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Abstract
In this paper, we develop a theory of learning nonlinear input-output maps with fading memory

by dissipative quantum systems, as a quantum counterpart of the theory of approximating such

maps using classical dynamical systems. The theory identifies the properties required for a class of

dissipative quantum systems to be universal, in that any input-output map with fading memory can

be approximated arbitrarily closely by an element of this class. We then introduce an example class

of dissipative quantum systems that is provably universal. Numerical experiments illustrate that

with a small number of qubits, this class can achieve comparable performance to classical learning

schemes with a large number of tunable parameters. Further numerical analysis suggests that

the exponentially increasing Hilbert space presents a potential resource for dissipative quantum

systems to surpass classical learning schemes for input-output maps.
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I. INTRODUCTION

We are in the midst of the noisy intermediate-scale quantum (NISQ) technology era
[39], marked by noisy quantum computers consisting of roughly tens to hundreds of qubits.
Currently there is a substantial interest in early applications of these machines that can ac-
celerate the development of practical quantum computers, akin to how the humble hearing
aid stimulated the development of integrated circuit (IC) technology [30]. NISQ quantum
computing machines will not be equipped with quantum error correction and are thus inca-
pable of performing continuous quantum computation.

Several research directions are being explored for NISQ-class machines. One direction
is to demonstrate so-called “quantum supremacy”, in which NISQ machines can perform
computational tasks that are demonstrably out of the reach of the most powerful digital
supercomputers. The computational tasks include sampling problems such as boson sam-
pling [2, 27], instantaneous quantum polynomial (IQP) computation [11, 27], and sampling
from random quantum circuits [8]. Recent works have also proposed quantum machine
learning algorithms that offer provable speedups over their classical counterparts [7]. An-
other direction is the development of variational algorithms on hybrid classical-quantum
machines to solve certain classes of optimization problems. Algorithms proposed include
the quantum approximate optimization algorithm (QAOA) [15], the quantum variational
eigensolver (QVE) [29, 38] and variations and generalizations thereof, e.g., [31, 47]. Exper-
imental demonstration of QVE for calculating the ground-state energy of small molecules
has been reported in [22], while the application of QAOA for unsupervised learning of a
clustering problem can be found in [35].

An alternative paradigm to the quantum gate-based approaches above is to harness the
computational capability of dissipative quantum systems. Dissipative quantum dynamics
has been shown to be able to realize universal quantum computation [46] and has been ap-
plied in a time-delay fashion for supervised quantum machine learning without intermediate
measurements [4]. Recently, quantum reservoir computers (QRCs) are introduced to harness
the complex real-time quantum dissipative dynamics [17, 32]. This approach is essentially
a quantum implementation of classical reservoir computing schemes, in which a dynamical
system processes an input sequence and produces an output sequence that approximates a
target sequence, see, e.g., [21, 26, 28]. The main philosophy in reservoir computing is that
the dynamics in arbitrary naturally occurring or engineered dynamical systems could poten-
tially be exploited for computational purposes. In particular, a dynamical system could be
used for computation without precise tuning or optimization of its parameters. To possess
temporal information, the systems are required to satisfy three properties [28]: the conver-
gence property [36], the fading memory property [10] and form a family of systems with the
separation property. The convergence property ensures that computations performed by a
dynamical system are independent of its initial condition, and the fading memory property
implies that outputs of a dynamical system stay close if the corresponding inputs are close
in recent times. The separation property states that there should be a member in the family
of systems with dynamics sufficiently rich to distinguish any two different input sequences.
Classical reservoir computing has been realized as simple nonlinear photonic circuits with
a delay line [5] and in neuromorphic computing based on nanoscale oscillators [43], and it
has been demonstrated to achieve state-of-the-art performance on applications such spoken
digit recognition [43].

Nonlinear input-output (I/O) maps with fading memory can be approximated by a series

2



expansion such as the well-known Volterra series [10]. They can also be approximated by
a family of classical nonlinear dynamical systems that have the three properties introduced
in the previous paragraph. Such a family of dynamical systems is said to be universal (or
possesses the universality property) for nonlinear I/O maps with fading memory. They
include various classical reservoir computing schemes such as liquid state machines [28],
echo-state networks (ESNs) [18], linear reservoirs with polynomial readouts (LRPO), and
non-homogeneous state-affine systems (SAS) [19]. However, a theoretical framework for
the learning of nonlinear fading memory I/O maps by quantum systems is so far lacking.
Moreover, an extended investigation into the potential advantage quantum systems offer
over classical reservoir computing schemes has not been conducted. The provision of such a
learning theory, the demonstration of a class of quantum model that is provably universal,
and a study of this model via numerical experiments are the main contributions of this
paper.

The paper is organized as follows. In Sec. II, we formally define fading memory maps. In
Sec. III, we formulate the theory of learning nonlinear fading memory maps with dissipative
quantum systems. Sec. IV introduces a concrete universal class of dissipative quantum sys-
tems. Sec. V numerically demonstrates the emulation performance of the proposed universal
class in the absence and presence of decoherence. The effect of different input encodings
on the learning capability of this class is investigated. An in-depth comparison between
this universal class and ESNs is also conducted. We conclude this section by discussing
the potential of this universal class to surpass classical schemes when implemented on a
NISQ machine. In Sec. VI, we discuss the feasibility of proof-of-principle experiments of the
proposed scheme on existing NISQ machines. Detailed results and numerical settings are
collected in and can be found in the Appendix.

II. FADING MEMORY MAPS

Let Z denote the set of all integers and Z− = {. . . ,−1, 0}. Let u = {. . . , u−1, u0, u1, . . .}
be a real bounded input sequence with supk∈Z |uk| < ∞. We say that a real output
sequence y = {. . . , y−1, y0, y1, . . .} is related to u by a time-invariant causal map M if
yk = M(u)k = M(ũℓ)k for any integer ℓ, any k ≤ ℓ, and any sequence ũℓ such that
ũℓ|ℓ = u|ℓ. Here, M(u)k denotes the output sequence at time k given the input sequence u,
and u|k = {. . . , uk−2, uk−1, uk} is the input sequence u truncated after time k.

For a fixed real positive constant L and a compact subset D ⊆ R, we are interested in
the set KL(D) consisting of input sequences such that for all k ∈ Z, uk ∈ D ∩ [−L, L].
We say a time-invariant causal map M defined on KL(D) has the fading memory property
with respect to a decreasing sequence w = {wk}k≥0, limk→∞wk = 0 if, for any two input
sequences u and v, |M(u)0 −M(v)0| → 0 whenever supk∈Z− |w−k(uk − vk)| → 0. In other
words, if the elements of two sequences agree closely up to some recent past before k = 0,
then their output sequences will also be close at k = 0.

III. LEARNING NONLINEAR FADING MEMORY MAPS WITH DISSIPATIVE

QUANTUM SYSTEMS

Since fading memory maps are time-invariant, any dynamical system that is used to
approximate them must forget its initial condition. Classical dynamical systems with this
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property are referred to as convergent systems in control theory [36], and the property is
known as the echo state property in the context of ESNs [12, 21]. For dissipative quantum
systems, this means that for the same input sequence, density operators asymptotically
converge to the same sequence of density operators, independently of their initial values. We
emphasize that the dissipative nature of the quantum system is essential for the learning
task. Without it the system clearly cannot be convergent.

Consider a quantum system consisting of n qubits with a Hilbert space C2n of dimension
2n undergoing the following discrete-time dissipative evolution:

ρk = T (uk)ρk−1, (1)

for k = 1, 2, . . . , with initial condition ρ(0) = ρ0. Here, ρk = ρ(kτ) is the system density
operator at time t = kτ and τ is a (fixed) sampling time, and T (uk) is a completely positive
trace preserving (CPTP) map for each uk. In this setting, the real input sequence {u1, u2, . . .}
determines the system’s evolution. The overall input-output map in the long time limit is
in general non-linear. Let ‖ · ‖p denote any Schatten p-norm for p ∈ [1,∞) defined as

‖A‖p = Tr(
√
A∗A

p
)1/p, where A is a complex matrix and ∗ is the conjugate transpose

operator. In Appendix [VIIIA, Theorem 3] , we show that if for all uk ∈ D ∩ [−L, L],
the CPTP map T (uk) restricted on the hyperplane H0(2

n) of 2n × 2n traceless Hermitian

operators satisfies ‖T (uk)|H0(2n)‖2−2 := supA∈H0(2n),A 6=0
‖T (uk)A‖2

‖A‖2
≤ 1− ǫ for some 0 < ǫ ≤ 1,

then under any input sequence u ∈ KL(D), it will forget its initial condition and is therefore
convergent. This means that for any two initial density operators ρj,0 (j = 1, 2) and the
corresponding density operators ρj,k at time t = kτ , we will have that

lim
k→∞
‖ρ1,k − ρ2,k‖2 = lim

k→∞

∥

∥

∥

∥

(←−
∏

k
j=1T (uj)

)

(ρ1,0 − ρ2,0)

∥

∥

∥

∥

2

= 0,

where
←−∏

k
j=1 is a time-ordered composition of maps T (uj) from right to left.

Let D(C2n) denote the convex set of all density operators on C2n . We introduce an output
sequence ȳ in the form

ȳk = h(ρk), (2)

where h : D(C2n)→ R is a real functional of ρk. Eqs. (1) and (2) define a quantum dynam-
ical system with input sequence u and output sequence ȳ. We now require the separation
property. Consider a family F of distinct quantum systems described by Eqs. (1) and (2),
but possibly having differing number of qubits. Let u and u′ be two input sequences in
KL(D) that are not identical, uk 6= u′

k for at least one k, and let ȳ and ȳ′ be the respective
outputs of the quantum system for these inputs. We say that the family F is separating if
for any non-identical inputs u and u′ in KL(D), there exists a member in this family with
non-identical outputs ȳ and ȳ′. As stated in Appendix [VIIIB, Theorem 9], any family
of convergent dissipative quantum systems that implement fading memory maps with the
separation property, and which forms an algebra of maps containing the constant maps, is
universal and can approximate any I/O map with fading memory arbitrarily closely.

IV. A UNIVERSAL CLASS OF DISSIPATIVE QUANTUM SYSTEMS

We now specify a class of dissipative quantum systems that is provably universal in
approximating fading memory maps defined on K1([0, 1]). The class consists of systems
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that are made up of N non-interacting subsystems initialized in a product state of the N
subsystems, with subsystem K consisting of nK +1 qubits, nK “system” qubits and a single
“ancilla” qubit. We label the qubits of subsystem K by an index iKj that runs from j = 0 to

j = nK , with iK0 labeling the ancilla qubit. The nK + 1 qubits interact via the Hamiltonian

HK =

nK
∑

j1=0

nK
∑

j2=j1+1

J j1,j2
K (X(iKj1

)X(iKj2
) + Y (iKj1

)Y (iKj2
)) +

nK
∑

j=0

αZ(iKj ),

where J j1,j2
K and α are real-valued constants, while X(iKj ), Y (iKj ) and Z(iKj ) are Pauli X , Y

and Z operators of qubit iKj . The ancilla qubits for all subsystems are periodically reset at

time t = kτ and prepared in the input-dependent mixed state ρKi0,k = uk|0〉〈0|+(1−uk)|1〉〈1|
(with 0 ≤ uk ≤ 1). The system qubits are initialized at time t = 0 to some density operator.
The density operator ρKk of the Kth subsystem qubits evolves during time (k−1)τ < t < kτ
according to ρKk = TK(uk)ρ

K
k−1, where TK(uk) is the CPTP map defined by TK(uk)ρ

K
k−1 =

TriK0

(

e−iHKτρKk−1 ⊗ ρKi0,ke
iHKτ

)

and TriK0 denotes the partial trace over the ancilla qubit of

subsystem K. We now specify an output functional h associated with this system. We will
use a single index to label the system qubits from the N subsystems, the ancilla qubits are
not used in the output. Consider an individual system qubit with index j, with j running
from 1 until n =

∑N
K=1 nK . The output functional h is defined to be of the general form,

ȳk = h(ρk) = C +
R
∑

d=1

n
∑

i1=1

n
∑

i2=i1+1

· · ·
n
∑

in=in−1+1

∑

ri1+···+rin=d

w
ri1 ,...,rin
i1,...,in

〈Z(i1)〉ri1k · · · 〈Z(in)〉rink (3)

where C is a constant, R is an integer and 〈Z(i)〉k = Tr(ρkZ
(i)) is the expectation of the

operator Z(i). We note that the functional h (the right hand side of the above) is a multivari-
ate polynomial in the variables 〈Z(i)〉k (i = 1, . . . , n) and these expectation values depend
on input sequence u = {uk}. Thus computing ȳk only involves estimating the expectations
〈Z(i)〉k and the degree of the polynomial R can be chosen as desired. If R = 1 then ȳk is a
simple linear function of the expectations.

This family of dissipative quantum systems exhibits two important properties, see Ap-
pendix VIIIC and VIIID for the proofs. Firstly, if for each subsystem K with nK qubits and
for all uk ∈ [0, 1], ‖TK(uk)|H0(2nK )‖2−2 ≤ 1− ǫK for some 0 < ǫK ≤ 1, then this family forms
a polynomial algebra consisting of systems that implement fading memory maps. Secondly,
a convergent single-qubit system with a linear output combination of expectation values
(ie. n = 1, N = 1 and R = 1), separates points of K1([0, 1]). These two properties and an
application of the Stone-Weierstrass Theorem [13, Theorem 7.3.1] guarantee the universality
property.

The class specified above is a variant of the QRC model in [17] but is provably universal by
the theory of the previous section. The differences are in the general form of the output and,
in our model, the ancilla qubit is not used in computing the output. Also, we do not consider
time-multiplexing. We remark that time-multiplexing can be in principle incorporated in
the model using the same theory. However, this extension is more technical and will be
pursued elsewhere.
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V. NUMERICAL EXPERIMENTS

We demonstrate the emulation performance of the universal class introduced above in

learning a number of benchmarking tasks. A random input sequence u(r) = {u(r)
k }k>0, where

each u
(r)
k is randomly uniformly chosen from [0, 0.2], is applied to all computational tasks. We

apply the multitasking method, in which we simulate the evolution of the quantum systems
and record the expectations 〈Z(i)〉k for all timesteps k once, while the output weights C and
w

ri1 ,...,rin
i1,...,in

in Eq. (3) are optimized independently for each computational task.
The linear reservoirs with polynomial outputs (LRPO) implement a fading memory map,

whose discrete-time dynamics is of the form [10, 19],

{

xk = Axk−1 + cuk

yk = ĥ(xk),

where we choose c ∈ R
1400 with elements randomly uniformly chosen from [0, 4] and ĥ to

be a degree two multivariate polynomial, whose coefficients are randomly uniformly chosen
from [−0.1, 0.1]. We choose A to be a diagonal block matrix A = diag(A1, A2, A3), where
A1, A2 and A3 are 200× 200, 500× 500 and 700× 700 real matrices, respectively. Elements
of Ai (i = 1, 2, 3) are randomly uniformly chosen from [0, 4]. To ensure the convergence and
the fading memory property, the maximum singular value of each Ai is randomly uniformly
set to be σmax(Ai) < 1 [19]. In this setting, each linear reservoir defined by Ai evolves
independently, while the output of the LRPO depends on all state elements xk ∈ R1400.

It is interesting to investigate the performance of the universal class in learning tasks that
do not strictly implement fading memory maps as defined here. We apply the universal class
to approximate the outputs of a missile moving with a constant velocity in the horizontal
plane [33] and the nonlinear autoregressive moving average (NARMA) models [6]. The
nonlinear dynamics of the missile is given by

{

ẋ1 = x2 − 0.1 cos(x1)(5x1 − 4x3
1 + x5

1)− 0.5 cos(x1)ũ

ẋ2 = −65x1 + 50x3
1 − 15x5

1 − x2 − 100ũ

where y = x2 is the output. We make a change of variable of the input ũ = 5u − 0.5
so that the input range is the same as in [33]. The missile dynamics is simulated by the
Runge-Kutta (4, 5) formula implemented by the ode45 function in MATLAB [14], with a
sampling time of 4×10−4 seconds for a time span of 1 second, subject to the initial condition
(

x1 x2

)T
=
(

0 0
)T

. We denote this task as Missile. The NARMA models are often used
to benchmark algorithms for learning time-series. The outputs of each NARMA model
depend on its time-lagged outputs and inputs, specified by a delay τNARMA. We denote the
corresponding task to be NARMAτNARMA.

We focus on members of the universal class with a single subsystem (N = 1) and a small
number of system qubits n = {2, 3, 4, 5, 6}, and denote this subset of the universal class
as SA. We will drop the subsystem index K from now on. For all numerical experiments,
the parameters of SA are chosen as follows. We introduce a scale S > 0 such that the
Hamiltonian parameters J j1,j2/S, α/S = 0.5 and τS = 1 are dimensionless. As for the QRCs
in [17], we randomly uniformly generate J j1,j2/S from [−1, 1] and, to ensure convergence,
select the resulting Hamiltonians for experiments if the associated CPTP map is convergent.
We numerically test the convergence property by checking if 50 randomly generated initial
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density operators converge to the same density operator in 500 timesteps under the input
sequence u(r).

Each numerical experiment firstly washouts the effect of initial conditions of SA and all
target maps with 500 timesteps. This is followed by a training stage of 1000 timesteps, where
we optimize the output weights C and w

ri1 ,...,rin
i1,...,in

of SA by standard least squares to minimize

the error
∑1500

k=501 |yk − ȳk|2 between the target output sequence y. In practical implementa-
tion, computation of the expectations 〈Z(j)〉k is offloaded to the quantum subsystem, and
only a simple classical processing method is needed to optimize the output weights. For this
reason, we associate the output weights C and w

ri1 ,...,rin
i1,...,in

in Eq. (3) with (classical) computa-
tional nodes, with the number of such nodes being equal to the number of output weights.
While the number of computational nodes for SA can be chosen arbitrarily by varying the
degree R in the output, the state-space ‘size’ of the quantum system is 2n(2n+1)−2n = 4n.
This state-space size corresponds to the number of real variables needed to describe the
evolution of elements of the system density operator. Note that since the density operator
has unity trace, only up to at most 4n − 1 of these nodes are linearly independent.

On the other hand, for ESNs [21], the number of computational nodes and the state-space
size always differ by one (i.e. by the tunable constant output weight). For an ESN with m
reservoir nodes (Em), the number of computational nodes is m+ 1 and its state-space size
is m. For the Volterra series [10] with kernel order o and memory p (Vo, p), the number

of computational nodes is (p
o+1−p
p−1

+ 1). We select m and (o, p) such that the number of

computational nodes is at most 801. This reduces the chance of overfitting for learning a
sequence of length 1000 [25]. For detailed numerical settings for ESNs and the Volterra
series, see Appendix VIII E. We analyze the performance of all learning schemes during
an evaluation phase consisting of 1000 timesteps, using the normalized mean-squared error
NMSE :=

∑2500
k=1501 |ȳk − yk|2/

∑2500
k=1501 |yk − 1

1000

∑2500
k=1501 yk|2, where y is the target output

and ȳ is the approximated output. For each task and each n, NMSEs of 100 convergent SA
samples are averaged for analysis.

A. Overview of SA learning performance

We present an overview of SA performance in learning the LRPO, Missile, NARMA15
and NARMA20 tasks. The degree of the multivariate polynomial output Eq. (3) is fixed to
be R = 1, so that the number of computational is n+1 for each n. Fig. 1 shows the typical
SA outputs for the LRPO, Missile, NARMA15 and NARMA20 tasks during the evaluation
phase. It is observed that the SA outputs follow the LRPO outputs closely, while SA is
able to approximate the Missile and NARMA tasks relatively closely. For all computational
tasks, as the number of system qubits n increases, the SA outputs better approximate the
target outputs. This is quantitatively demonstrated in Fig. 2, which plots the average SA
NMSE as n increases.

From Fig. 2 we can see that the SA model with a small number of computational nodes
performs comparably as ESNs and the Volterra series with a large number of computa-
tional nodes. For example, the average NMSE of 6-qubit SA with 7 computational nodes
is comparable to the average NMSE of E100 with 101 computational nodes in the LRPO
task. On average, 5-qubit SA with 6 computational nodes performs better than V2, 22 with
504 computational nodes in the Missile task. In the NARMA15 task, 4-qubit SA with 5
computational nodes outperforms V2, 4 with 21 computational nodes. In the NARMA20
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FIG. 1. Typical SA outputs during the evaluation phase, for the (a) LRPO, (b) Missile (c)

NARMA15 and (d) NARMA20 tasks. The leftmost, middle and rightmost panels show the outputs

for timesteps 1501-1530, 2001-2030 and 2471-2500, respectively

task, 5-qubit SA performs comparably as E600. Our results are similar to the performance
of the QRCs with time multiplexing reported in [17], where the QRCs are demonstrated to
perform comparably as ESNs with a larger number of trainable computational nodes. How-
ever, for the small number of qubits investigated, the rate of decrease in the average NMSE
is approximately linear despite the dimension of the Hilbert space increases exponentially
as n increases. For both the NARMA tasks, the average NMSEs for 2-qubit and 6-qubit
SA are of the same order of magnitude. A larger number of additional system qubits are
required to substantially reduce the SA task error.

B. SA performance under decoherence

We further validate the feasibility of the SA model in the presence of the dephasing,
decaying noise and the generalized amplitude damping (GAD) channel. We simulate the
noise by applying the Trotter-Suzuki formula [42, 44], in which we divide the normalized
time interval τS = 1 into 50 small time intervals δt = τS/50, and alternatively apply the

unitary interaction and the Kraus operators {M (j)
l ( γ

S
)}l of each noise type, each for a time

duration of δt. Each of the l-th Kraus operator is applied for all system and ancilla qubits
j = 1, . . . , n+1, and γ/S denotes the noise strength. For all noise types, we apply the same
noise strengths γ/S = {10−4, 10−3, 10−2}, which are within the experimentally feasible range
for systems like NMR ensembles [45] and some current superconducting NISQ machines [1].
Under the dephasing noise, the density operator ρ of the system and ancilla qubits evolves
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FIG. 2. Average SA NMSE for the (a) LRPO, (b) Missile, (c) NARMA15 and (d) NARMA20

tasks, the error bars represent the standard error. For comparison, horizontal dashed lines labeled

with “Em” indicate the average performance of ESNs with m computational nodes, and horizontal

dot-dashed lines labeled with “Vo, p” indicates the performance of Volterra series with kernel order

o and memory p. Overlapping dashed and dot-dashed lines are represented as dashed lines

according to ρ→ 1+e−2
γ
S

δt

2
ρ+ 1−e−2

γ
S

δt

2
Z(j)ρZ(j), such that the diagonal elements in ρ remain

invariant while the off-diagonal elements decay. The GAD channel gives rise to the evolution

ρ → ∑3
l=0M

(j)
l ( γ

S
, λ)ρ(M

(j)
l ( γ

S
, λ))†, where † denotes the adjoint, and the Kraus operators

M
(j)
l ( γ

S
, λ) (l = 0, 1, 2, 3) depend on an additional finite temperature parameter λ ∈ [0, 1]

[34]. When λ = 1, we recover the amplitude damping channel (the decaying noise), which
takes a mixed state into the pure ground state |0〉〈0| in the long time limit. For λ 6= 1, we
investigate the SA task performance under the GAD channel for λ = {0.2, 0.4, 0.6, 0.8}. The
GAD channel affects both the diagonal and off-diagonal elements of the density operator.

Fig. 3 plots the average SA NMSE under the dephasing, decaying and GAD with λ =
{0.4, 0.6} for all noise strengths. See Appendix VIII E 2 for the average NMSE under the
GAD channel for all chosen temperature parameters. Fig. 3 indicates that for the same
noise strength, different noise types affect the SA task performance in a similar manner.
For noise strengths γ/S = {10−4, 10−3}, all noise types do not significantly degrade SA
task performance for the computational tasks. However, the impact of the noise strength
γ/S = 10−2 is more pronounced, particularly for a larger number of system qubits.

Changes in the SA task error under the effect of the decaying noise and the GAD channel
are anticipated, since the expectations 〈Z(j)〉k in the output depend on the diagonal elements
of the system density operator, which are affected by both of these noise types. However,
the SA task performance is also affected by the dephasing noise, which does not change
the diagonal elements. A possible explanation for this behavior is a loss of degrees of
freedom, in the sense that off-diagonal elements of the density operator become smaller and
the density operator looks more like a classical probability distribution. Alternatively, this
could be viewed as the off-diagonal elements contributing less to the overall computation.
To support this explanation, for the dephasing, decaying and the GAD with λ = {0.4, 0.6},
and for each n, we sum the complex modulus of off-diagonal elements in the system density
operator for the 100 n-qubit SA samples simulated above. The average of these 100 sums is
plotted for the first 50 timesteps during the evaluation phase in Fig. 4. That is, Fig. 4 plots
2
ns

∑ns

l=1

∑2n

r=1

∑2n

s=r+1 |ρ
(l)
k,rs|, where ns = 100 is the number of different random SA samples.
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FIG. 3. Average SA NMSE for the LRPO, Missile, NARMA15 and NARMA20 tasks under deco-

herence. For comparison, the average SA NMSE without the effect of noise is also plotted. In all

plots, the error bars represent the standard error

Here ρ
(l)
k,rs denotes the element of ρ

(l)
k in row r and column s (the superscript (l) indexing

the SA sample).

Fig. 4 shows that as the noise strength increases, the average sum decreases, particularly
with the noise strength γ/S = 10−2. Similar trends are observed for the GAD channel for
all the temperature parameters chosen, and the observed trend for the average sum persists
as the timestep increases to 2500 (see Appendix VIII E 2). The results presented in Fig. 4
further indicate that though the output of SA depends solely on the diagonal elements of the
density operator, nonzero off-diagonal elements are crucial for improving the SA emulation
performance. This provides a plausible explanation for the improved performance achieved
by increasing the number of qubits, thereby increasing Hilbert space size and the number of
non-zero off-diagonal elements. Further investigation into this topic is presented in Sec. VD.
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FIG. 4. Average sum of complex modulus of off-diagonal elements in the system density operator

for timesteps 1501-1550, under the (a) dephasing noise, (b) decaying noise, (c) GAD with λ = 0.4

and (d) GAD with λ = 0.6. Row n − 1 in the figure corresponds to the average sum for n-qubit

SA

C. Effect of different input encodings

Our proposed universal class encodes the input uk ∈ [0, 1] into the mixed state ρi0,k =
uk|0〉〈0| + (1 − uk)|1〉〈1|. Other input encoding possibilities include the pure state ρi0,k =
(
√
uk|0〉 +

√
1− uk|1〉)(

√
uk〈0| +

√
1− uk〈1|) used in the QRC model [17], encoding the

input into the phase ρi0,k =
1
2
(|0〉+ e−iuk|1〉)(〈0|+ eiuk〈1|), and encoding the input into non-

orthogonal basis state ρi0,k = uk|0〉〈0|+ 1−uk

2
(|0〉+ |1〉)(〈0|+ 〈1|). We denote these different

input encodings as mixed, pure, phase and non-orthogonal. We emphasize that for the last
three encodings the universality of the associated dissipative quantum system using these
encodings has not been proven.

To investigate the impact of input encodings on the computational capability of quantum
systems, the Hamiltonian parameters for all quantum systems simulated here are sampled
from the same uniform distribution, and the resulting Hamiltonians are chosen if the as-
sociated CPTP map that implements the specified input-dependent density operator ρi0,k
is convergent. We again test the convergence property numerically by checking if 50 ran-
domly generated initial density operators converge to the same density operator within 500
timesteps. The number of system qubits and the number of computational nodes for all
input encodings are the same. For each input encoding, NMSEs of 100 convergent quan-
tum systems are averaged for analysis. Fig. 5 shows that for all computational tasks, the
mixed state encoding performs better than other encodings. However, the average NMSE
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for different input encodings for all computational tasks are of the same order of magnitude.
Moreover, as the number of system qubits increases, the errors of different input encodings
decrease at roughly the same rate. This comparison indicates that the effect of different
input encodings on the learning performance does not appear significant.
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FIG. 5. Average NMSE for different input encodings, for approximating the (a) LRPO, (b) Missile

(c) NARMA15 and (d) NARMA20 tasks. Error bars represent the standard error

D. Further comparison with ESNs

Our numerical results so far and the results shown in [17] both suggest that dissipative
quantum systems with a small number of qubits achieve comparable performance to classical
learning schemes with a large number of computational nodes. However, these comparisons
may appear to be skewed favorably toward quantum dynamical systems, since it does not
address their exponential state-space size. One can, for example, also increase the state-
space size of ESNs and the number of computational nodes of SA, such that the state-space
size and the number of computational nodes are similar for both models. Here we present a
further comparison between the SA model and ESNs, and provide insights into the possible
advantage the SA model might offer over its classical counterpart.

We focus on 4-qubit SA with a state-space size of 256. Setting R = 6 in Eq. (3), the
number of computational nodes for SA is 210. We compare this 4-qubit SA model’s average
task performance with the average E256 task performance in approximating the LRPO,
Missile, NARMA15, NARMA20, NARMA30 and NARMA40 tasks. Here, the number of
computational nodes for E256 is 257 and the average NMSE of 100 convergent E256s is
reported. As shown in Table 1, for the Missile and all the NARMA tasks, the average
NMSEs for both models are of the same order of magnitude, while E256 outperforms SA in
the LRPO task. This comparison suggests that when the state-space size and the number
of computational nodes for both models are similar, ESNs can outperform the SA model.

We further investigate under what conditions SA might offer a computational advan-
tage. We observe that while the number of computational nodes is kept constant, increasing
the state-space size of SA induces a considerable computational improvement. To demon-
strate this, 4-, 5- and 6-qubit SA samples are simulated to perform all computational tasks
mentioned above. For each n-qubit SA, we vary its output degree R such that its num-
ber of computational nodes ranges from 5 to 252. The chosen degrees for 4-qubit SA are
R4 = {1, . . . , 6}, for 5-qubit are R5 = {1, . . . , 5}, and for 6-qubit SA are R6 = {1, . . . , 4}.
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TABLE 1. Average 4-qubit SA and E256 NMSE for the LRPO, Missile, NARMA15, NARMA20,

NARMA30 and NARMA40 tasks. Results are rounded to two significant figures. The notation (±
se) denotes the standard error

Task SA NMSE (± se) E256 NMSE (± se)

LRPO 0.20± 1.5 × 10−2 0.019 ± 7.7 × 10−4

Missile 0.48± 2.2 × 10−2 0.49 ± 3.3 × 10−3

NARMA15 0.61± 8.0 × 10−3 0.32 ± 1.6 × 10−4

NARMA20 0.68± 1.0 × 10−2 0.67 ± 3.2 × 10−4

NARMA30 0.67± 7.1 × 10−3 0.67 ± 4.0 × 10−4

NARMA40 0.64± 5.3 × 10−3 0.66 ± 5.9 × 10−4

For each n-qubit SA, the Hamiltonians are the same for all its chosen output degrees, and
the task errors of 100 convergent SA samples are averaged for analysis.

For comparison, we simulate 100 convergent ESNs with reservoir size 256 to perform the
same tasks. For n-qubit SA, let Nn (n = 4, 5, 6) denote the numbers of computational nodes
corresponding to its output degrees Rn. The number of computational nodes C for E256 is
set to be elements in the set N4∪N5∪N6. We first optimize 257 output weights for E256 via
standard least squares during the training phase. When C < 257 for E256, we select C − 1
computational nodes (excluding the tunable constant computational node) with the largest
absolute values and their corresponding state elements. These C − 1 state elements are used
to re-optimize C computational nodes (including the tunable constant computational node)
via standard least squares. During the evaluation phase, 256 state elements evolve; only
C − 1 state elements and C output weights are used to compute the E256 output.

Fig. 6 plots the 4-, 5-, and 6-qubit SA average NMSE as the number of computational
nodes increases for all computational tasks. For comparison, the average E256 NMSE is
also plotted. Two important observations are that increasing the number of computational
nodes does not necessarily improve SA task performance, while increasing the state-space
size induces a noticeable improvement. For example, for the NARMA20 task and 210
computational nodes, the average NMSE for 4-qubit SA is 0.68 while the average NMSE
for 6-qubit SA is 0.48. When comparing to E256, we observe that for most tasks, despite
4-qubit SA might not perform better than E256, subsequent increases in the state-space
size allow the SA model to outperform E256, without extensively increasing its number of
computational nodes.

Contrary to the above observations for the SA model, increasing the reservoir size of ESNs
while keeping the number of computational nodes fixed does not induce a significant compu-
tational improvement. To numerically demonstrate this, the reservoir size of ESNs is further
increased to {300, 400, 500}. For each reservoir size, the number of computational nodes is
set to be the same as that of E256. These computational nodes are chosen and optimized by
the same method described above for E256. We average the task errors of 100 convergent
ESNs for each reservoir size. As shown in Fig. 7, noticeable performance improvements for
ESNs are only observed as the number of computational nodes increases, but not as the
reservoir size varies. Another observation is that for the NARMA30 and NARMA40 tasks,
the error increases as the number of computational nodes for ESNs increases. This could be
due to overfitting, a condition occurs when too many adjustable parameters are trained on
limited training data [16]. On the other hand, this observation is less significant for the SA
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FIG. 6. Average SA NMSE as the state-space size and the number of computational nodes vary

for all computational tasks. The average NMSE for E256 with the same number of computational

nodes is plotted for comparison. The data symbols obscure the error bars, which represent the

standard error

model. It would be interesting to conduct further investigation into this behavior in future
work.

The above observations have several implications. To improve the computational capa-
bility of the SA model, one can take advantage of the exponentially increasing state-space
size of the Hilbert space while only optimizing a polynomial number of computational nodes.
On the contrary, to improve the computational capability of ESNs, one needs to increase the
number of computational nodes, which is bounded by the reservoir size. Therefore, enhanc-
ing emulation performance of ESNs inevitably requires the state-space size to be increased.
In the situation where the state-space size increases beyond what classical computers can
simulate in a reasonable amount of time and with reasonable resources (such as memory),
the computational capability of ESNs saturates, whereas the computational capability of
the SA model could be further improved by increasing the number of qubits in a linear
fashion. In this regime, the SA model could provide a potential computational advantage
over its classical counterpart. To further verify the feasibility of this hypothesis, the learn-
ing capability of the SA model would need to be evaluated for a larger number of qubits
on a physical quantum system. A possible implementation of this experiment is on NMR
ensembles, as suggested in [17]. However, motivated by the availability of NISQ machines,
a quantum circuit implementation of the SA model, using the schemes proposed in [9, 20],
would be more attractive. This is another topic of further research continuing from this
work.
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FIG. 7. Average ESNs NMSE as the state-space size and the number of computational nodes vary

for all computational tasks. The data symbols obscure the error bars, which represent the standard

error

VI. DISCUSSION

We discuss the feasibility of realizing the proposed universal scheme in Section IV on
the current most scalable NISQ quantum computers, such as quantum computers based on
superconducting circuits or ion traps. We consider those that implement the quantum circuit
model. Simulating the unitary interaction given by the Ising Hamiltonian HK on a quantum
circuit requires decomposition of the evolution using the Trotter-Suzuki product formula
[42, 44]. Such a decomposition may require the sequential application of a large number
of gates on NISQ machines, limiting the implementability of this family on current NISQ
machines due to severe decoherence. However, it may be possible to engineer alternative
families based on simpler unitary interactions between the subsystem and ancilla qubits
(not of the Ising type), using only a short sequence of single-qubit and two-qubit gates, such
that the associated CPTP maps possess the convergence and fading memory properties. A
general framework for constructing such unitary interactions is the subject of on-going and
future work continuing from this paper.

To realize the dissipative dynamics for a subsystem, we can construct a quantum circuit
as follows. At each timestep k, the ancilla qubit is prepared as the input-dependent mixed
state ρKi0,k. After the unitary interaction with the subsystem qubits, the partial trace over
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the ancilla qubit can be performed by a projective measurement on the ancilla qubit and
discarding the measurement outcome. At the next time step k + 1, the ancilla qubit is
reset and prepared as ρKi0,k+1. To estimate the expectations 〈Z(j)〉k, we perform Monte Carlo

estimation by running the circuit multiple times and measuring Z(j) at time k, the average
of measured results over these runs estimates 〈Z(j)〉k. If multiple NISQ machines can be run
in parallel at the same time, the expectations 〈Z(j)〉k can be estimated in real time. In this
setting, the number of qubits required to implement a dissipative subsystem for temporal
learning is nK + 1.

Some existing NISQ machines based on superconducting circuits are not capable of
preparing mixed states or resetting qubits for reuse after measurement. To address the
first limitation, we can approximate the ancilla input-dependent mixed state ρKi0,k by Monte
Carlo sampling. That is, we construct M > 0 quantum circuits as above, but for each circuit
and at each timestep k, we prepare the ancilla qubit in |0〉 with probability uk or in |1〉 with
probability 1− uk. We again remark that these M quantum circuits can be run in parallel,
and therefore computations could be performed in real time if multiple circuits can be run at
the same time. Not being able to reuse a qubit after a measurement means that each point
in the input sequence must be encoded in a distinct qubit. This implies that the length of
sequences that can be considered will be limited by the number of qubits available. Some of
the qubits available will need to be assigned as the system qubits while all the other qubits as
data carrying ancilla qubits. For instance, on a 20-qubit machine, one can use say 4 qubits as
the system qubits and the remaining 16 qubits for carrying the input sequence. In this case
the total input sequence length that can be processed for washout, learning and evaluation
is only of length 16. Nevertheless, current high-performance quantum circuit simulators,
such as the IBM Qiskit simulator (https://qiskit.org/) [3], are capable of simulating qubit
reset and realistic hardware noise. We also anticipate that the qubit reset functionality on
NISQ machines would be available in the near future, opening avenue for proof-of-principle
experiments of the proposed scheme for input sequences of arbitrary length.

VII. CONCLUSION AND OUTLOOK

We have developed a general theory for learning arbitrary I/O maps with fading memory
using dissipative quantum systems. The attractiveness of the theory studied here is that
it allows a dissipative quantum system (that meets certain requirements but is otherwise
arbitrary) to be combined with a classical processor to learn I/O maps from sample I/O
sequences. We apply the theory to demonstrate a universal class of dissipative quantum
systems that can approximate arbitrary I/O maps with fading memory.

Numerical experiments indicate that even with only a small number of qubits and a sim-
ple linear output, this class can achieve comparable performance, in terms of the average
normalized mean-squared error, to classical learning schemes such as ESNs and the Volterra
series with a large number of tunable parameters. However, when the state-space sizes of
the quantum subsystem and classical learning schemes are the same, and the number of
computational nodes equals the number of nodes in the ESN plus one (for the constant
term) and a similar number of the QRC, the quantum system does not demonstrate any
computational advantage. Moreover, the numerical results for a small number of qubits in-
dicate that increasing the dimension of the Hilbert space of the quantum system while fixing
the number of computational nodes can still result in improved prediction performance on a
number of benchmarking tasks, whereas increasing the state space of ESNs while fixing the
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computational nodes does not lead to any noticeable improvement. This strongly suggests
that the possibly very large Hilbert space of the quantum subsystem presents a potential
resource that can be exploited in this approach. That is, for state-space dimensions beyond
what can be simulated on a conventional digital computer. It remains to be investigated if
this resource can indeed lead to a provable performance advantage over conventional classical
learning approaches, and the circumstances where this will be the case.

VIII. APPENDIX

A. The convergence property

Recall from the main text that for a compact subset D ⊆ R and L > 0, KL(D) denotes
the set of all real sequences u = {uk}k∈Z taking values inD∩[−L, L]. LetK−

L (D) andK+
L (D)

be subsets of input sequences in KL(D) whose indices are restricted to Z− = {. . . ,−2,−1, 0}
and Z+ = {1, 2, . . .}, respectively. In the following, we write T for both input-independent
and input-dependent CPTP maps. As in the main text, we write T (uk) for a CPTP map
that is determined by an input uk, and ‖ · ‖p for any Schatten p-norm for p ∈ [1,∞).
All dissipative quantum systems considered here are finite-dimensional. We now state the
definition of a convergent CPTP map with respect to KL(D).

Definition 1 (Convergence). An input-dependent CPTP map T is convergent with respect
to KL(D) if there exists a sequence δ = {δk}k>0 with limk→∞ δk = 0, such that for all
u = {uk}k∈Z+ ∈ K+

L (D) and any two density operators ρj,k (j = 1, 2) satisfying ρj,k =
T (uk)ρj,k−1, it holds that ‖ρ1,k − ρ2,k‖2 ≤ δk. We call a dissipative quantum system whose
dynamics is governed by a convergent CPTP map a convergent system.

The convergence property can be viewed as an extension of the mixing property for a
noisy quantum channel described by an input-independent CPTP map [40].

Definition 2 (Mixing). A n-qubit dissipative quantum system described by a CPTP map T
is mixing if for all ρ0 ∈ D(C2n), if there exists a unique density operator ρ∗ such that,

lim
k→∞

∥

∥

∥

∥

∥

(

k
∏

j=1

T (ρ0)

)

− ρ∗

∥

∥

∥

∥

∥

2

= 0.

We will see later that if an input-dependent CPTP map T (uk) satisfies the sufficient
condition in Theorem 3, then T (uk) is mixing for each uk ∈ D ∩ [−L, L].

Theorem 3 (Convergence property). A n-qubit dissipative quantum system governed by
an input-dependent CPTP map T is convergent with respect to KL(D) if, for all uk ∈
D∩[−L, L], T (uk) on the hyperplane H0(2

n) of 2n×2n traceless Hermitian operators satisfies

‖T (uk)|H0(2n)‖2−2 := supA∈H0(2n),A 6=0
‖T (uk)A‖2

‖A‖2
≤ 1 − ǫ for some 0 < ǫ ≤ 1. Moreover, any

pair of initial density operators converge uniformly to one another under T .

Proof. Let ρ1,0 and ρ2,0 be two arbitrary initial density operators, ρ1,0 − ρ2,0 is a traceless
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Hermitian operator. We have,

‖ρ1,k − ρ2,k‖2 =
∥

∥

∥

∥

(←−
∏

k
j=1T (uj)

)

(ρ1,0 − ρ2,0)

∥

∥

∥

∥

2

=

∥

∥

∥

∥

(←−
∏

k
j=1T (uj)|H0(2n)

)

(ρ1,0 − ρ2,0)

∥

∥

∥

∥

2

≤
←−
∏

k
j=1

∥

∥T (uj)|H0(2n)

∥

∥

2−2
‖ρ1,0 − ρ2,0‖2

≤
←−
∏

k
j=1(1− ǫ) ‖ρ1,0 − ρ2,0‖2

≤
←−
∏

k
j=1(1− ǫ)(‖ρ1,0‖2 + ‖ρ2,0‖2)

≤ 2(1− ǫ)k,

where the last inequality follows from the fact that for all ρ ∈ D(C2n), ‖ρ‖2 ≤ 1.

We remark that for a n-qubit dissipative quantum system that satisfies the condition in

Theorem 3, any initial density operator ρ0 reaches the state limk→∞

(←−∏
k
j=1T (uj)

)

(

I
2n

)

. To

see this, let

ρ0 =
I

2n
+

∑

j1,j2,...,jn={0,1,2,3}
j1j2...jn 6=0

αj1j2...jn

n
⊗

i=1

σ
(i)
ji
,

where σ
(i)
ji

denotes, for qubit i, the identity operator I if ji = 0, the Pauli X operator if

ji = 1, the Pauli Y operator if ji = 2 and the Pauli Z operator if ji = 3. Since
⊗n

i=1 σ
(i)
ji

for
j1j2 . . . jn 6= 0 are all traceless Hermitian operators, therefore as k →∞,

∥

∥

∥

∥

ρk −
(←−
∏

k
j=1T (uj)

)(

I

2n

)∥

∥

∥

∥

2

→ 0.

B. The universality property

We now show the universality property of convergent dissipative quantum systems. Let
R

Z be the set of all real-valued infinite sequences. Consider a n-qubit convergent dissipative
quantum system described by Eqs. (1) and (2) in the main text, whose dynamics and output
are defined by a CPTP map T and a functional h : D(C2n)→ R, respectively. We associate
this quantum system with an induced filter MT

h : KL(D) → RZ, such that for any initial
condition ρ−∞ ∈ D(C2n), when evaluated at time t = kτ ,

MT
h (u)k = h

((−→
∏

∞
j=0T (uk−j)

)

ρ−∞

)

,

where
−→∏

∞
j=0T (uk−j) = limN→∞

←−∏
N
j=0T (uk+(j−N)) = limN→∞ T (uk)T (uk−1) · · ·T (uk−N), and

the limit is a pointwise limit. Lemma 4 states that this limit is well-defined.

Lemma 4. The filter MT
h : KL(D) → RZ is well-defined. In particular, the limit

limN→∞ T (uk)T (uk−1) · · ·T (uk−N)ρ−N exists and is independent of ρ−N .
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Proof. The set D(C2n) equipped with the distance function induced by the norm ‖ · ‖2 is a
complete metric space. Therefore, every Cauchy sequence converges to a point in D(C2n)
[41]. It remains to show that Sn = T (uk)T (uk−1) · · ·T (uk−n)ρ−n is a Cauchy sequence. By
hypothesis, for all uk ∈ D ∩ [−L, L], ‖T (uk)|H0(2n)‖2 ≤ 1 − ǫ for some 0 < ǫ ≤ 1. For any

ǫ′ > 0, let N > 0 such that (1− ǫ)N < ǫ′

2
. Then for all n,m > N , suppose that n ≤ m,

‖Sn − Sm‖2 = ‖T (uk)T (uk−1) · · ·T (uk−n) (ρ−n − T (uk−n−1) · · ·T (uk−m)ρ−m)‖2
≤ (1− ǫ)n+1 (‖ρ−n‖2 + ‖ (T (uk−n−1) · · ·T (uk−m)) ρ−m‖2)
≤ 2(1− ǫ)N < ǫ′

This filter is causal since given u, v ∈ KL(D) satisfying uτ = vτ for τ ≤ k, MT
h (u)k =

MT
h (v)k. For any τ ∈ Z, let Mτ be the shift operator defined by Mτ (u)k = uk−τ . A filter is

said to be time-invariant if it commutes with Mτ . It is straightforward to show that MT
h is

time-invariant.
For a time-invariant and causal filter, there is a corresponding functional F T

h : K−
L (D)→

R defined as F T
h (u) = MT

h (u)0 (see [10]). The corresponding filter can be recovered via
MT

h (u)k = F T
h (P ◦M−k(u)), where P truncates u up to 0, that is P (u) = u|0. We say a

filter MT
h has the fading memory property if and only if F T

h is continuous with respect to a
weighted norm defined as follows.

Definition 5 (Weighted norm). For a null sequence w = {wk}k≥0, that is w : {0} ∪ Z
+ →

(0, 1] is decreasing and limk→∞wk = 0, define a weighted norm ‖ · ‖w on K−
L (D) as ‖u‖w :=

supk∈Z− |uk|w−k.

Definition 6 (Fading memory). A time-invariant causal filter M : KL(D) → R
Z has the

fading memory property with respect to a null sequence w if and only if its corresponding
functional F : K−

L (D)→ R is continuous with respect to the weighted norm ‖ · ‖w.

To emphasize that the fading memory property is defined with respect to a null sequence
w, we will say that M is a w-fading memory filter and the corresponding functional F is a
w-fading memory functional. We state the following compactness result [19, Lemma 2] and
the Stone-Weierstrass theorem [13, Theorem 7.3.1].

Lemma 7 (Compactness). For any null sequence w, K−
L (D) is compact with the weighted

norm ‖ · ‖w.

We write (K−
L (D), ‖ · ‖w) to denote the space K−

L (D) equipped with the weighted norm
‖ · ‖w.

Theorem 8 (Stone-Weierstrass). Let E be a compact metric space and C(E) be the set
of real-valued continuous functions defined on E. If a subalgebra A of C(E) contains the
constant functions and separates points of E, then A is dense in C(E).

Let C(K−
L (D), ‖ · ‖w) be the set of continuous functionals F : (K−

L (D), ‖ · ‖w) → R.
The following theorem is a result of the compactness of (K−

L (D), ‖ · ‖w) (Lemma 7) and the
Stone-Weierstrass Theorem (Theorem 8).
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Theorem 9. Let w be a null sequence. For convergent CPTP maps T , let Mw = {MT
h |

h : D(C2n) → R} be a set of w-fading memory filters. Let Fw be the family of corre-
sponding w-fading memory functionals defined on K−

L (D). If Fw forms a polynomial alge-
bra of C(K−

L (D), ‖ · ‖w), contains the constant functionals and separates points of K−
L (D),

then Fw is dense in C(K−
L (D), ‖ · ‖w). That is for any w-fading memory filter M∗ and

any ǫ > 0, there exists MT
h ∈ Mw such that for all u ∈ KL(D), ‖M∗(u) − MT

h (u)‖∞ =
supk∈Z |M∗(u)k −MT

h (u)k| < ǫ.

Proof. Fw is dense follows from Lemma 7 and Theorem 8. To prove the second part of the
theorem, since Fw is dense in C(K−

L (D), ‖ · ‖w), for any w-fading memory functional F∗ and
any ǫ > 0 , there exists F T

h ∈ Fw such that for all u− ∈ K−
L (D), |F∗(u−)−F T

h (u−)| < ǫ. For
u ∈ KL(D), notice that P ◦M−k(u) ∈ K−

L (D) for all k ∈ Z, hence

∣

∣F∗(P ◦M−k(u))− F T
h (P ◦M−k(u))

∣

∣ =
∣

∣M∗(u)k −MT
h (u)k

∣

∣ < ǫ.

Since this is true for all k ∈ Z, therefore for all u ∈ KL(D), ‖M∗(u)−MT
h (u)‖∞ < ǫ.

C. Fading memory property and polynomial algebra

Before we prove the universality of the family of dissipative quantum systems introduced
in Sec. IV in the main text, we first show two important observations regarding to the
multivariate polynomial output in Eq. (3).

We specify h to be the multivariate polynomial as in the right hand side of Eq. (3) in the
main text. For ease of notation, we drop the subscript h in F T

h and MT
h . Let F = {F T} be

the set of functionals induced from dissipative quantum systems given by Eqs. (1) and (3)
in the main text. We will show in Lemma 10 that the convergence and continuity of T are
sufficient to guarantee the fading memory property of F T , and in Lemma 12 that F forms
a polynomial algebra, made of fading memory functionals. In the following, let L(C2n) be
the set of linear operators on C2n , and for a CPTP map T , for all uk ∈ D ∩ [−L, L], define
‖T (uk)‖2−2 := supA∈L(C2n),‖A‖2=1 ‖T (uk)A‖2.

Lemma 10 (Fading memory property). Consider a n-qubit dissipative quantum system with
dynamics Eq. (1) and output Eq. (3). Suppose that for all uk ∈ D∩ [−L, L], the CPTP map
T (uk) satisfies the condition in Theorem 3, so that it is convergent. Moreover, for any
ǫ > 0, there exists δT (ǫ) > 0 such that ‖T (x) − T (y)‖2−2 < ǫ whenever |x − y| < δT (ǫ) for
x, y ∈ D∩[−L, L]. Then for any null sequence w, the induced filter MT and the corresponding
functional F T are w-fading memory.

Proof. We first state the boundedness of CPTP maps [37, Theorem 2.1].

Lemma 11. For a CPTP map T : L(C2n)→ L(C2n), we have ‖T‖2−2 ≤
√
2n.

Moreover, recall that Tr(·) is continuous, that is for any ǫ > 0, there exists δTr(ǫ) > 0
such that |Tr(A−B)| < ǫ whenever ‖A−B‖2 < δTr(ǫ) for any complex matrices A,B. Note
that here ‖ · ‖2 denotes the Schatten 2-norm or the Hilbert-Schmidt norm.

Let w be an arbitrary null sequence. We will show the linear terms L(u) in the functional
F T are continuous with respect to ‖·‖w, and the continuity property of F T follows from the
fact that finite sums and products of continuous elements are also continuous.
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For any u, v ∈ K−
L (D),

|L(u)− L(v)| =
∣

∣

∣

∣

Tr

(

Z(i1)

((−→
∏

∞
k=0T (u−k)

)

ρ−∞ −
(−→
∏

∞
k=0T (v−k)

)

ρ−∞

))∣

∣

∣

∣

.

Denote ρu =
(−→∏

∞
k=NT (u−k)

)

ρ−∞ and ρv =
(−→∏

∞
k=NT (v−k)

)

ρ−∞ for some 0 < N <∞,

∥

∥

∥

∥

Z(i1)

((−→
∏

∞
k=0T (u−k)

)

ρ−∞ −
(−→
∏

∞
k=0T (v−k)

)

ρ−∞

)∥

∥

∥

∥

2

≤
∥

∥Z(i1)
∥

∥

2

(∥

∥

∥

∥

−→
∏

N−1
k=0 T (u−k)−

−→
∏

N−1
k=0 T (v−k)

∥

∥

∥

∥

2−2

‖ρu‖2 +
∥

∥

∥

∥

(−→
∏

N−1
k=0 T (v−k)

)

(ρu − ρv)

∥

∥

∥

∥

2

)

.

(4)

Since T satisfies conditions in Theorem 3, any two density operators converge uniformly to
one another. Therefore, for any ǫ > 0, there exists N(ǫ) > 0 such that for all N ′ > N(ǫ),

∥

∥

∥

∥

(−→
∏

N ′−1
k=0 T (v−k)

)

(ρu − ρv)

∥

∥

∥

∥

2

<
δTr(ǫ)

2 ‖Z(i1)‖2
. (5)

Choose N ′ = N(ǫ) + 1 and bound the first term inside the bracket on the right hand side of
Eq. (4) by rewriting it as a telescopic sum:
∥

∥

∥

∥

−→
∏

N(ǫ)
k=0 T (u−k)−

−→
∏

N(ǫ)
k=0 T (v−k)

∥

∥

∥

∥

2−2

=

∥

∥

∥

∥

∥

∥

N(ǫ)
∑

l=0

(

T (v0) · · ·T (v−(l−1))T (u−l)T (u−(l+1)) · · ·T (u−N(ǫ))

−T (v0) · · ·T (v−(l−1))T (v−l)T (u−(l+1)) · · ·T (u−N(ǫ))
)

∥

∥

∥

∥

2−2

≤
N(ǫ)
∑

l=0

∥

∥T (v0) · · ·T (v−(l−1))
∥

∥

2−2
‖T (u−l)− T (v−l)‖2−2

∥

∥T (u−(l+1)) · · ·T (u−N(ǫ))
∥

∥

2−2

≤ 2n
N(ǫ)
∑

l=0

‖T (u−l)− T (v−l)‖2−2 ,

(6)

where the last inequality follows from Lemma 11. We claim that for any ǫ > 0, if

‖u− v‖w = sup
k∈Z−

|uk − vk|w−k < δT

(

δTr(ǫ)

2n+1 ‖Z(i1)‖2 (N(ǫ) + 1)

)

wN(ǫ)

then |L(u)− L(v)| < ǫ. Indeed, since w is decreasing, the above condition implies that

max
0≤l≤N(ǫ)

|u−l − v−l|wN(ǫ) < δT

(

δTr(ǫ)

2n+1 ‖Z(i1)‖2 (N(ǫ) + 1)

)

wN(ǫ).

Since wN(ǫ) > 0, for all 0 ≤ l ≤ N(ǫ),

|u−l − v−l| < δT

(

δTr(ǫ)

2n+1 ‖Z(i1)‖2 (N(ǫ) + 1)

)

.
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By continuity of T , we bound Eq. (6) by

2n
N(ǫ)
∑

l=0

‖T (u−l)− T (v−l)‖2−2 < 2n
N(ǫ)
∑

l=0

δTr(ǫ)

2n+1 ‖Z(i1)‖2 (N(ǫ) + 1)
=

δTr(ǫ)

2 ‖Z(i1)‖2
. (7)

Since ‖ρu‖2 ≤ 1, Eqs. (4), (5) and (7) give

∥

∥Z(i1)
∥

∥

2

(∥

∥

∥

∥

−→
∏

N(ǫ)
k=0 T (u−k)−

−→
∏

N(ǫ)
k=0 T (v−k)

∥

∥

∥

∥

2−2

‖ρu‖2 +
∥

∥

∥

∥

(−→
∏

N(ǫ)
k=0 T (v−k)

)

(ρu − ρv)

∥

∥

∥

∥

2

)

< δTr(ǫ).

The result now follows from the continuity of Tr(·).
Lemma 12 (Polynomial algebra). Let F = {F T} be a family of functionals induced by
dissipative quantum systems defined by Eqs. (1) and (3) in the main text. If for each member
F T ∈ F , T satisfies the conditions in Lemma 10, then for any null sequence w, F forms a
polynomial algebra consisting of w-fading memory functionals.

Proof. Consider two dissipative quantum systems described by Eqs. (1) and (3), with n1

and n2 system qubits respectively. Let ρ
(m)
k ∈ D(C2nm

) be the state and T (m) be the CPTP
map of the mth system. Let j1 = 1, . . . , n1 and j2 = 1, . . . , n2 be the respective qubit indices
for the two systems. For the observable Z(jm) of qubit jm, notice that

Tr
(

Z(j1)ρ
(1)
k

)

= Tr
(

(Z(j1) ⊗ I)(ρ
(1)
k ⊗ ρ

(2)
k )
)

,

Tr
(

Z(j2)ρ
(2)
k

)

= Tr
(

(I ⊗ Z(j2))(ρ
(1)
k ⊗ ρ

(2)
k )
)

,

where I is the identity operator. Therefore, we can relabel the qubit for the combined system

described by the density operator ρ
(1)
k ⊗ ρ

(2)
k by j, running from j = 1 to j = n1 + n2. Using

this notation, the above expectations can be re-expressed as

Tr
(

Z(j1)ρ
(1)
k

)

= Tr
(

Z(j)ρ
(1)
k ⊗ ρ

(2)
k

)

, j = j1

Tr
(

Z(j2)ρ
(2)
k

)

= Tr
(

Z(j)ρ
(1)
k ⊗ ρ

(2)
k

)

, j = n1 + j2.

Following this idea, write out the outputs of two systems as follows,

ȳ
(1)
k = C1 +

R1
∑

d1=1

n1
∑

i1=1

· · ·
n1
∑

in1=in1−1+1

∑

ri1+···+rin1
=d1

w
ri1 ,...,rin1
i1,...,in1

〈Z(i1)〉ri1k · · · 〈Z(in1 )〉rin1
k ,

ȳ
(2)
k = C2 +

R2
∑

d2=1

n2
∑

j1=1

· · ·
n2
∑

jn2=jn2−1+1

∑

rj1+···+rjn2
=d2

w
rj1 ,...,rjn2
j1,...,jn2

〈Z(j1)〉rj1k · · · 〈Z(jn2)〉rjn2

k .

For any λ ∈ R, let n = n1+n2 and k denote the qubit index of the combined system running
from k = 1 to k = n, and R = max{R1, R2}, then

ȳ
(1)
k + λȳ

(2)
k = C1 + λC2 +

R
∑

d=1

n
∑

k1=1

· · ·
n
∑

kn=kn−1+1

∑

rk1+···+rkn=d

w̄
rk1 ,...,rkn
k1,...,kn

〈Z(k1)〉rk1k · · · 〈Z(kn)〉rknk ,
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where the weights w̄
rk1 ,...,rkn
k1,...,kn

are changed accordingly. For instance, if all km ≤ n1 for

m = 1, 2, . . . , n, then w̄
rk1 ,...,rkn
k1,...,kn

= w
ri1 ,...,rin1
i1,...,in1

, corresponding to the weights for the output

ȳ
(1)
k . Similarly, let R = R1 + R2,

ȳ
(1)
k ȳ

(2)
k = C1C2 +

R
∑

d=1

n
∑

k1=1

· · ·
n
∑

kn=kn−1+1

∑

rk1+···+rkn=d

ŵ
rk1 ,...,rkn
k1,...,kn

〈Z(k1)〉rk1k · · · 〈Z(kn)〉rknk .

Therefore, ȳ
(1)
k +λȳ

(2)
k and ȳ

(1)
k ȳ

(2)
k again have the same form as the right hand side of Eq. (3)

in the main text. This implies that for any functionals F T (1)
, F T (2) ∈ F , F T (1)

+ λF T (2) ∈ F
and F T (1)

F T (2) ∈ F . Thus, F forms a polynomial algebra.
It remains to show that for all uk ∈ D ∩ [−L, L], ‖T (uk)|H0(2n)‖2−2 = ‖(T (1)(uk) ⊗

T (2)(uk))|H0(2n)‖2−2 ≤ 1 − ǫ for some 0 < ǫ ≤ 1. This will imply that F T (1)
+ λF T (2)

and F T (1)
F T (2)

are w-fading memory by Lemma 10, and that F forms a polynomial al-
gebra consisting of w-fading memory functionals. Suppose that for all uk ∈ D ∩ [−L, L],
‖T (uk)|H0(2nm )‖2−2 ≤ 1 − ǫm for m = 1, 2. Adopting the proof of [23, Proposition 3], let

A =
∑

i Ai ⊗ Ãi be a traceless Hermitian operator. Without loss of generality, we assume

that {Ãi} is an orthonormal set with respect to the Hilbert-Schmidt inner product. Then
{Ai⊗Ãi} and {T (1)(uk)|H0(2n1 )Ai⊗Ãi} are two orthogonal sets. By the Pythagoras theorem,

T (1)(uk)|H0(2n1 ) ⊗ I on the hyperplane of traceless Hermitian operators satisfies

‖(T (1)(uk)|H0(2n1 ) ⊗ I)
∑

i

Ai ⊗ Ãi‖22 =
∑

i

‖T (1)(uk)|H0(2n1 )Ai ⊗ Ãi‖22

=
∑

i

‖T (1)(uk)|H0(2n1 )Ai‖22‖Ãi‖22 ≤ ‖T (1)(uk)|H0(2n1 )‖22−2

∑

i

‖Ai‖22‖Ãi‖22

= ‖T (1)(uk)|H0(2n1 )‖22−2

∑

i

‖Ai ⊗ Ãi‖22 = ‖T (1)(uk)|H0(2n1 )‖22−2‖
∑

i

Ai ⊗ Ãi‖22.

Therefore, ‖T (1)(uk)|H0(2n1 )⊗I‖2−2 ≤ ‖T (1)(uk)|H0(2n1 )‖2−2. Similarly, a symmetric argument

shows that ‖I ⊗ T (2)(uk)|H0(2n2 )‖2−2 ≤ ‖T (2)(uk)|H0(2n2 )‖2−2. Therefore, when restricted to
traceless Hermitian operators,

‖(T (1)(uk)⊗ T (2)(uk))|H0(2n)‖2−2 = ‖(T (1)(uk)|H0(2n1 ) ⊗ I)(I ⊗ T (2)(uk)|H0(2n2 ))‖2−2

≤ ‖T (1)(uk)|H0(2n1 ) ⊗ I‖2−2‖I ⊗ T (2)(uk)|H0(2n2 )‖2−2

≤ ‖T (1)(uk)|H0(2n1 )‖2−2‖T (2)(uk)|H0(2n2 )‖2−2 ≤ (1− ǫ1)(1− ǫ2).

The convergence of T follows from Theorem 3.

D. A universal class

We now prove the universality of the class of dissipative quantum systems introduced
in the main text. Recall that this class consists of N non-interacting quantum subsystems
initialized in a product state of the N subsystems, where the dynamics of subsystem K with
nK qubits is governed by the CPTP map:

TK(uk)ρ
K
k−1 = TriK0 (e

−iHKτρKk−1 ⊗ ρKi0,ke
iHkτ ), (8)
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where
ρKi0,k = uk|0〉〈0|+ (1− uk)|1〉〈1|, 0 ≤ uk ≤ 1

HK =

nK
∑

j1=0

nK
∑

j2=j1+1

J j1,j2
K (X(iKj1

)X(iKj2
) + Y (iKj1

)Y (iKj2
)) +

nK
∑

j=0

αZ(iKj ), (9)

with J j1,j2
K and α being real-valued constants and TriK0 denoting the partial trace over the

ancilla qubit. Let HK = I ⊗ · · · ⊗ HK ⊗ · · · ⊗ I with HK in the K-th position, the total
Hamiltonian of N subsystems is

H =

N
∑

K=1

HK . (10)

Writing ρk =
⊗N

K=1 ρ
K
k , the overall dynamics and the output are given by
{

ρk = T (uk)ρk−1 =
⊗N

K=1 TK(uk)ρ
K
k−1

ȳk = h(ρk),
(11)

where h is the multivariate polynomial defined by the right hand side of Eq. (3) in the main
text.

Proposition 13. Let MS be the set of filters induced from dissipative quantum systems
described by Eq. (11) such that each TK (K = 1, . . . , N) satisfies conditions in Theorem
3. Then for any null sequence w, the corresponding family of functionals FS is dense in
C(K−

1 ([0, 1]), ‖ · ‖w).
Proof. We first show TK(x) satisfies the conditions in Lemma 10 for all x ∈ [0, 1]. Let
x, y ∈ [0, 1] and Z be the Pauli Z operator. By definition,

‖TK(x)− TK(y)‖2−2 = sup
A∈L(C2n )
‖A‖2=1

‖(TK(x)− TK(y))A‖2

= sup
A∈L(C2n )
‖A‖2=1

‖TrKi0 (e−iHKτA⊗ (x− y)ZeiHKτ )‖2

= |x− y| sup
A∈L(C2n)
‖A‖2=1

‖TrKi0 (e−iHKτA⊗ ZeiHKτ )‖2

= |x− y|‖T̃‖2−2,

where T̃ is an input-independent CPTP map.
Now, the same argument in the proof of Lemma 12 shows that T = T1 ⊗ · · · ⊗ TN is

convergent given the assumptions on each TK . Furthermore, given two convergent systems
whose dynamics are described by Eq. (11) with Hamiltonians H(1) and H(2), the total
Hamiltonian of the combined system is H = H(1) ⊗ I + I ⊗ H(2), which again has the
form Eq. (10). Therefore, by the above observation and Lemma 12, FS forms a polynomial
algebra, consisting of w-fading memory functionals for any null sequence w.

It remains to show FS contains constants and separates points. Constants can be obtained
by setting the weights w

ri1 ,...,rin
i1,...,in

in the output to be zero. To show the family FS separates
points, we state the following lemma for later use, whose proof can be found in [24, Theorem
3.2].
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Lemma 14. Let f(θ) =
∑∞

n=0 xnθ
n be a non-constant real power series, having a non-zero

radius of convergence. If f(0) = 0, then there exists β > 0 such that f(θ) 6= 0 for all θ with
|θ| ≤ β and θ 6= 0.

Consider a single-qubit system interacting with a single ancilla qubit whose dynamics is
governed by Eq. (11). Order an orthogonal basis of L(C2) as B = {I, Z,X, Y }. Recall that
the normal representations of a CPTP map T and a density operator ρ are given by

T i,j =
Tr (BiT (Bj))

2
and ρi =

Tr(ρBi)

2
,

where Bi ∈ B. Without loss of generality, let τ = 1 and set J j1,j2
1 = J ∈ R for all j1, j2 in

the Hamiltonian given by Eq. (9). We obtain the normal representation of the CPTP map
defined in Eq. (8) as

T (uk) =









1 0 0 0
sin2(2J)(2uk − 1) cos2(2J) 0 0

0 0 cos(2J) cos(2α) − cos(2J) sin(2α)
0 0 cos(2J) sin(2α) cos(2J) cos(2α)









.

When restricted to the hyperplane of traceless Hermitian operators,

T |H0(2) =





cos2(2J) 0 0
0 cos(2J) cos(2α) − cos(2J) sin(2α)
0 cos(2J) sin(2α) cos(2J) cos(2α)





with
∥

∥T |H0(2)

∥

∥

2−2
= σmax(T |H0(2)) = | cos(2J)|. Here, ‖·‖2−2 is the matrix 2-norm and

σmax(·) is the maximum singular value. Choose J 6= zπ
2

for z ∈ Z, then | cos(2J)| ≤ 1 − ǫ
for some 0 < ǫ ≤ 1. By Theorem 3, T is convergent and we choose an arbitrary initial

density operator ρ−∞ =
(

1/2 1/2 0 0
)T

, corresponding to ρ−∞ = |0〉〈0|. If we only take
the expectation 〈Z〉 in the output Eq. (3) by setting the degree R = 1, then this single-qubit
dissipative quantum system induces a functional

F T (u) = w

[(−→
∏

∞
j=0T (u−j)

)

ρ−∞

]

2

+ C,

for all u ∈ K−
1 ([0, 1]). Here, [·]2 refers to the second element of the vector, corresponding to

〈Z〉 given the order of the orthogonal basis elements in B. Given two input sequences u 6= v
in K−

1 ([0, 1]), consider two cases:
(i) If u0 6= v0, choose J = π

4
such that cos2(2J) = 0 and sin2(2J) = 1. Then

F T (u)− F T (v) = w(u0 − v0) 6= 0.

(ii)If u0 = v0,

F T (u)− F T (v) = w sin2(2J)
∞
∑

j=0

(

cos2(2J)
)j
(u−j − v−j).
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Let θ = cos2(2J), then given our choice of J , 0 ≤ θ ≤ 1 − ǫ and sin2(2J) ≥ ǫ for some
0 < ǫ ≤ 1. Consider the power series

f(θ) =

∞
∑

j=0

θj(u−j − v−j),

since |u−j − v−j| ≤ 1, f(θ) has a non-zero radius of convergence R such that (−1, 1) ⊆ R.
Moreover, f(θ) is non-constant and f(0) = 0. The separation of points follows from invoking
Lemma 14.

Finally, the universality property of FS follows from Theorem 9.

E. Detailed numerical experiment settings

In this section, we describe detailed formulas for the NARMA tasks, simulation of deco-
herence and experimental conditions for ESNs and the Volterra series.

1. The NARMA task

The general mth-order NARMA I/O map is described as [6]:

yk = 0.3yk−1 + 0.05yk−1

(

τNARMA−1
∑

j=0

yk−j−1

)

+ 1.5uk−τNARMA
uk + γ.

where γ ∈ R. In the main text, we consider τNARMA = {15, 20, 30, 40}. For τNARMA =
{15, 20}, we set γ = 0.1. For τNARMA = {30, 40}, γ is set to be 0.05 and 0.04 respectively.

A random input sequence u(r), where each u
(r)
k is randomly uniformly chosen from [0, 0.2],

is deployed for all the computational tasks. This range is chosen to ensure stability of the
NARMA tasks.

2. Decoherence

We consider the dephasing, decaying and generalized amplitude damping (GAD) noise,
which are of experimental importance. The dephasing noise has the Kraus operators [34]:

M0 =

√

1 +
√
1− p

2
I,M1 =

√

1−√1− p

2
Z,

where
√
1− p = e−2 γ

S
δt . Therefore, we implement single-qubit phase-flip for all n system

and ancilla qubits. That is for j = 1, . . . , n + 1 the density operator ρ for the system and
ancilla qubits undergoes the evolution:

ρ→ 1 + e−2 γ
S
δt

2
ρ+

1− e−2 γ
S
δt

2
Z(j)ρZ(j),

where Z(j) denotes the Pauli Z operator for qubit j.
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The generalized amplitude damping (GAD) channel captures the effect of dissipation to
an environment at a finite temperature λ ∈ [0, 1]. Its Kraus operators are defined by

M0 =
√
λ

(

1 0
0
√
1− p

)

,M2 =
√
λ

(

0
√
p

0 0

)

,

M3 =
√
1− λ

(√
1− p 0
0 1

)

,M4 =
√
1− λ

(

0 0√
p 0

)

.

When λ = 1, the GAD channel corresponds to the amplitude damping channel (decaying
noise). We simulate the generalized amplitude damping channel for λ = {0.2, 0.4, 0.6, 0.8}.
To implement the GAD channel with the same noise strengths as the dephasing channel, we

set
√
1− p = e−2 γ

S
δt ,
√
p =

√

1− e−4 γ
S
δt to be the same as the dephasing noise.

Following the discussion in Sec. VB, Fig. 8 plots the average SA NMSE for the LRPO,
Missile, NARMA15 and NARMA20 tasks under the GAD channel for all the chosen tem-
perature parameters. Fig. 9 and Fig. 10 plot the average sum of modulus of off-diagonal
elements in the system density operator, for the last 50 timesteps of the SA samples, under
all noise types discussed above.

FIG. 8. Average SA NMSE for the LRPO, Missile, NARMA15 and NARMA20 tasks under GAD

for λ = {0.2, 0.4, 0.6, 0.8}
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FIG. 9. Average sum of modulus of off-diagonal elements in the density operator, for the last 50

timesteps of the SA samples, under the (a) dephasing noise and (b) decaying noise

3. The echo state networks

An ESN with m reservoir nodes is a type of recurrent neural network with a m× 1 input
matrixWi, am×m reservoir matrixWr and an 1×m output matrixWo. The state evolution
and output are given by [21]

{

xk = tanh(Wrxk−1 +Wiuk)

ŷk = Woxk + wc,

where wc is a tunable constant and tanh(·) is an element-wise operation.
In the numerical examples, lengths of washout, learning and evaluation phases for ESNs

and SA are the same. Given an output sequence y to be learned, the output weights wc

and Wo are optimized via standard least squares to minimize
∑

k |yk − ŷk|2, for timesteps k
during the training phase. We now detail the experimental conditions for ESNs in various
subsections of the numerical experiments (Sec. V).

For the comparison given in Subsection VA, we set the reservoir size to be m ∈ M =
{10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800}. Here, the number of com-
putational nodes is m+1 for each m. For each computational task and each m, the average
NMSE of 100 ESNs is reported. The average NMSE for ESNs is obtained as follows. For
each reservoir size m, we prepare 100 ESNs with elements of Wr randomly uniformly chosen
[−2, 2]. Let S denote the set of 10 points evenly spaced between [0.01, 0.99]. For each of the
100 ESNs, we scale the maximum singular value of Wr to σmax(Wr) = s for all s ∈ S. This
ensures the convergence and fading memory property of ESNs [18]. For each of the chosen s,
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FIG. 10. Average sum of modulus of off-diagonal elements in the density operator, for the last 50

timesteps of the SA samples, under GAD for (a) λ = 0.2, (b) λ = 0.4, (c) λ = 0.6 and (d) λ = 0.8

the elements of Wi are randomly uniformly chosen within [−δ, δ], where δ is chosen from the
set I of 10 points evenly spaced between [0.01, 1]. Now, for the i-th (i = 1, . . . , 100) ESN with
parameter (m, s, δ), we denote its associated NMSE to be NMSE(m,s,δ,i). For each reservoir

size m, the average NMSE is computed as 1
|S|

1
|I|

1
100

∑

s∈S

∑

δ∈I

∑100
i=1NMSE(m,s,δ,i). Fig. 11

summarizes the average ESNs NMSE for the LRPO, Missile, NARMA15 and NARMA20
tasks.
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FIG. 11. Average NMSE of ESNs for the LRPO, Missile, NARMA15 and NARMA20 tasks. The

data symbols obscure the error bars, which represent the standard error

For the further comparison in Subsection VD, ESNs are simulated to approximate the
LRPO, Missile, NARMA15, NARMA20, NARMA30 and NARMA40 tasks. The reservoir
size of ESNs for each task is set to be m ∈ M = {256, 300, 400, 500}. For each m, the

29



number of computational nodes C for ESNs is

C ∈ N4 ∪ N5 ∪ N6 = {5, 6, 7, 15, 21, 28, 35, 56, 70, 84, 126, 210, 252},

where Nn denotes the chosen numbers of computational nodes for n-qubit SA defined as
follows. Recall that in this experiment, 4-, 5- and 6-qubit SA with varying degrees R
in the output are chosen. For 4-qubit SA, R4 = {1, . . . , 6} correspond to the number
of computational nodes N4 = {5, 15, 35, 70, 126, 210}. For 5-qubit SA, R5 = {1, . . . , 5},
such that N5 = {6, 21, 56, 126, 252}. For 6-qubit SA, R6 = {1, . . . , 4}, such that N6 =
{7, 28, 84, 210}. To compute the output weights Wo and wc when C < m + 1, we first
optimize Wo and wc by standard least squares. Then choose C − 1 elements of Wo with the
largest absolute values and their corresponding elements x′

k from the state xk. These C − 1
state elements x′

k are used to re-optimize C − 1 elements W ′
o of Wo and w′

c via standard
least squares. At each timestep k, the full state xk evolves, while the output is computed as
ŷ′ = W ′

ox
′
k+w′

c. For this numerical experiment, the chosen parameters S and I of ESNs are
the same as above. For the i-th ESN with parameter (m, s, δ), the number of computational
nodes C varies. Let NMSE(m,C,s,δ,i) denotes the corresponding NMSE. For each m and each

C, we report the average NMSE computed as 1
|S|

1
|I|

1
100

∑

s∈S

∑

δ∈I

∑100
i=1NMSE(m,C,s,δ,i).

4. The Volterra series

The discrete-time finite Volterra series with kernel order o and memory p is given by [10]

ŷk = h0 +

o
∑

i=1

p−1
∑

j1,··· ,ji=0

hj1,··· ,ji
i

i
∏

l=1

uk−jl,

where uk−j is the delayed input, h0 and hj1,··· ,ji
i are real-valued kernel coefficients (or output

weights in our context). Notice that when memory p = 1, the Volterra series is a map from
the current input uk to the output ŷk. The kernel coefficients are optimized via linear least
squares to minimize

∑

k |yk − ŷk|2 during the training phase, where y is the target output
sequence to be learned.

The number of computational nodes, that is the number of kernel coefficients h0 and
hj1,··· ,ji
i , is given by (po+1 − p)/(p− 1) + 1. We vary the parameters of the Volterra series as

follows: for each o = {2, . . . , 8}, choose p from {2, . . . , 27} such that the maximum number
of computational nodes does not exceed 801. Note that for o = 1, the output of the Volterra
series is a linear function of delayed inputs. Since we are interested in nonlinear I/O maps,
we choose o ≥ 2. Table 2 summarizes the number of computational nodes as o and p vary.
Fig. 12 shows the Volterra series NMSE according to the kernel order and memory.

It is observed in Fig. 12 that as the kernel order increases, the Volterra series task per-
formance does not improve. On the other hand, as the memory increases for kernel order 2,
the Volterra series task performance improves. The improvement is particularly significant
as the memory p coincides with the delay for NARMA tasks, that is when p = τNARMA + 1.
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