides with |he〉, and the coefficients bα depend on κ′ab. Now let us apply

θ
{κ}
i (t) = eiHF tθ

{κ}
i (0)e−iHF t,

eiHF tθ
{κ}
i (0)e−iHF t

∑

α

bα|α〉 = κ12

∑

α

bα|α〉, (5.17)

as the first r links are totally disconnected and composed only by |x1,2〉. Thus we have

〈he|θ{κ}i (t)θ
{κ′}
j (0)|he〉 = κ12bhe. (5.18)

On the other hand, it is easy to see

〈he|θ{κ}i (t)|he〉 = κ12, 〈he|θ{κ
′}

j (0)|he〉 = bhe, (5.19)
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which leads to the vanishing connected correlator:

〈he|θ{κ}i (t)θ
{κ′}
j (0)|he〉 − 〈he|θ{κ}i (t)|he〉〈he|θ{κ

′}
j (0)|he〉 = 0. (5.20)

Similarly, the correlator vanishes for cases of θi being flipping and θj diagonal.

General local operators acting on the local Hilbert space of the modified Fredkin

chain can be constructed by linear combinations of the flip and diagonal operators (5.13)

and (5.14) as

θ{κ}m (0) =
∑

a1 6=a2 or b1 6=b2

κ(a1,b1; a2,b2)θ
(a1,b1; a2,b2)
m (0) +

3∑

a,b=1,a6=b
κab θ

(a,b)
m (0) (5.21)

with κ(a1,b1; a2,b2) and κab coefficients. Thus, the connected correlators (5.12) for all the

local operators vanish, implying there is no spread of information between the discon-

nected and the connected regions of |he〉.
Not strictly local operators Ôi (Ôj) with some locality range ∆ around i (∆′ around

j) are expressed by products of (5.21):

Ôi,∆(0) ≡
i+∆∏

`=i−∆

θ
{κ`}
` (0), Ôj,∆′(0) ≡

j+∆′∏

`=j−∆′

θ
{κ`}
` (0). (5.22)

We can again show that the connected correlator vanishes when i + ∆ < r < j −
∆′ (Ôi,∆(0) acting only on the totally disconnected links, and Ôj,∆′(0) only on the

connected n− r links).

5.4.2 Generalization

Here we discuss the localization for the excited states with K disconnections (5.8). The

point in the previous cases is that the states
(
⊗ri=1

∣∣(x1,2)i
〉)

and |Pn−r, 1→1〉 in (5.11)

undergo independent time evolutions even after the action of the local operators, from

which we can easily see

〈he|Ôi,∆(t)Ôj,∆′(0)|he〉 = 〈he|Ôi,∆(t)|he〉〈he|Ôj,∆′(0)|he〉, (5.23)

meaning that the connected correlation function is zero. This point of view immediately

allows us to show the localization for the states (5.8). The two point connected corre-

lation function of Ôi,∆(t) and Ôj,∆′(0) on the state (5.8) vanishes, when the connected

component including the range [i − ∆, i + ∆] does not overlap with [j − ∆′, j + ∆′].

In cases that a single connected component does not cover the range [i − ∆, i + ∆] or

[j−∆′, j+∆′], we consider the minimal connected components that can cover the range.

When the minimal connected components for the range [i − ∆, i + ∆] do not overlap
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those for [j − ∆′, j + ∆′], the two-point connected correlator vanishes. Fig. 15 shows

examples for the case giving the vanishing connected correlator (upper panel) and the

case when the correlator is nonvanishing (lower panel). In the former case, information

is confined in the minimal connected components.

b bb b b

0 niKi1

0 niKi1

b b b bb b

b

i−∆

i−∆

i+∆

i+∆

j −∆′

j −∆′

j +∆′

j +∆′

Figure 15: In both of the two panels, the red vertical lines show disconnections

and the blue lines represent the locality ranges of the operators Ôi,∆(0) and

Ôj,∆′(0). Upper panel: two connected components that cover the range [i −
∆, i+∆] are distinct from those that cover [j−∆′, j+∆′], yielding the vanishing

connected correlation function. Lower panel: two connected components covering

[i−∆, i+∆] have an overlap with those covering [j−∆′, j+∆′]. The correlator

does not vanish in general.

In this subsection, we have localized states that are (highly) excited in the spectrum

of the modified Fredkin chain. It is also worth noting that no disorder was introduced

into the system to create these localized many-body states, which are in contrast to the

ordinary cases of Anderson localization [10] or many-body localization [11] 8. This is

consistent with the fact that we have conserved operators in this system given by

O(ab,cd)
i, i+1 ≡

∣∣∣(xa,b)i , (xc,d)i+1

〉〈
(xa,b)i , (xc,d)i+1

∣∣∣ (a 6= b, b 6= c, c 6= d), (5.24)

where i runs from 1 to n−1. These operators are the summand of Hbulk, disconnected (2.8).

It is easy to see that they commute with the Hamiltonian HF and mutually commute, as

noted earlier. The number of the operators (5.24) is 24(n−1), whereas the total degrees

of freedom of the system is 6n.

8 For reviews, see [12–14].
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6 Discussions

In this paper, we have constructed an extended model of the Fredkin spin chain based on

the SIS S3
1 . It is similar to the previous work for the modified Motzkin spin chains [5],

although the connection to the SIS is less and partial because of the absence of the

elements corresponding to flat steps xa,a (a = 1, 2, 3). In the parameter space (λ1, λ2)

with nonnegative λ1 and λ2 satisfying λ1λ2 = 0, we have found the three phases, I)

λ1 > 0, λ2 = 0, II) λ1 = λ2 = 0 and III) λ1 = 0, λ2 > 0. In I), there are four degenerate

ground states, which exhibit a logarithmic violation of the area law of the EE, signaling

quantum criticality. Although the EE obeys the area law for both of II) and III), GSD

grows with the length of the system in II), whereas GSD is fixed to 2 in III). Quantum

phase transitions occur at the boundaries of the phases. As a feature of the extended

model, there are excited states due to disconnections with respect to arrow indices,

which exhibit localization phenomena without any disorder, in contrast to the usual case

of Anderson and many-body localization. It is clear that the same localization takes

place in the modified Motzkin model, although such excitations are not discussed in [5].

In the forthcoming paper [15], we investigate the extended model with color degrees

of freedom, which is based on the SIS S3
2 and its generalizations. Similar to what was

seen in the modified Motzkin case [5], the model has stronger entanglement, i.e. the EE

of the ground states is proportional to the square root of the volume. The localization

properties of excited states are also discussed.

Deformations of the Motzkin and Fredkin spin chains discussed in refs. [16–19] change

the equal weighted sum over the paths in the ground state to a weighted sum, which

realizes the extensive EE proportional to the volume. It is interesting to realize the

volume law or other scaling properties of EE in our setting associated to SISs.
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