
Noname manuscript No.
(will be inserted by the editor)

Practical Integer-to-Binary Mapping for Quantum Annealers

Sahar Karimi · Pooya Ronagh

Received: date / Accepted: date

Abstract Recent advancements in quantum annealing hardware and numerous studies in this area
suggests that quantum annealers have the potential to be effective in solving unconstrained binary
quadratic programming problems. Naturally, one may desire to expand the application domain of
these machines to problems with general discrete variables. In this paper, we explore the possibility
of employing quantum annealers to solve unconstrained quadratic programming problems over a
bounded integer domain. We present an approach for encoding integer variables into binary ones,
thereby representing unconstrained integer quadratic programming problems as unconstrained bi-
nary quadratic programming problems. To respect some of the limitations of the currently developed
quantum annealers, we propose an integer encoding, named bounded-coefficient encoding, in which
we limit the size of the coefficients that appear in the encoding. Furthermore, we propose an al-
gorithm for finding the upper bound on the coefficients of the encoding using the precision of the
machine and the coefficients of the original integer problem. Finally, we experimentally show that
this approach is far more resilient to the noise of the quantum annealers compared to traditional
approaches for the encoding of integers in base two.

Keywords Adiabatic Quantum Computation, Integer Programming, Integer Encoding, Bounded-
Coefficient Encoding

1 Introduction

Adiabatic quantum computation (AQC) has been proposed as a successful technique for solving
certain classes of optimization problems (see [1,6,15,18]). In particular, quantum annealers (QA)

Sahar Karimi (corresponding author)
1QB Information Technologies (1QBit)
E-mail: sahar.karimi@gmail.com

Pooya Ronagh
1QB Information Technologies (1QBit)
E-mail: pooya.ronagh@1qbit.com

ar
X

iv
:1

70
6.

01
94

5v
1

 [
qu

an
t-

ph
]

 6
 J

un
 2

01
7

2 Sahar Karimi, Pooya Ronagh

such as the ones manufactured by D-Wave Systems Inc. [8] approximate the adiabatic evolution
in the presence of various sources of noise and finite temperature to solve Ising models of the
form

min
s∈{±1}n

stJS + hts , (Ising)

where diagonal entries of J are zeroes, and the nonzero entries of J create a subgraph of a sparse
graph called a Chimera graph [4]. Many researchers have explored the applicability of quantum
annealing to more-general optimization problems. Solving Ising models without the Chimera graph
structure on a QA is discussed in [5]. Degree reduction techniques, such as the one described in
[7], enable us to solve unconstrained binary polynomial programming problems of higher order
using a QA. Several studies [16,17,20,22] have employed quantum annealing for solving real-world
applications, and [9] discusses the possibility of using QAs for solving constrained problems.

Many optimization problems, on the other hand, involve integer-valued variables beyond binary
values. Examples of such problems could be the number of vehicles or products travelling along
each route of a supply chain (see [19]), or the number of traded assets in portfolio optimization (see
[13]). This paper focuses on solving quadratic problems on bounded integer domains, alternatively
referred to as unconstrained integer quadratic programming (UIQP) problems, i.e., problems of the
following form:

min xTQx+ qtx,
s.t. xi ∈ {0, 1, 2, . . . , κxi} for i = {1, 2, . . . , n}, (UIQP)

where κxi ∈ Z+ is an upper bound on xi; here, Z+ denotes the set of non-negative integers. Note that
in problems where xi ∈ {α, α+ 1, α+ 2, . . . , α+κxi}, we may shift xi and substitute it with xi−α;
hence, without loss of generality, we may assume that the domain of xi starts at 0. It is worth
mentioning that, although current QAs are limited to representing Ising models, an alternative
approach to encoding bounded integer variables in terms of spin variables is to consider physical
implementations of quantum processors as representing Potts-Ising models [3,11]. Our approach is
different and is based on reformulating a UIQP problem as an Ising model. To this end, we represent
each integer variable as a linear combination of several binary variables, i.e.,

xi =

dxi∑
j=1

cxij y
xi
j = (cxi)tyxi , (1)

where cxij ∈ Z+, yxij ∈ {0, 1} for j ∈ {1, . . . , dxi}, and the superscript xi is used for clarity to
denote that cxi and yxi correspond to the encoding of variable xi. This representation is referred
to as integer encoding . Some of the well-known integer encodings are binary and unary encodings
in which cxij = 2j−1 and cxij = 1, respectively. The width of an integer encoding, denoted by dxi in
(1), refers to the number of binary variables required for encoding integer variable xi. The width
of binary and unary encodings are blog2(κxi)c+ 1 and κxi , respectively. Since a binary variable yj
could be represented with a spin variable sj via the affine transformation

yj =
1

2
(sj + 1) , (2)

Practical Integer-to-Binary Mapping for Quantum Annealers 3

integer variable xi could be encoded into several spin variables as

xi =
1

2

 dxi∑
j=1

cxij +

dxi∑
j=1

cxij s
xi
j

 , (3)

which enables us to successfully represent a UIQP as an Ising model.

After derivation of an Ising model equivalent to (UIQP), heuristic methods including quantum
annealing could be employed to find the ground state of the problem. The performance of the
heuristic methods highly depends on the energy landscape of the problem. In particular, landscapes
with tall barriers are challenging for the hill-climbing heuristics, and having wide barriers could
impact the performance of methods like quantum annealing that could potentially benefit from
quantum tunnelling (see [10] and references therein for more details). Having coefficients that are
different in orders of magnitude is undesirable, as they could create energy landscapes with tall and
wide barriers. Moreover, D-Wave quantum annealers have only a low precision of approximately
10−2 for couplings’ strengths and local fields’ biases (i.e., entries of J and h in (Ising)), scaling J
and h to a very limited range, (e.g., [−2, 2]). Several sources of noise such as thermal excitations and
control errors contribute to the low precision of the machines; in [2], Albash et al. propose a noise
model for D-Wave devices that includes the control noise of the local field and couplings of the chip.
Zhu et al. [21] show that increasing the classical energy gap beyond the intrinsic noise level of the
machine can improve the success of the D-Wave Two QA. In [21], resilience is defined as a metric
for measuring the resistance of a problem to noise. More precisely, resilience is the probability that
the ground state does not change under random field fluctuations found on the chip. In this paper,
we argue that restricting the range of the coefficients of a problem could improve resilience; and
our results, presented in Section 4 of this paper, support this argument

Studies in [12,14] suggest that QAs could be biased in finding degenerate ground states; in other
words, sampling with QAs does not return different degenerate solutions with uniform probability.
Moreover, degenerate ground states are easier to reach; therefore, benchmarks created for QAs
tend to avoid degeneracy and have a unique ground state [10]. While there is a need to rigorously
study whether highly degenerate low-energy excited states could impact reaching the ground state,
avoiding degeneracy could be an alternative. Recall that in integer encoding, an integer variable, x,
is substituted with cty, where we assume c ∈ Zd+ and y ∈ Bd. Any binary vector y returns an integer
value. If the total number of binary combinations, i.e., 2d, is larger than the summation of entries
of c, i.e.,

∑d
i=1 ci, some of the integers occur at more than one binary combination. The code-word

of an integer value χ, for χ ∈ {1, 2, . . . , κ}, refers to the cardinality of the set {y : cty = χ}. Code-
words more than one is what we refer to as redundancy in this paper. Under the assumption that
the QA is inclined to observe integers with higher code-words, it is ideal in an integer encoding to
have a unique code-word for all integers. Binary encoding, for example, keeps the code-word of each
integer uniformly at one, but the code-word in unary encoding is highly variant and the redundancy
has its peak at

⌈
κ
2

⌉
with word count

(
κ
dκ2 e
)
.

This work presents an integer encoding with minimal width that creates noise-resilient Ising models.
Since one or several qubits is assigned to each spin variable and the number of qubits on a chip
is limited, it is desirable to keep the size of the Ising model, and thus the width of the encoding,
as small as possible. Binary encoding has the minimum width and uniform code-word; however,
the coefficients cj ’s in the binary encoding could get arbitrarily large and result in an error-prone

4 Sahar Karimi, Pooya Ronagh

(noisy, non-resilient) Ising model. On the other hand, unary encoding does not expand the range
of the coefficients of the problem, but it has an exceedingly large degree and redundancy.

The notation used in this paper is as follows. Generally, we reserve the upper-case letters, lower-
case letters, and Greek alphabet for matrices, vectors, and scalars, respectively, with only a few
exceptions; these exceptions, however, should be clear from the context. An all-ones vector and the
identity matrix are denoted by e and I, respectively. Entries of a vector or matrix are differentiated
with subscript indices. d·e and b·c denote the ceiling and floor of a number, respectively. The log(·)
function is in base two; and sgn(α) returns the sign of α. The function δ(A) : Rn×n → Rn returns
a vector with the diagonal entries of A; and the function ∆(a) : Rn → Rn×n returns a diagonal
matrix with entries of a on the diagonal.

This paper is organized as follows. In the next section, we present bounded-coefficient encoding
under the assumption that an upper bound on the coefficients of the integer encoding is available.
In Section 3, we present how, given the precision, we may find an upper bound on the coefficients of
the integer encoding. We test our algorithm by comparing binary and bounded-coefficient encodings
in Section 4. Finally, we conclude our discussion in Section 5.

2 Bounded-Coefficient Encoding

Let x be an integer variable with upper bound κx, and µx be an upper bound on the coefficients of
the integer encoding. In other words, we represent x as

x = cty, (4)

where y ∈ Bdx , c ∈ Zdx+ , and ci ≤ µx for i = 1, . . . , dx. The encoding we propose in this paper,
which we refer to as bounded-coefficient encoding, is summarized in the following algorithm:

Notice that if κx < 2blog µ
xc+1, then the binary encoding respects the upper bound on the coeffi-

cients. These cases are captured in (5), and the width of encoding in these instances is blog(κx)c+
1.

When κx ≥ 2blog µ
xc+1, the encoding is derived using (6) and the width of the bounded-coefficient

encoding is

dx =

{
ρ+ η + 1 if ν − ηµ 6= 0

ρ+ η otherwise
. (7)

Here are a few demonstrative examples of bounded-coefficient encoding:

– κ = 12 and µ = 8, the bounded-coefficient encoding is c = [1, 2, 4, 5]
t
;

– κ = 20 and µ = 6, the bounded-coefficient encoding is c = [1, 2, 4, 6, 6, 1]
t
.

We assume κx � 2blog µ
xc+1 when we refer to the bounded-coefficient encoding, and our general

statements are focused on these cases where we have multiple coefficients of size µx. Propositions 1
and 2, also, refer to these cases described by (6); these propositions hold true for binary encoding;
hence, they hold for the cases that are derived with (5), such as our first example above.

Definition 1 An encoding c is called κ-complete if it can encode only and all integers {0, 1, . . . , κ}.

Practical Integer-to-Binary Mapping for Quantum Annealers 5

Algorithm 1 Bounded-Coefficient Encoding

Inputs:
κx: upper bound on the integer variable x
µx � κx: upper bound on the coefficients of the encoding

Output:
cx: integer encoding coefficients

if κx < 2blog(µx)c+1

return

cx =

20, 21, . . . , 2blog(κx)c−1, κx −
blog(κx)c∑
i=1

2i−1

 (5)

else

compute ρ = blog µxc+ 1, ν = κx −
∑ρ
i=1 2i−1, and η =

⌊
ν
µx

⌋
return vector cx with entries

cxi =

2i−1 for i = 1, . . . , ρ

µx for i = ρ+ 1, . . . , ρ+ η

ν − ηµx for i = ρ+ η + 1 if ν − ηµx 6= 0

(6)

Proposition 1 The bounded-coefficient encoding, generated by Algorithm 1, is κx-complete.

By the first part of our encoding, i.e., 1, . . . , 2ρ−1, we can encode all integers {0, 1, . . . , µx}. By
adding µx to those binary combinations, we can generate all integers from µx to 2µx; if we add two
µx factors, we get integers 2µx to 3µx, and so on. Finally, we are guaranteed that we get integers
ηµx to κx because κx − ηµx <

∑ρ
i=1 2i−1 − µx by the fact that ν − ηµx < µx.

Definition 2 A sub-encoding c̃ of an encoding c is a choice of entries of c, with a fixed ordering
arranged in a column vector c̃.

Proposition 2 Bounded-coefficient encoding, generated by Algorithm 1, has minimum width among
all κx-complete integer encodings of the form (1) that respect an upper bound on their coefficients.

Proof Our arguments rely on the optimality of binary encoding, or, more rigorously, the following
points:

(a) binary encoding has minimum width; in other words, the binary encoding of values {0, 1, . . . , µx}
has width dB = blogµxc + 1, and no other µx-complete integer encoding could have a width
less than dB .

(b) binary encoding of width dB , i.e.,
(
20, 21, 22, . . . , 2dB−1

)
, encodes integers of maximum value

2dB − 1; i.e.,
∑dB−1
i=0 2i = 2dB − 1. Notice that by (a), this is the largest number that can have

an encoding of width dB .

It is worth mentioning that if κx < 2blog µ
xc+1, then the bounded-coefficient encoding has width

blog κxc+ 1, and by (a) has minimum width.

6 Sahar Karimi, Pooya Ronagh

For more-general cases, our proof is by contradiction. Suppose c is the bounded-coefficient encoding
derived by Algorithm 1, and f is a bounded-coefficient encoding of smaller width; i.e., dc > df . Let
fµ be the minimal sub-encoding of f that encodes {0, 1, . . . , µx}, and let dfµ ≤ df be the width
of fµ. Similarly, cµ in the bounded-coefficient encoding derived by Algorithm 1 refers to the sub-
encoding of c required to encode integers less than or equal to µx. As implied by Algorithm 1 and
(6), dcµ = ρ. By (a), we conclude dfµ ≥ ρ. We can, now, consider two cases: dfµ = ρ and dfµ > ρ.

Consider the case where dfµ = ρ. By (a) and (b),
∑
α∈cµ α ≥

∑
α∈fµ α; therefore, κx−

∑
α∈fµ α ≥ ν,

where ν is as defined in Algorithm 1. Since all of the coefficients need to be bounded by µx, and by

the fact that
κx−

∑
α∈fxµ

α

µx ≥ ν
µx , we conclude that having df < dc is impossible.

Consider now the case that dfµ ≥ ρ+1. As all of our coefficients are bounded by µx,
∑
α∈fµ α < 2µx;

otherwise, this contradicts that fµ is the minimal sub-encoding required to encode integers less than
or equal to µx. While

∑
α∈fµ α < 2µ,

∑
α∈cµ α+ µ ≥ 2µ. Similar to the previous case, we conclude

that κx −
∑
α∈fµ α > κx −

∑
α∈cµ α+ µx; hence, df < dc would not be possible. ut

As mentioned earlier, a potentially advantageous property of an integer encoding is uniform or
low-variant redundancy. In general, the bounded-coefficient encoding has redundancy because we
have more than one coefficient with a value of µ. It is, however, worth mentioning that forcing
the following constraints on the binary variables of (4) makes the word count of each integer value
unique: ∑ρ

j=1 cjyj ≥ (2ρ − µx)yi for i = ρ+ 1,

yi ≥ yi+1 for i = ρ+ 1, . . . , dx − 1,∑ρ
j=1 cjyj ≥ (2ρ − cdx)ydx .

(8)

Note that (2ρ − µx) ≤ µx; however, (2ρ − cdx) may not necessarily be less than or equal to µx.
If we wish to limit the coefficients of our constraints to µx, we can substitute (2ρ − cdx)ydx in
the right-hand side of the last inequality with µxydx−1ydx + (2ρ − µx − cdx)ydx whenever 2ρ −
cdx > µx. Handling constraints, despite being possible, is non-trivial for QA; it may introduce
exceedingly large coefficients (see discussion in [9]), and could be contradictory to the purpose of
this work.

As we presented earlier in (2) and (3), we may directly encode integer variables into spin variables.

Moreover, by the fact that in the bounded-coefficient encoding
∑dx

j=1 cj = κx, the encoding of each
integer variable into spin variables would be

x =
1

2

κx +

dx∑
j=1

cxj s
x
j

 . (9)

In the next section, where we try to find the upper bound on the coefficients of the encoding, i.e.,
µx, we use the integer-to-spin transformation.

3 Finding the Upper Bound on the Coefficients of the Encoding

We explained earlier, in Section 1, that the QA scales the coefficients of an Ising model to a
limited range and has low precision. We also mentioned that resilience to noise could be helpful in

Practical Integer-to-Binary Mapping for Quantum Annealers 7

overcoming the issue of precision. We propose that restricting the range of the coefficients of the
problem could improve resilience. To this end, we wish to find upper bounds on the coefficients of
the encoding, i.e., µ, such that after the encoding of the integer problem (UIQP) to an Ising model
(Ising), the ratio of the smallest local field in magnitude to the largest one exceeds a threshold,
i.e.,

mini |hi|
maxi |hi|

≥ εl. (10)

Similarly, we wish to bound the ratio of the smallest coupler to the largest one:

mini,j |Jij |
maxi,j |Jij |

≥ εc. (11)

Alternatively, one may desire to have the local fields biases and couplings’ strengths well-separated
to avoid the effect of noise, or in other words, having

min
i,j
|hi − hj | ≥ εl,

and

min
i,j
l,k

|Jij − Jlk| ≥ εc,

could be desirable. In this paper, however, we focus merely on inequalities (10) and (11).

Suppose we have a quadratic function

f(x) = xtQx+ qtx, (12)

where Q is symmetric and the domain of f(x) is x = [x1, x2, . . . , xn]
t

for xi ∈ {0, 1, . . . , κxi}. Note
that this is the function which we aim to minimize in (UIQP). Also, note that since xixj = xjxi for
two integers xi and xj , we may substitute Q with 1

2 (Q+Qt) when Q is not symmetric. Of course,
everything presented here is under the assumption that the coefficients of the problem (before any
encoding) respect inequalities (10) and (11), i.e., unary encoding satisfies them. Let us define the
encoding matrix denoted by C as

C =

cx1
1 cx1

2 . . . cx1

dx1 0 0 . . . 0 0 0 0 0 . . . 0
0 0 . . . 0 cx2

1 cx2
2 . . . cx2

dx2 0 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
...

. . .
. . .

. . .
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . 0 0 0 cxn1 cxn2 . . . cxndxn

 , (13)

and the vector of spin variables as

s =
[
sx1
1 sx1

2 . . . sx1

dx1 s
x2
1 sx2

2 . . . sx2

dx2 s
xn
1 sxn2 . . . sxndxn

]t
. (14)

Using (9), we conclude that the encoding of integer variables, x, into spin variables, s, refers to the
following substitution:

x =
1

2
(κ+ Cs) , (15)

8 Sahar Karimi, Pooya Ronagh

where κ = [κx1 , κx2 , . . . , κxn]
t

is the vector of all of the upper bounds on the integer variables.
Using this substitution in (12), we get

f(s) =
1

4
st
(
CtQC −∆(δ(CtQC))

)
s +

1

2

(
CtQκ+ Ctq

)t
s

+
1

4

(
κtQκ+ et∆(δ(CtQC))e+ 2qtκ

)
. (16)

We are excluding the diagonal entries of CtQC in the quadratic term because they correspond to the
square of spin variables, i.e., s2i , and s2i is a constant equal to one. The local field bias corresponding
to each spin variable and the coupling strength corresponding to each pair of spin variables, derived
in (16), is summarized below:

sxij :
1

2
[Qκ+ q]i c

xi
j =

1

2

(
qi +

n∑
k=1

Qikκk

)
cxij , (17)

sxik s
xi
l :

(Qiic
xi
k c

xi
l)

2
for k, l ∈ {1, . . . , dxi} and k < l, (18)

sxik s
xj
l :

(
Qijc

xi
k c

xj
l

)
2

for k ∈ {1, . . . , dxi}, l ∈ {1, . . . , dxj}, and i, j ∈ {1, . . . , n} : i < j, (19)

where [Qκ+ q]i in the first line denote the i-th entry of vector Qκ + q, as expected, and (18) and
(19) incorporate the fact that sxik s

xi
l = sxil s

xi
k and sxik s

xj
l = s

xj
l s

xi
k .

Since all of the local fields biases and couplings’ strengths share the 1
2 factor and after rescaling our

concern is their ratio, we will drop the 1
2 factor for our calculations in the rest of this section. From

the previous section and the derivation of the bounded-coefficient encoding, we conclude that the
smallest coefficient used in the encoding is 1; hence, the minimum absolute value of the local fields
biases is

ml = min
i
{ |[Qκ+ q]i| } ,

and the minimum absolute value of couplings’ strengths is

mc = min
i,j
{ |Qii| , |Qij | } .

The maximum absolute value of the local fields biases among all spin variables corresponding to an
integer variable xi occurs at µxi—to be found—for each i ∈ {1, . . . , n}. Therefore, by (10), we wish
to have:

ml

| [Qκ+ q]i |µxi
≥ εl. (20)

Similarly, (11) enforces the following conditions for the couplers:

mc

|Qii|(µxi)2
≥ εc, and

mc

|Qij |µxiµxj
≥ εc. (21)

Practical Integer-to-Binary Mapping for Quantum Annealers 9

Using (20) and (21), we wish to obtain µxi ’s that satisfy the following set of inequalities:

µxi ≤ ml

|[Qκ+ q]i| εl
(22)

µxi ≤
√

mc

|Qii|εc
, (23)

µxiµxj ≤ mc

|Qij |εc
. (24)

We may solve a feasibility problem to find a solution to the above set of inequalities, i.e., an
optimization or auxiliary objective function along with these inequalities. A well-justified objective
function could be max mini{µxi}. Solving such problems is normally costly because (24) is non-
convex and µxi ’s are required to be integers. Alternatively, we present an algorithm below that
heuristically finds µxi ’s.

Note that any set of µxi ’s satisfying the above inequalities will guarantee that (10) and (11) hold.
Our proposed algorithm for finding µxi ’s first initializes µxi ’s using inequalities (22) and (23). If
(24) is satisfied for all i and j at this step, it terminates. Otherwise, it greedily decrease µxi or µxj

for an i and j pair for which the failure happened. In this process, we take κxi

µxi as an estimate on
the width of the encoding, so when we want to decrease either µxi or µxj , we choose the one that
gives a lower combined width. See Algorithm 2 for a formal presentation of this algorithm.

Algorithm 2 Finding the Upper Bounds on the Coefficients of the Encoding

Inputs:
κ, q, Q, εl, εc
compute Qκ+ q
set ml = mini

{∣∣ [Qκ+ q]i
∣∣}, and mc = mini,j {|Qii|, |Qij |}

Output:
µxi for i = 1, 2, . . . , n

initialize µxi =

⌊
min

{
ml

| [Qκ+q]i |εl
,
√

mc
|Qii|εc

}⌋

while any
(
µxiµxj > mc

|Qij |εc

)
let i, j = arg maxi,j

{
µxiµxj − mc

|Qij |εc

}
let ξi = κxi

µxi−1
+ κ

xj

µ
xj and ξj = κxi

µxi
+ κ

xj

µ
xj−1

if ξi < ξj
µxi = µxi − 1

else
µxj = µxj − 1

It is worth mentioning that if we wish to keep µxi ’s for all integer variables equal, we may use the
value

µ = min
i
{µxi}. (25)

10 Sahar Karimi, Pooya Ronagh

Moreover, if in (12) the quadratic terms were missing, i.e., f(x) = qtx, we would get

f(s) =
1

2
qt (κ+ Cs) =

1

2
qtκ+

1

2

(
Ctq

)t
s. (26)

Ignoring the 1
2 factor (since it is common for all spin variables), we get ml = mini {|qi|}, and our

ratio condition reduces to
ml

|qi|µxi
≥ εl; (27)

therefore,

µxi =

⌊
ml

|qi|εl

⌋
. (28)

Finally, we would like to point out that unlike QA, in several heuristic methods, variables tend to
be binary, i.e., in the {0, 1} domain referred to as binary. In Appendix A, we present a modification
of the method in this section that could be employed in this case.

4 Numerical Experiment

In this section, we test the bounded-coefficient encoding. We compare binary and bounded-coefficient
encodings on ten randomly generated instances. To diversify our instances, however, we use several
procedures to generate them. Let us define the set Uα = {0, ±1, ±2, . . . , ±α}. In all of our in-
stances, we have five integer variables, i.e., n = 5; the upper-bound on all of the integer variables
is 50, i.e., κxi = 50 for i = 1, . . . , 5; and the matrix Q in the quadratic term has a sparsity around
50%. In half of our instances, the generated Q is positive definite, and in the rest it is indefinite;
these two categories are referred to as convex and non-convex instances, respectively.

For the convex instances, entries of matrix Q are initially drawn from U2; then, λI is added to Q
to make Q positive definite. Our choice of λ is d|min{λmin, 0}|+ re, where λmin is the minimum
eigenvalue of Q and r is a random number between 0 and 1. A feasible sparse integer vector, i.e., x∗,
where x∗i ∈ {0, 1, . . . , 50} if x∗i 6= 0, is then generated, and we set q = −2Qx∗. Note that by the fact
that Q is positive definite and by our choice of q, x∗ is the unique optimal solution to the generated
instance of (UIQP). These instances are shown with the prefix convex in Tables 1 and 2. In the
non-convex instances, entries of Q and q are from separate Uα’s. We denote these instances with
pairs (UQ, Uq), where UQ and Uq are distributions for the quadratic terms (Q) and linear terms (q),
respectively. Our data sets are (U2, U200), (U5, U200), (U5, U10), (U5, U100), and (U10, U0).

As mentioned earlier, we take resilience as the measure of success. More specifically, we hypothesized
that the bounded-coefficient encoding is a technique for representing a UIQP problem as a UBQP
problem that is more robust against noise, and resilience directly measures the robustness of an
instance of UBQP against noise. In [21], the resilience R of an instance is defined as

R =
nsame

ntrial
, (29)

where nsame is the number of times, among all ntrial, that the original ground state does not
change with random noise perturbations. In other words, ntrial different noise matrices with entries
drawn from the normal distribution N (0, ε) are generated; each is added to a scaled Ising model

Practical Integer-to-Binary Mapping for Quantum Annealers 11

Table 1 Resilience with Bounded-Coefficient Encoding.

Ins.
ε

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

convex-1 1.0 1.0 0.6 0.4 0.8 0.5 0.2 0.1 0.1 0.0
convex-2 0.7 0.5 0.4 0.1 0.2 0.0 0.0 0.2 0.0 0.0
convex-3 1.0 0.7 0.6 0.5 0.2 0.1 0.0 0.1 0.0 0.0
convex-4 1.0 0.9 0.6 0.3 0.2 0.1 0.1 0.0 0.1 0.0
convex-5 1.0 1.0 0.5 0.6 0.3 0.4 0.2 0.2 0.4 0.1

(U2, U200) 1.0 1.0 1.0 1.0 0.9 1.0 0.9 0.8 1.0 0.8
(U5, U200) 1.0 0.9 0.9 0.9 0.8 0.4 0.7 0.8 0.5 0.6
(U10, U0) 1.0 0.8 0.4 0.3 0.4 0.1 0.4 0.2 0.1 0.2
(U5, U10) 1.0 1.0 1.0 0.9 0.7 0.9 0.4 0.4 0.6 0.7
(U5, U100) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7 0.7 0.6

average 0.97 0.88 0.7 0.6 0.55 0.45 0.39 0.35 0.35 0.3

Table 2 Resilience with Binary Encoding.

Ins.
ε

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

convex-1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
convex-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
convex-3 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
convex-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
convex-5 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

(U2, U200) 0.6 0.4 0.2 0.1 0.3 0.1 0.3 0.1 0.4 0.2
(U5, U200) 0.5 0.7 0.3 0.4 0.5 0.3 0.2 0.5 0.2 0.2
(U10, U0) 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(U5, U10) 0.3 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0
(U5, U100) 0.5 0.3 0.1 0.4 0.3 0.4 0.3 0.1 0.4 0.1

average 0.26 0.15 0.07 0.11 0.12 0.09 0.09 0.08 0.11 0.05

and the perturbed Ising model is solved exactly. nsame, then, refers to the number of times that
the perturbed Ising model returns the same ground state as the unperturbed one. The number
of trials, ntrial, in our experiment is set to 10. We take εl and εc to be 0.01, and we scale Ising
models to J ∈ [−1, 1] before adding the noise. After finding the upper bound on the coefficients of
the encoding, with Algorithm 2 and εl = εc = 0.01, we obtain Isingbounded through the bounded-
coefficient encoding. Also, by using the binary encoding, we derive Isingbinary. Then, we measure the
resilience of each of these Ising models at ε ∈ {0.001, 0.002, . . . , 0.01}. The resilience of Isingbounded
and Isingbinary are summarized in Tables 1 and 2, respectively. The bounded-coefficient encoding
has significantly outperformed the binary encoding; Isingbounded is five times more resilient to noise
than Isingbinary, on average. Also, in most of our test cases, the convex instances and (U10, U0),
the resilience is almost zero with the binary encoding, except for a few exceptions at ε = 0.001,
whereas for bounded-coefficient encoding, the resilience stays above zero and is considerably large
for ε ≤ 0.005. In order to visualize the difference between the two encodings, we plot the average
resilience (over all instances) with respect to ε, the standard deviation of the added noise, in Figure
1. It is obvious from this plot that the resilience with binary encoding stays marginally above 0, but
for the bounded-coefficient encoding it decreases at a slower rate and remains considerably above
0.

Note that in [21], it is suggested to set ε = 2
Jmax

, where Jmax is the largest Jij . Here, our approach
slightly differs. We assume that we know the precision of the machine, and we derive the upper

12 Sahar Karimi, Pooya Ronagh

Fig. 1 Resilience Averaged over All of the Instances.

bound on the coefficients of our encoding to accommodate this restriction. The precision of the
current D-Wave machine is in order of 10−2, which motivates our choice of ε = 10−2.

5 Conclusion and Discussion

In this paper, we presented an encoding to represent an unconstrained integer quadratic program-
ming problem as an Ising model. To deal with the low precision of quantum annealers, we suggested
bounding the value of the coefficients in the encoding. This restricts the range of the local fields
biases and couplings’ strengths in the derived Ising model, thereby creating Ising models that are
more robust against noise after scaling. Resilience is used as a metric for the robustness of the
Ising models. We compared bounded-coefficient encoding with the binary encoding. We infer from
our results that bounding the coefficients of the encoding, as in the bounded-coefficient encoding,
significantly improves the resilience of the model. The drawbacks are that the size of the derived
Ising model is larger and it introduces redundancy.

In our proposed technique, we forced the ratios of the minimum absolute value of the local fields bi-
ases and the couplings’ strengths to their respective maximums exceed a certain threshold tolerance
that is correlated or equal to the quantum annealer’s precision. However, all of our calculations are
embedding-free, i.e., they ignore the Chimera graph structure. In theory, having an embedding with
equal chain length for all variables and equal chain connectivity for any present quadratic terms
will respect our calculation; however, finding such an embedding is nontrivial. Notice that, after
the encoding, all spin variables corresponding to an integer variable are connected; additionally, all
spin variables corresponding to xi and xj are connected if the term xixj appears in the integer for-

Practical Integer-to-Binary Mapping for Quantum Annealers 13

mulation; so, the underlying graph of the Ising model is quite dense. Even for our small instances,
the resulting Ising models either exceed the size that can be embedded on the current chip, or
the chains’ lengths differ in orders of magnitude (e.g., minimum and maximum chain lengths in
orders 1 and 10, respectively). Our algorithm can be tested on the future generation of the quantum
annealers with improved connectivity.

According to our results in the previous section, using εl = εc = 0.01 to find the upper bound on
the coefficients of the encoding, the derived Ising model stays robust against noise, with an average
resilience above 0.5, and minimum resilience above 0.1 for ε = 0.005, i.e., εc

2 . This could suggest
using 2εQA as εl and εc for finding the upper bounds on the coefficients of the encoding, where εQA
is the precision of the quantum annealer. This, however, requires more experimentation and could
be an avenue for future study.

A (Integer-to-Binary Encoding)

In this section, we aim to find the upper bounds on the coefficients of the integer encoding when we reduce an
unconstrained integer quadratic programming (UIQP) problem to an unconstrained binary quadratic programming
(UBQP) problem in the {0, 1} domain. Similar to what we discussed earlier, we assume that our UIQP problem has
the form

min xTQx+ qtx,
s.t. xi ∈ {0, 1, 2, . . . , κxi} for i = {1, 2, . . . , n},

with Q being symmetric.

We aim to represent the above problem as f(y) by substituting x = Cy, where C is the encoding matrix we had
earlier, i.e.,

C =

cx11 cx12 . . . cx1dx1 0 0 . . . 0 0 0 0 0 . . . 0
0 0 . . . 0 cx21 cx22 . . . cx2dx2 0 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
...

. . .
. . .

. . .
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . 0 0 0 cxn1 cxn2 . . . cxndxn

 , (30)

and

y =
[
yx11 yx12 . . . yx1dx1 yx21 yx22 . . . yx2dx2 yxn1 yxn2 . . . yxndxn

]t ∈ B
∑n
i=1 d

xi
. (31)

After the substitution for x, we get the following equivalent binary formulation:

f(y) = yt(CtQC)y + (Ctq)ty. (32)

Unlike the spin variables for which the diagonal of CtQC became constant, the diagonal of CtQC is added to the
linear term in this scenario since y2

i = yi for yi ∈ {0, 1}. Alternatively, we can represent f(y) as

fB = ytQBy, (33)

where

QB =

Q11[cx1][cx1]t +∆(q1[cx1]) Q12[cx1][cx2]t · · · Q1n[cx1][cxn]t

Q21[cx2][cx1]t Q22[cx2][cx2]t +∆(q2[cx2]) · · · Q2n[cx2][cxn]t

...
...

...
...

Qn1[cxn][cx1]t Qn2[cxn][cx2]t · · · Qnn[cxn][cxn]t +∆(qn[cxn])

. (34)

14 Sahar Karimi, Pooya Ronagh

The diagonal entries of QB are the linear terms, i.e., coefficients of the variables y
xi
j . We use linear and quadratic

terms for binary model f(y) instead of local fields and couplers, respectively. We also refer to inequalities (10) and
(11) as the ratio inequalities for linear and quadratic terms, respectively. Notice that in these ratios, minimum and
maximum coefficients are measured in magnitude, so in our discussion that follows, we consider merely the magnitude
of the coefficients.

Considering the fact that y
xi
k y

xi
l = y

xi
l y

xi
k and y

xi
k y

xj
l = y

xj
l y

xi
k , the coefficients of linear and quadratic terms are

listed below:

y
xi
j :

(
Qii

(
c
xi
j

)2
+ qic

xi
j

)
, (35)

y
xi
k y

xi
l : 2

(
Qiic

xi
k c

xi
l

)
for k, l ∈ {1, . . . , dxi} and k < l, (36)

y
xi
k y

xj
l : 2

(
Qijc

xi
k c

xj
l

)
for k ∈ {1, . . . , dxi}, l ∈ {1, . . . , dxj }, and i, j ∈ {1, . . . , n} : i < j. (37)

The difference between this case and what was presented in Section 3 is that the coefficients of y
xi
j are no longer

linear in c
xi
j (compare with (17)); therefore, the smallest coefficient may no longer occur at c

xi
j = 1. Notice that

Qii

(
c
xi
j

)2
+ qic

xi
j intersects 0 at c

xi
j = 0 and c

xi
j = −qi

Qii
; therefore, if −qi

Qii
< 1, then Qii

(
c
xi
j

)2
+ qic

xi
j takes its

minimum at c
xi
j = 1 and is increasing afterwards. When this is the case for all i = 1, . . . , n, slight modification of

Algorithm 2 is sufficient to find the µxi ’s. In the algorithm, the modification is at the initialization step of µxi ’s.
Letting

ml = min
i
{|Qii + qi|} and mc = min

i,j
{|Qii|, |Qij |} , (38)

the condition that needs to be satisfied for the linear coefficients is

ml

|Qii|(µxi)2 + sgn(qiQii)|qi|µxi
≥ εl. (39)

Combined with the condition

µxi ≤
√

mc

|Qii|εc
, (40)

we need to initialize µxi as

µxi =

⌊
min

{
µ̃xi ,

√
mc

|Qii|εc

}⌋
, (41)

where

µ̃xi =
−sgn(qiQii)|qi|+

√
|qi|2 + 4|Qii|mlεl

2|Qii|
. (42)

It is worth mentioning the special cases where sgn(Qii) = sgn(qi) (resulting in −qi
Qii

< 0), and Qii = 0 or qi = 0

belong to the above category, where Qii

(
c
xi
j

)2
+ qic

xi
j attains its minimum at 1.

In the general cases where there exists an i such that −qi
Qii
≥ 1, satisfying the ratio condition on the linear terms is

more complicated than what we discussed above. Not only might the minimum coefficient no longer occur at 1, but

also the maximum could occur at either µxi or −qi
2Qii

, where the derivative of the function h(c
xi
j) = Qii

(
c
xi
j

)2
+qic

xi
j

is zero. Our approach for these general cases is to first derive µxi ’s that satisfy the ratio condition for the quadratic
terms, and then adjust them accordingly to meet the ratio constraint on the linear terms.

Similar to the previous case, the minimum coefficient on the quadratic terms is

mc = min
i,j
{|Qii|, |Qij |} , (43)

and the ratio condition on quadratic terms enforces

mc

|Qii|(µxi)2
≥ εc, and

mc

|Qij |µxiµxj
≥ εc, (44)

Practical Integer-to-Binary Mapping for Quantum Annealers 15

or, equivalently,

µxi ≤
√

mc

|Cii|εc
, (45)

µxiµxj ≤
mc

|Cij |εc
. (46)

We may now initialize µx
i

as

⌊√
mc
|Qii|εc

⌋
and use the loop of Algorithm 2 to satisfy (46), i.e., Algorithm 3.

Algorithm 3 Finding µxi for the Ratio Condition on Quadratic Terms

Inputs: κ, q, Q, εc
set mc = mini,j {|Qii|, |Qij |}

Output:
µxi for i = 1, 2, . . . , n

initialize µxi =

⌊√
mc
|Qii|εc

⌋

while any
(
µxiµxj > mc

|Qij |εc

)
let i, j = arg maxi,j

{
µxiµxj − mc

|Qij |εc

}
let ξi = κxi

µxi−1
+ κ

xj

µ
xj and ξj = κxi

µxi
+ κ

xj

µ
xj−1

if ξi < ξj
µxi = µxi − 1

else
µxj = µxj − 1

After µxi ’s are calculated to satisfy the conditions (45) and (46), we need to check the ratio condition for the linear
terms. Although some of the integer values {1, 2, . . . , µxi} may not appear in our encoding, knowing which integers
will appear prior to finding µxi ’s is not trivial. The algorithm presented below guarantees that the ratio condition
on the linear terms holds if any of these integer values appear in the encoding. Let us categorize the indices based
on where the minimum and maximum linear coefficients occur; we introduce the following sets of indices for this
purpose:

Im0 =

{
i : sgn(Qii) 6= sgn(qi) and

−qi
Qii

= 1

}
,

Im1 = {i : sgn(Qii) = sgn(qi)} ∪{
i : sgn(Qii) 6= sgn(qi) and 0 ≤

−qi
Qii

< 1

}
∪{

i : sgn(Qii) 6= sgn(qi) but µxi <

⌊
−qi
Qii

⌋}
∪{

i : sgn(Qii) 6= sgn(qi) but
−qi
Qii

is an integer greater than 1

}
,

Im2 =

{
i : sgn(Qii) 6= sgn(qi) and

−qi
Qii

> 1 and
−qi
Qii

is not an integer and µxi ≥
⌊
−qi
Qii

⌋}
. (47)

16 Sahar Karimi, Pooya Ronagh

and

IM1 = {i : sgn(Qii) = sgn(qi)} ∪{
i : sgn(Qii) 6= sgn(qi) and 0 ≤

−qi
2Qii

<
1

2

}
∪{

i : sgn(Qii) 6= sgn(qi) but µxi ≤ round

(
−qi
2Qii

)}
,

IM2 =

{
i : sgn(Qii) 6= sgn(qi) and

−qi
2Qii

≥
1

2
and µxi > round

(
−qi
2Qii

)}
. (48)

Note that µxi ’s returned by Algorithm 3 are integers. The sets with m and M superscripts are formed to facilitate
computing minimum and maximum linear coefficients, respectively. For indices i ∈ Im0 , the minimum linear term
happens at 2; for indices in Im1 , it happens at 1, and for indices in Im2 , it happens at one of the two integers closest

to −qi
Qii

. Similarly, for the indices in IM1 , the maximum linear coefficient happens at µxi , whereas for indices in IM2 ,

it happens at either µxi or at the closest integer to −qi
2Qii

, i.e., round
(
−qi
2Qii

)
.

After categorizing the indices in the above sets, we may form the arrays vm and vM , which represent the minimum
and maximum coefficients of the linear terms for each variable, respectively:

vmi =

(|4Qii + 2qi|, 2, i) if i ∈ Im0
(|Qii + qi|, 1, i) if i ∈ Im1(
minx∈Si |Qiix2 + qix|, arg minx∈Si |Qiix

2 + qix|, i
)

: Si =
{
x ∈

{⌊
−qi
Qii

⌋
,
⌈
−qi
Qii

⌉}
: x ≤ µxi

}
if i ∈ Im2

(49)

vMi =

{(
|Qii(µxi)2 + qiµ

xi |, µxi , i
)

if i ∈ IM1(
maxx∈Si |Qiix2 + qix|, arg maxx∈Si |Qiix

2 + qix|, i
)

: Si =
{

round
(
−qi
2Qii

)
, µxi

}
if i ∈ IM2

(50)

We then sort entries of vm (on the first entry) in increasing order; assume it results in vector v̄m, so v̄m1 ≤ v̄m2 ≤
· · · ≤ v̄mn ; and sort vM in decreasing order; i.e., v̄M such that v̄M1 ≥ v̄M2 ≥ · · · ≥ v̄Mn . We then whether

v̄m1
v̄M1
≥

εl. If this inequality holds, then we have obtained our set of µxi ’s; otherwise, we have the following options for
improvement:

– v̄m1 happens at an i ∈ Im2 , where we can either change µxi to increase the minimum coefficient, or change µxi

to decrease the maximum coefficient;
– v̄m1 happens at i ∈ Im1 ∪Im0 , in which case we can only change µxi such that the maximum coefficient decreases.

In the first scenario where we have the option to both increase the minimum or decrease the maximum coefficient,
we use a greedy approach to make the decision. In other words, if the minimum coefficient is improved, it will be
vm2,1 in the next iterate; similarly, the maximum coefficient will v̄M2,1, if updated. In our approach, having the interval

[v̄m1,1, v̄
M
1,1] for the coefficients, we wish to update it to either [v̄m2,1, v̄

M
1,1] or [v̄m1,1, v̄

M
2,1]. These two intervals will be

[
v̄m2,1

v̄M1,1
, 1] or [

v̄m1,1

v̄M2,1
, 1], respectively, after the rescaling. We choose the option that gives us better lower bound, i.e.,

if
v̄m2,1

v̄M1,1
>
vm1,1

v̄M2,1
≡ v̄m2,1v̄

M
2,1 > v̄m1,1v̄

M
1,1 ,

we attempt to improve the lower bound, thus decreasing µxi for i = v̄m1,3. A formal presentation of what we have
discussed is summarized in Algorithm 4.

Acknowledgements

We are thankful to Helmut G. Katzgraber and Gili Rosenberg for insightful discussions and helpful feedback; and
Marko Bucyk for editing the manuscript.

Practical Integer-to-Binary Mapping for Quantum Annealers 17

Algorithm 4 Adjusting µxi for Ratio Condition on Linear Terms

Inputs:
qi, Qii, εl, and µxi that is the output of Algorithm 3

Output:
µxi for i = 1, 2, . . . , n

initialize Im0 , Im1 , Im2 , IM1 , and IM2 , using equations (47) and (48).

while 1
form vm and vM using equation (49) and (50).
sort vm increasingly, and vM decreasingly (on the first entry) to get v̄m and v̄M

if
v̄m11
v̄M11
≥ ε` return

else
if k = v̄m1,3 ∈ Im2 AND v̄m2,1v̄

M
2,1 > v̄m1,1v̄

M
1,1

set µxk = µxk − 1 (can also be v̄m12 − 1) ,

if µxk <
⌊
−qk
Qkk

⌋
(OR v̄m1,2 =

⌊
−qk
Qkk

⌋
)

Im2 = Im2 \ {k} and Im1 = Im1 ∪ {k}
else

k = v̄M1,3

if k ∈ IM2 AND v̄M1,2 = round
(
−qk
2Qkk

)
set µxk = round

(
−qk
2Qkk

)
− 1, IM2 = IM2 \ {k} and IM1 = IM1 ∪ {k}

else
set µxk = µxk − 1

References

1. T. Albash and D. A. Lidar. Adiabatic quantum computing. Nov. 2016 arXiv:quant-ph/1611.04471.
2. T. Albash, W. Vinci, A. Mishra, P. A. Warburton, and D. A. Lidar. Consistency tests of classical and quantum

models for a quantum annealer. Phys. Rev. A, 91:042314, Apr. 2015. doi:10.1103/PhysRevA.91.042314.
3. Mohammad Amin, Neil Dickson, and Peter Smith. Adiabatic quantum optimization with qudits. Quantum

Information Processing, 12(4):1819 – 1829, 2013. doi:10.1007/s11128-012-0480-x.
4. P. I. Bunyk, E. M. Hoskinson, M. W. Johnson, E. Tolkacheva, F. Altomare, A. J. Berkley, R. Harris, J. P. Hilton,

T. Lanting, A. J. Przybysz, and J. Whittaker. Architectural considerations in the design of a superconducting
quantum annealing processor. IEEE Transactions on Applied Superconductivity, 24(4):1–10, Aug. 2014. doi:

10.1109/TASC.2014.2318294.
5. J. Cai, W. G. Macready, and A. Roy. A practical heuristic for finding graph minors. Jun. 2014. arXiv:1406.2741.
6. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda. A quantum adiabatic evolution

algorithm applied to random instances of an NP-complete problem. Science, 292(5516):472–476, 2001. doi:

10.1126/science.1057726.
7. H. Ishikawa. Transformation of general binary MRF minimization to the first-order case. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 33(6):1234–1249, Jun. 2011. doi:10.1109/TPAMI.2010.91.
8. M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley,

J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh,
I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson, and G. Rose.
Quantum annealing with manufactured spins. Nature, 473(7346):194–198, 05 2011. doi:10.1038/nature10012.

9. S. Karimi and P. Ronagh. A subgradient approach for constrained binary programming via quantum adiabatic
evolution. Jan. 2017. arXiv:1605.09462.

http://arxiv.org/abs/1611.04471
http://dx.doi.org/10.1103/PhysRevA.91.042314
http://dx.doi.org/10.1007/s11128-012-0480-x
http://dx.doi.org/10.1109/TASC.2014.2318294
http://dx.doi.org/10.1109/TASC.2014.2318294
http://arxiv.org/abs/1406.2741
http://dx.doi.org/10.1126/science.1057726
http://dx.doi.org/10.1126/science.1057726
http://dx.doi.org/10.1109/TPAMI.2010.91
http://dx.doi.org/10.1038/nature10012
https://arxiv.org/abs/1605.09462

18 Sahar Karimi, Pooya Ronagh

10. H. G. Katzgraber, F. Hamze, Z. Zhu, A. J. Ochoa, and H. Munoz-Bauza. Seeking quantum speedup through spin
glasses: The good, the bad, and the ugly. Phys. Rev. X, 5:031026, Sep. 2015. doi:10.1103/PhysRevX.5.031026.

11. L. W. Lee, H. G. Katzgraber, and A. P. Young. Critical behavior of the three- and ten-state short-range potts
glass: A monte carlo study. Phys. Rev. B, 74:104416, Sep 2006. doi:10.1103/PhysRevB.74.104416.

12. Salvatore Mandrà, Zheng Zhu, and Helmut G. Katzgraber. Exponentially biased ground-state sampling of
quantum annealing machines with transverse-field driving Hamiltonians. Phys. Rev. Lett., 118:070502, Feb
2017. doi:10.1103/PhysRevLett.118.070502.

13. R. Mansini, W. Ogryczak, and M. G. Speranza. Linear Models for Portfolio Optimization. Springer International
Publishing: 19–45, 2015. doi:10.1007/978-3-319-18482-1_2.

14. Yoshiki Matsuda, Hidetoshi Nishimori, and Helmut G Katzgraber. Ground-state statistics from anneal-
ing algorithms: quantum versus classical approaches. New Journal of Physics, 11(7):073021, 2009. doi:

10.1088/1367-2630/11/7/073021.
15. C. C. McGeoch and C. Wang. Experimental evaluation of an adiabiatic quantum system for combinatorial

optimization. In Proceedings of the ACM International Conference on Computing Frontiers, CF ’13, pages
23:1–23:11, New York, NY, USA, 2013. ACM. doi:10.1145/2482767.2482797.

16. E. G. Rieffel, D. Venturelli, B. O’Gorman, M. B. Do, E. M. Prystay, and V. N. Smelyanskiy. A case study in
programming a quantum annealer for hard operational planning problems. Quantum Information Processing,
14:1–36, Jan. 2015. doi:10.1007/s11128-014-0892-x.

17. G. Rosenberg, P. Haghnegahdar, P. Goddard, P. Carr, K. Wu, and M. L. de Prado. Solving the optimal trading
trajectory problem using a quantum annealer. IEEE Journal of Selected Topics in Signal Processing, 10(6):1053–
1060, Sep. 2016. doi:10.1109/JSTSP.2016.2574703.

18. Giuseppe E Santoro and Erio Tosatti. Optimization using quantum mechanics: quantum annealing through adia-
batic evolution. Journal of Physics A: Mathematical and General, 39(36):R393, 2006. doi:10.1088/0305-4470/
39/36/R01.

19. Tadeusz Sawik. Scheduling in Supply Chains Using Mixed Integer Programming. John Wiley & Sons Inc., 2011.
doi:10.1002/9781118029114.

20. D. Venturelli, D. J. J. Marchand, and G. Rojo. Quantum annealing implementation of job-shop scheduling. Jun.
2015. arXiv:1506.08479.

21. Z. Zhu, A. J. Ochoa, S. Schnabel, F. Hamze, and H. G. Katzgraber. Best-case performance of quantum annealers
on native spin-glass benchmarks: How chaos can affect success probabilities. Phys. Rev. A, 93:012317, Jan. 2016.
doi:10.1103/PhysRevA.93.012317.

22. K. M. Zick, O. Shehab, and M. French. Experimental quantum annealing: Case study involving the graph
isomorphism problem. Scientific Reports, 5:11168, Jun. 2015. doi:10.1038/srep11168.

http://dx.doi.org/10.1103/PhysRevX.5.031026
http://dx.doi.org/10.1103/PhysRevB.74.104416
https://doi.org/10.1103/PhysRevLett.118.070502
https://doi.org/10.1007/978-3-319-18482-1_2
https://doi.org/10.1088/1367-2630/11/7/073021
https://doi.org/10.1088/1367-2630/11/7/073021
http://dx.doi.org/10.1145/2482767.2482797
http://dx.doi.org/10.1007/s11128-014-0892-x
http://dx.doi.org/10.1109/JSTSP.2016.2574703
http://dx.doi.org/10.1088/0305-4470/39/36/R01
http://dx.doi.org/10.1088/0305-4470/39/36/R01
http://dx.doi.org/10.1002/9781118029114
http://arxiv.org/abs/1506.08479
http://dx.doi.org/10.1103/PhysRevA.93.012317
http://dx.doi.org/10.1038/srep11168

	1 Introduction
	2 Bounded-Coefficient Encoding
	3 Finding the Upper Bound on the Coefficients of the Encoding
	4 Numerical Experiment
	5 Conclusion and Discussion
	A (Integer-to-Binary Encoding)

