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We show that there are six inequivalent 4 × 4 unextendible product bases (UPBs) of size eight,
when we consider only 4-qubit product vectors. We apply our results to construct Positive-Partial-
Transpose entangled states of rank nine. They are at the same 4-qubit, 2 × 2 × 4 and 4 × 4 states,
and their ranges have product vectors. One of the six UPBs turns out to be orthogonal to an almost
genuinely entangled space, in the sense that the latter does not contain 4× 4 product vector in any
bipartition of 4-qubit systems. We also show that the multipartite UPB orthogonal to a genuinely
entangled space exists if and only if the n× n× n UPB orthogonal to a genuinely entangled space
exists for some n. These results help understand an open problem in [Phys. Rev. A 98, 012313,
2018].

PACS numbers: 03.65.Ud, 03.67.Mn

I. INTRODUCTION

The unextendible product basis (UPB) has been ex-
tensively useful in the study of positive-partial-transpose
(PPT) entangled states, symmetric PPT states, Bell in-
equalities and fermionic system [1–6]. Recently it has
been shown that there exists a non-orthogonal UPB or-
thogonal to a genuinely entangled (GE) subspace [7]. In
the same paper, an open problem was proposed to ask
whether the multipartite UPB orthogonal to a GE sub-
space exists. In this paper, we shall construct the 4 × 4
UPBs using the 4-qubit system. We apply the UPBs to
construct PPT entangled states and an almost GE space,
so as to approach the open problem.

The multiqubit system can be reliably constructed in
experiments [8, 9]. The multiqubit UPBs have been
more and more studied theoretically [10–13]. Neverthe-
less, quantum-information tasks often deal with entan-
gled states of high dimensions, and we need to construct
UPBs of high dimensions using multiqubit UPBs. The
traditional idea [14] relies on the assumption that the
range of constructed PPT entangled states is orthogo-
nal to a UPB, and thus has no product state. It is an
interesting problem to construct PPT entangled states
using a proper subset of UPBs, so that the range of PPT
entangled states has product states. Compared to the
traditional idea, the construction would help create more
PPT entangled states of high dimensions and more com-
plex properties, and shows the power of UPBs we have
not realized so far. This is the first motivation of this
paper.

Next, the GE state is a mixed state, which is not the
convex sum of product states with respect to any bi-
partition of systems [15, 16]. Physically, the GE state
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need be constructed using at least one GE pure state.
The GE states such as the Greenberger-Horne-Zeilinger
(GHZ) states, W states and their copies [17] play a key
role in quantum communication and computing. How-
ever it is a hard problem to determine whether a given
n-partite state is a GE state. For n = 2, the problem re-
duces to the well-known separability problem [18]. The
problem has received much attentions in theory and ex-
periment [19–25]. Very recently, Ref. [7] constructed
the notion of multipartite GE spaces containing only GE
states. In other word, any pure state in the GE space is
not a product vector with respect to any bipartition of
systems. Ref. [7] constructed a non-orthogonal UPB [31]
orthogonal to a GE space. It remains an open problem
whether there exists a UPB orthogonal to a GE space.
The positive answer of this problem would connect the
two important notions, and thus motivate progress on the
study of both of them theoretically and experimentally.
This is the second motivation of this paper.

In this paper we show that there are six 4× 4 UPBs of
size eight consisting of 4-qubit product vectors. It turns
out to be much harder than the construction of 4 × 4
UPBs of size 6, 7 and 9 consisting of 4-qubit product vec-
tors [26]. We do not rely on the classification of 4-qubit
UPBs by programming in [11]. We apply our results to
construct PPT entangled states of rank nine. They are
at the same 4-qubit, 2× 2× 4 and 4× 4 states, and their
ranges have product vectors. We further show that a
family of UPB is orthogonal to an almost GE space, in
the sense that the latter does not contain any 2 × 2 × 4
and 4 × 4 product vector. We also show that the multi-
partite UPB orthogonal to a GE space exists if and only
if the n × n × n UPB orthogonal to a GE space exists
for some integer n. These results help understand the
answer to the open problem in [7].

The rest of this paper is structured as follows. In Sec.
II we introduce the notions and facts such as UPBs and
UOMs. For the convenience of readers, we summary our
results of six 4 × 4 UPBs of size eight in Sec. III. We
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present two applications of our results in Sec. IV and V,
respectively. Finally we conclude in Sec. VI.

II. PRELIMINARIES

We refer to the 4-qubit subspace as HABCD = HA ⊗
HB⊗HC⊗HD = C2⊗C2⊗C2⊗C2. For X = A,B,C,D,
we refer to |ψi〉 ∈ HX as a 2-dimensional vector. The
product vector in HABCD is a 4-partite nonzero vector
of the form |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉 ⊗ |ψ4〉 := |ψ1, ψ2, ψ3, ψ4〉.
Suppose {|0〉, |1〉} is the computational basis in C2. For
any alphabet say a, we shall refer to |a〉, |a′〉 as a different
orthonormal basis in C2, i.e., |a〉 is not orthogonal to |0〉
and |1〉. One can similarly define the n-partite product
vectors in the space H = H1 ⊗ ... ⊗ Hn. The set of
n-partite orthonormal product vectors {|ai,1〉, ..., |ai,n〉}
is a UPB in H if there is no n-partite product vector
orthogonal to the set. We shall use the following two
properties of UPBs in the body and appendices of this
paper. If we obtain one UPB from another by using the
properties, then we say that the two UPBs are equivalent.
The properties will greatly simplify the determination of
UPBs.

Lemma 1 (i) If {|ai,1, ..., ai,n〉}i=1,...,m is an n-partite
UPB of size m then so is {|ai,σ(1), ..., ai,σ(n)〉}i=1,...,m,
where σ is an index permutation. That is, if we switch
arbitrarily the systems of a UPB then we obtain another
UPB.

(ii) If {|ai,1, ..., ai,n〉}i=1,...,m is an n-partite UPB of
size m then so is {U1|ai,1〉⊗ ...⊗Un|ai,n〉}i=1,...,m, where
U1, ..., Un are arbitrary unitary matrices. That is, per-
forming any product unitary transformation U1⊗ ...⊗Un
on a UPB produces another UPB.

We further need the notion of unextendible orthogonal
matrix (UOM) [27, p1]. To understand the notion, we
refer to product vectors of an n-qubit UPB of size m as
row vectors of an m×n matrix. The matrix is known as
the UOM of the UPB. For orthogonal qubit states |x〉 and
|x′〉 we shall refer to them as the vector variables x and x′

in UOMs, and vice versa. For example, the three-qubit
UPB |0, 0, 0〉, |1, y, z〉, |x, 1, z′〉, |x′, y′, 1〉 can be expressed
as the UOM  0 0 0

1 y z
x 1 z′

x′ y′ 1

 . (1)

where x, y, z 6= 0, 1. The first column of this UOM has
only one independent vector variable x, since x′ repre-
sents the qubit orthogonal to |x〉 up to global factors.
Since the product vectors in the UPB are orthogonal, we
say that the rows of UOM are also orthogonal. Further
more we refer to the k’th column of a UOM as the coun-
terpart of the k’th qubit of the corresponding UPB, and
vice versa. So we can simply refer to the qubits of UPBs
or UOMs throughout the paper.

Furthermore, if the four-qubit UPB is still a UPB in
C2 ⊗ C2 ⊗ C4 or C4 ⊗ C4, then we shall refer to the
corresponding UOM as a UOM in C2⊗C2⊗C4 or C4⊗C4,
respectively. These notations will simplify our arguments
in this paper.

III. THE SUMMARY OF 4 × 4 UPBS OF SIZE
EIGHT

We present the six matrices F1, F2, ..., F6 in (A1)-(A25)
in Appendix ??. The inequalities for entries in Fi’s are
satisfied if Fi corresponds to a UPB of size eight in C4⊗
C4. To explain the details, we construct the matrices
such as F1(i3 = i′4) in (A2), when the two vector variables
i3 and i′4 are the same. We will explain with details why
only F1, F2, ..., F6 may be UOMs in C4⊗C4 using 4-qubit
systems in Appendix C.

This section consists of two parts. First we prove that
F1, F2, ..., F6 are indeed UOMs in C4 ⊗C4. Lemma 1 (i)
allows the operation of permuting column 1, 3 and 2, 4 at
the same time, Lemma 1 (ii) allows the operations (ii.a)
permuting column 1, 2, and (ii.b) permuting column 3, 4.
Second we show F1, F2, ..., F6 are inequivalent in terms
of the above three operations.

First, we assume that

Fj = {|aji, bji, cji, dji〉, i = 1, 2, ..., 8}, (2)

is the set of product vectors defined by the matrices Fj ,
j = 1, 2, ..., 6. We have the following observation.

Lemma 2 (i) For any j, any five two-qubit product vec-
tors of the set {|aji, bji〉, i = 1, 2, ..., 8} span C4; any four
of the set span a subspace of dimension three or four.

(ii) For any j, any five two-qubit product vectors of the
set {|cji, dji〉, i = 1, 2, ..., 8} span C4; any four of the set
span a subspace of dimension three or four.

(iii) Suppose the set of four distinct two-qubit product
vectors |aji, bji〉, i = 1, 2, 3, 4 spans a 3-dimensional sub-
space in C4. Then ajσ(1) = ajσ(2) and bjσ(3) = bjσ(4) for
an index permutation σ.

(iv) Suppose the set of four distinct two-qubit product
vectors |cji, dji〉, i = 1, 2, 3, 4 spans a 3-dimensional sub-
space in C4. Then cjσ(1) = cjσ(2) and djσ(3) = djσ(4) for
an index permutation σ.

Proof. (i) The first claim of assertion (i) can be
proven by checking the first two columns of matrices
F1, F2, ..., F6. In fact, there exist four linearly indepen-
dent two-qubit product vectors in any five. The second
claim of assertion (i) is a corollary of the first claim.

(ii) Using the similar argument to the first two
columns, the first claim of assertion (ii) can be proven by
checking the last two columns of matrices F1, F2, ..., F6.
The second claim of assertion (ii) is a corollary of the
first claim.

(iii), (iv) The assertions can be verified directly or by
programming. ut
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We are now in a position to prove that F1, F2, ..., F6 in
(A1)-(A25) are UOMs. Suppose there exists a product
vector |x, y〉 ∈ C4 ⊗ C4 orthogonal to F1. Lemma 2
(i) and (ii) show that |x〉 is orthogonal to four states of
|a1i, b1i〉, i = 1, 2, ..., 8, and |y〉 is orthogonal to four states
of |c1i, d1i〉, i = 1, 2, ..., 8. Using F1, Lemma 2 (iii) and
(iv), one can show that such two sets of four states do
not exist. So |x, y〉 does not exist, and F1 is a UOM. One
can similarly prove that F2, F3, ..., F6 are UOMs.

In the second part of this section, we explain the in-
equivalence of F1, F2, ..., F6. We refer readers to Table I
for the maximum number of independent vector variables
in each columns of the UOMs. Since only the UOMs with
identical number may be equivalent, we obtain that F4

is not equivalent to any other Fj ’s. Further, F2, F6 are
not equivalent to any one of F1, F3 and F5. Next, F3 and
F6 are not equivalent because column 1 and 3 of F2 have

the submatrix

[
0 0
0 0

]
, and column 1 (or 2) and 3 of F6

do not. One can similarly show that F1, F3, F5 are not
equivalent each other.

UOM maximum number of independent variables

F1 [2, 2, 2, 3]

F2 [2, 2, 2, 4]

F3 [2, 2, 3, 2]

F4 [2, 3, 2, 3]

F5 [3, 2, 2, 2]

F6 [2, 2, 2, 4]

TABLE I: For any x, we say that the pair x, x′

contributes only one independent vector variable. For
the UOM F1, the array [2, 2, 2, 3] means that each of
column 1, 2, 3 of F1 has exactly 2 independent vector

variables, and column 4 of F1 has exactly 3 independent
vector variables. The arrays for other Fj ’s are similarly

defined.

IV. APPLICATION 1: CONSTRUCTING PPT
ENTANGLED STATES USING A PROPER

SUBSET OF UPB

In this section we construct PPT entangled states using
the six UPBs in Sec. III. The traditional idea is that
ρ = 1

|S| (I−
∑
j∈S |xj〉〈xj |) is a PPT entangled state if the

set of orthogonal product vectors {|xj〉, j ∈ S} is a UPB,
then the range of ρ has no product vectors. Different
from the idea, we show that every UPB of the UOMs
F1, ..., F6 has a proper subset of cardinality seven, such
that they span a subspace whose orthogonal complement
space is the range of a PPT entangled state of rank nine.
It sheds novel light on the construction of PPT entangled

states using UPBs. This is a corollary of the following
observation.

Lemma 3 Suppose d = d1d2...dn, and |x1〉, ..., |xm〉 ∈
Cd = Cd1⊗...⊗Cdn ’s are m orthonormal product vectors.

(i) If the range of ρ = 1
d−m (Id−

∑m
j=1 |xj〉〈xj |) contains

at most d −m − 1 linearly independent product vectors,
then ρ is a PPT entangled state of rank d−m.

(ii) Suppose |y1〉, ..., |ym〉 ∈ Cd are m orthonormal
product vectors. If the UOMs of the two sets |xi〉’s and
|yi〉’s are locally equivalent, then the numbers of product
vectors orthogonal to the two sets are the same, or are
both infinite.

Proof. (i) We prove the assertion by contradiction.
Suppose ρ is a separable state. Let ρ =

∑
i pi|ai〉〈ai|

where |ai〉 ∈ Cd are product vectors. So the set {|ai〉}
has exactly d − m linearly independent vectors. Since
{|ai〉} spans the range of ρ, the latter also has exactly
d−m linearly independent vectors. It is a contradiction
with the hypothesis that R(ρ) has at most d − m − 1
linearly independent vectors. So assertion (i) holds.

(ii) Let |b〉 be a product vector orthogonal to |xi〉’s.
Since the latter is locally equivalent to |yi〉’s, there is
a local unitary matrix U such that U |xi〉 = P |yσ(i)〉,
∀i up to a vector permutation matrix P and an index
permutation σ. So P †U |b〉 is a product vector orthogonal
to |yi〉’s.

Let X,Y be the numbers of product vectors orthogonal
to the two sets {|xi〉} and {|yi〉}, respectively. The last
paragraph shows that X ≤ Y . If we switch xi and yi
in the last paragraph, then the argument still holds. We
have X ≥ Y . So we have X = Y , and the assertion
holds. ut

In the following we apply the above lemma to con-
structing PPT entangled states. By deleting the i’th
product vector |aji, bji, cji, dji〉 ∈ Fj , we refer to Sji
as the set of remaining seven product vectors for i =
1, 2, ..., 8 and j = 1, 2, .., 6. That is

Sji = Fj \ {|aji, bji, cji, dji〉}. (3)

Let Sji be the UOM of Sji, Tji the set of 4 × 4 product
vectors orthogonal to Sji, and Tji the UOM of Tji. We
present the following observation.

Lemma 4 (i) |T11| = 4 or 6. The latter holds if and only
if i3 = i′4.

(ii) |T21(i2 = i3, i4 = 0)| = 6.
(iii) |T31| = 4 or 5. The latter holds if and only if

i3 = i′4.
(iv) |T41| = 4.
(v) |T51| = 4 or 6. The latter holds if and only if

i5 = i′6.
(vi) |T61| = 6.

We refer readers to its proof in Appendix B. Now we
present the main theorem of this section. The first part of
following theorem from the fact that F1, .., F6 are UOMs
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in C4 ⊗ C4. The second part follows from Lemma 3 and
4.

Theorem 5 (i) Suppose F is one of the six sets
F1,F2,F3,F4,F5,F6. The state

α =
1

8
(I −

∑
|ψj〉∈F

|ψj〉〈ψj |) (4)

is at the same time a 4-qubit, 2× 2× 4, and 4× 4 PPT
entangled state of rank eight.

(ii) Suppose S is one of the six sets S11,S21(i2 =
i3, i4 = 0),S31,S41,S51 and S61(i2 = i3). The state

β =
1

9
(I −

∑
|ψj〉∈S

|ψj〉〈ψj |) (5)

is at the same time a 4-qubit, 2× 2× 4, and 4× 4 PPT
entangled state of rank nine.

We have demonstrated the idea of constructing a PPT
entangled state using a proper subset of a UPB. We have
used the subset in (3) by removing the first vector in Fi.
One may construct more PPT entangled states in the
same way, by removing one of the other vectors in Fi for
some i. We have found that some Sji has more than nine
product vectors and thus Lemma 3 does not work here.

Next, the states α and β in Theorem 8 are both of ro-
bust entanglement in the sense that they are entangled
w.r.t. different partitions of systems. It is not close to
the genuine entanglement, as the state may become un-
entangled if we switch the systems. This is a problem we
will tackle in the next section. On the other hand from
Lemma 4, the range of states β constructed by Fi’s has
product vectors. We are not sure whether the smaller
subset of Fi would generate PPT entangled states too.

V. APPLICATION 2: THE UPB ORTHOGONAL
TO AN ALMOST GE SPACE

The multipartite GE space contains no bipartite prod-
uct vectors w.r.t. any bipartition of systems [7]. The GE
space exists. For example, the one-dimensional subspace
spanned by the multiqubit GHZ state is a GE space. Fur-
ther, the GE space remains a GE space if it is multiplied
by a local unitary transformation [28]. Just like the de-
termination of GE states, characterizing the GE space of
arbitrary dimension turns out to be a hard problem.

The paper [7] has constructed nonorthogonal UPBs or-
thogonal to a GE space. It remains an open problem
whether the UPB orthogonal to a GE space exists. In
this section we construct a 4-qubit UPB whose orthog-
onal space G has no 4 × 4 product vectors w.r.t. any
4 × 4 bipartition of the 4-qubit space. It is known that
the 2×N UPB does not exist [14]. So G contains 2×N
product vectors, and it is not a GE space. Nevertheless,
G is still close to a GE space, and we refer to G as an al-
most GE space. In the following, the first main result of

this section shows that the space orthogonal to the UPB
F6 in (??) is an almost GE space.

Lemma 6 F6 is a bipartite UPB across any one of the
three partitions of systems, namely AB : CD, AC : BD
and AD : BC.

Proof. The bipartite partition of four-qubit system has
only two cases, namely 2×8 and 4×4. Here we investigate
only system 4 × 4 since there does not exist bipartite
UPB of 2×n systems. Further, the 4×4 partition for F6

occurs in the system AB : CD, AC : BD and AD : BC.
We have proved F6 in HAB ⊗HCD is a UOM in section
III. The remaining task is to prove that F6 is a UPB in
HAC⊗HBD and HAD⊗HBC . We show by contradiction
that F6 is a UPB in HAC ⊗HBD, and one can similarly
prove the other case.

Assume that |v〉 = |α, β〉 ∈ HAC ⊗HBD is orthogonal
to the states |v1〉, ..., |v7〉, and |v8〉 in F6, see Fig. 1. First,
there must be three row vectors of F6 orthogonal to |v〉
on system AC. Then we denote them by |v1〉, |v2〉, |v3〉.
Similarly, there must be three row vectors |v4〉, |v5〉, |v6〉
orthogonal to |v〉 on system BD. Next, the space spanned
by any four of |v1〉, |v2〉, · · · , |v8〉 of system AC or BD
has dimension three or four from Lemma 2. That is to
say, there is at most one of the remaining two vectors
of F6 orthogonal to |v〉. If there is one among the two
row vectors orthogonal to |v〉 then we denote it by |v7〉.
Further, |v8〉 is not orthogonal to |v〉. It is a contradiction
with the assumption the beginning of this paragraph. ut

FIG. 1: The red line between the two product states |v〉
and |vi〉 means that they are orthogonal on system AC.

The blue line implies that the product vectors are
orthogonal on system BD. The dashed line means that
|v〉 may be orthogonal to |v7〉. There is no line between
|v〉 and |v8〉, and it means that |v〉 and |v8〉 are not

orthogonal.
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In the remaining of this section, we investigate the
properties of UPBs orthogonal to a GE space, if such
UPBs exist. For simplicity we shall refer to such UPBs
as GEUPB. We present the following observation.

Lemma 7 (i) The multipartite UPB is a GEUPB if and
only if it is a bipartite UPB across any patition of sys-
tems.

(ii) The tensor product of two m-partite UPBs is still
an m-partite UPB, and vice versa.

(iii) The tensor product of two m-partite GEUPBs is
still an m-partite GEUPB, and vice versa.

That is, suppose

S = {|ai1, ..., aim〉}, (6)

T = {|bj1, ..., bjm〉}, (7)

are two m-partite GEUPBs in the space ⊗mi=1Hi and
⊗mj=1Kj, respectively. Then the set

{|ai1, bj1〉 ⊗ ...⊗ |aim, bjm〉} (8)

is an m-partite GEUPB of |S| · |T | product vectors in the
space ⊗mi=1(Hi ⊗Ki).

Proof. (i) The assertion follows from [7, Remark 5].
(ii) The first part of assertion (ii) follows from [2, The-

orem 8]. The ”vice versa” part follows from the definition
of UPBs.

(iii) The ”vice versa” part follows from the definition
of GEUPBs. We prove the first part of assertion (iii) as
follows.

By the definition of GEUPBs, S and T are bipartite
UPBs across any cut of systems, say U : Ū . Assertion
(ii) implies that the set in (8) is a bipartite UPB in the
system (US , UT ) : (ŪS , ŪT ). So assertion (iii) follows
from assertion (i). ut

Using the above lemmas, we present the second main
result of this section.

Theorem 8 The multipartite GEUPB exists if and only
if the n× n× n GEUPB exists for some integer n.

Proof. (i) It suffices to prove the ”if” part. It follows
from the definition of GE spaces that the tripartite GE-
UPB SABC ⊆ HA⊗HB⊗HC exists. So SBCA and SCAB
are both tripartite GEUPBs. It follows from Lemma 7

(iii) that the tensor product of SABC , SBCA and SCAB
is also a tripartite GEUPB. Since its local systems have
equal dimensions, the assertion holds. ut

To further investigate the problem in [7], the theorem
shows that it suffices to find the n × n × n GEUPB or
prove its nonexistence. It is known that the 3-qubit UPB
has cardinality four [29], just like those in (1). So the 3-
qubit UPB is orthogonal to a bipartite product vector
in the system A : BC. Thus the 3-qubit UPB is not
a GEUPB, and we have n > 2 in terms of Theorem 8.
In particular a three-qutrit UPB of size seven has been
constructed [2], though it is evidently not a GEUPB. We
need construct three-qutrit UPBs of larger size, say close
to the upper bound 23, because any multipartite PPT
states of rank at most three are separable states [30].

VI. CONCLUSIONS

We have shown that there are six inequivalent 4 × 4
UPB of size eight, when we only consider 4-qubit prod-
uct vectors. We have constructed entangled states that
are at the same 4-qubit, 2 × 2 × 4 and 4 × 4 entangled
states of rank nine. The results have been obtained us-
ing the UOM. We further have shown that the UPB F6

is orthogonal to a space containing no 4× 4 product vec-
tor w.r.t any bipartition of 4-qubit system. We also have
shown that the multipartite UPB orthogonal to a GE
space exists if and only if the n× n× n UPB orthogonal
to a GE space for some integer n. In spite of these results,
we are still unable to show whether the UPB orthogonal
to a GE space exists. Another problem is to characterize
PPT entangled states of rank eight or nine that are not
generated by orthogonal 4-qubit product vectors.
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Appendix A: The description of six four-qubit
UOMs F1, F2, ..., F6
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F1 =



0 0 0 0

0 1 0 1

1 g3 6= 0, 1 h3 6= 0, 1 i3 6= 0, 1, i4
1 g′3 h3 i4 6= 0, 1

f5 6= 0, 1 g′3 1 i′4
f5 g3 1 i′3
f ′5 0 h′3 1

f ′5 1 h′3 0


, (A1)

F1(i3 = i′4) =



0 0 0 0

0 1 0 1

1 g3 6= 0, 1 h3 6= 0, 1 i3 6= 0, 1

1 g′3 h3 i′3
f5 6= 0, 1 g′3 1 i3

f5 g3 1 i′3
f ′5 0 h′3 1

f ′5 1 h′3 0


, (A2)

F2 =



0 0 0 0

0 1 0 i2 6= 0, 1

1 g3 6= 0, 1 h3 6= 0, 1 i3 6= i4, i
′
4

1 g′3 h3 i4
f5 6= 0, 1 g′3 1 i′4

f5 g3 1 i′3
f ′5 1 h′3 i′2
f ′5 0 h′3 1


, (A3)

(i)F2(i2 = i3, i4 6= 0, 1) =



0 0 0 0

0 1 0 i2 6= 0, 1, i4, i
′
4

1 g3 6= 0, 1 h3 6= 0, 1 i2
1 g′3 h3 i4

f5 6= 0, 1 g′3 1 i′4
f5 g3 1 i′2
f ′5 1 h′3 i′2
f ′5 0 h′3 1


, (A4)

F2(i2 = i3, i4 = 0) =



0 0 0 0

0 1 0 i2 6= 0, 1

1 g3 6= 0, 1 h3 6= 0, 1 i2
1 g′3 h3 0

f5 6= 0, 1 g′3 1 1

f5 g3 1 i′2
f ′5 1 h′3 i′2
f ′5 0 h′3 1


, (A5)

F2(i2 = i3, i4 = 1) =



0 0 0 0

0 1 0 i2 6= 0, 1

1 g3 6= 0, 1 h3 6= 0, 1 i2
1 g′3 h3 1

f5 6= 0, 1 g′3 1 0

f5 g3 1 i′2
f ′5 1 h′3 i′2
f ′5 0 h′3 1


, (A6)
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(ii)F2(i2 = i′3, i4 6= 0, 1) =



0 0 0 0

0 1 0 i2 6= 0, 1, i4, i
′
4

1 g3 6= 0, 1 h3 6= 0, 1 i′2
1 g′3 h3 i4

f5 6= 0, 1 g′3 1 i′4
f5 g3 1 i2
f ′5 1 h′3 i′2
f ′5 0 h′3 1


, (A7)

F2(i2 = i′3, i4 = 0) =



0 0 0 0

0 1 0 i2 6= 0, 1

1 g3 6= 0, 1 h3 6= 0, 1 i′2
1 g′3 h3 0

f5 6= 0, 1 g′3 1 1

f5 g3 1 i2
f ′5 1 h′3 i′2
f ′5 0 h′3 1


, (A8)

F2(i2 = i′3, i4 = 1) =



0 0 0 0

0 1 0 i2 6= 0, 1

1 g3 6= 0, 1 h3 6= 0, 1 i′2
1 g′3 h3 1

f5 6= 0, 1 g′3 1 0

f5 g3 1 i2
f ′5 1 h′3 i′2
f ′5 0 h′3 1


, (A9)

(iii)F2(i2 = i4, i3 6= 0, 1) =



0 0 0 0

0 1 0 i2 6= 0, 1, i3, i
′
3

1 g3 6= 0, 1 h3 6= 0, 1 i3
1 g′3 h3 i2

f5 6= 0, 1 g′3 1 i′2
f5 g3 1 i′3
f ′5 1 h′3 i′2
f ′5 0 h′3 1


, (A10)

F2(i2 = i4, i3 = 0) =



0 0 0 0

0 1 0 i2 6= 0, 1

1 g3 6= 0, 1 h3 6= 0, 1 0

1 g′3 h3 i2
f5 6= 0, 1 g′3 1 i′2

f5 g3 1 1

f ′5 1 h′3 i′2
f ′5 0 h′3 1


, (A11)

F2(i2 = i4, i3 = 1) =



0 0 0 0

0 1 0 i2 6= 0, 1

1 g3 6= 0, 1 h3 6= 0, 1 1

1 g′3 h3 i2
f5 6= 0, 1 g′3 1 i′2

f5 g3 1 0

f ′5 1 h′3 i′2
f ′5 0 h′3 1


, (A12)

(iv)F2(i2 = i′4, i3 6= 0, 1) =



0 0 0 0

0 1 0 i2 6= 0, 1, i3, i
′
3

1 g3 6= 0, 1 h3 6= 0, 1 i3
1 g′3 h3 i′2

f5 6= 0, 1 g′3 1 i2
f5 g3 1 i′3
f ′5 1 h′3 i′2
f ′5 0 h′3 1


, (A13)
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F2(i2 = i′4, i3 = 0) =



0 0 0 0

0 1 0 i2 6= 0, 1

1 g3 6= 0, 1 h3 6= 0, 1 0

1 g′3 h3 i′2
f5 6= 0, 1 g′3 1 i2

f5 g3 1 1

f ′5 1 h′3 i′2
f ′5 0 h′3 1


, (A14)

F2(i2 = i′4, i3 = 1) =



0 0 0 0

0 1 0 i2 6= 0, 1

1 g3 6= 0, 1 h3 6= 0, 1 1

1 g′3 h3 i′2
f5 6= 0, 1 g′3 1 i2

f5 g3 1 0

f ′5 1 h′3 i′2
f ′5 0 h′3 1


, (A15)

F3 =



0 0 0 0

0 1 0 i2 6= 0, 1

1 g3 6= 0, 1 h3 6= 0, 1, h4 0

1 g′3 h4 6= 0, 1 i2
f5 6= 0, 1 g′3 1 i′2

f5 g3 1 1

f ′5 1 h′3 i′2
f ′5 0 h′4 1


, (A16)

F4 =



0 0 0 0

0 1 0 i2 6= 0, 1, i3, i
′
3

1 g3 6= 0, 1, g4, g
′
4 h3 6= 0, 1 i3 6= 0, 1

1 g4 6= 0, 1 h3 i′3
f5 6= 0, 1 g′3 1 i3

f5 g′4 1 i′3
f ′5 1 h′3 i′2
f ′5 0 h′3 1


, (A17)

F5 =



0 0 0 0

0 1 0 i2 6= 0, 1

1 g3 6= 0, 1 h3 6= 0, 1 1

1 g′3 h3 i′2
f5 6= 0, 1, f6 g3 1 0

f6 6= 0, 1 g′3 1 i2
f ′5 1 h′3 i′2
f ′6 0 h′3 1


, (A18)

F6 =



0 0 0 0

0 1 h2 6= 0, 1 i2 6= 0, i′3, i4
1 g3 6= 0, 1 0 i3 6= 0, i4
1 g′3 h2 i4 6= 0, 1

f5 6= 0, 1 1 h′2 i′3
f5 0 1 i′4
f ′5 g3 1 i′2
f ′5 g′3 h′2 1


, (A19)

(i) F6(i2 = 1) =



0 0 0 0

0 1 h2 6= 0, 1 1

1 g3 6= 0, 1 0 i3 6= 0, 1, i4
1 g′3 h2 i4 6= 0, 1

f5 6= 0, 1 1 h′2 i′3
f5 0 1 i′4
f ′5 g3 1 0

f ′5 g′3 h′2 1


, (A20)
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F6(i2 = 1, i3 = i′4) =



0 0 0 0

0 1 h2 6= 0, 1 1

1 g3 6= 0, 1 0 i3
1 g′3 h2 i′3 6= 0, 1

f5 6= 0, 1 1 h′2 i′3
f5 0 1 i3
f ′5 g3 1 0

f ′5 g′3 h′2 1


, (A21)

(ii) F6(i2 = i3) =



0 0 0 0

0 1 h2 6= 0, 1 i2 6= 0, 1, i4, i
′
4

1 g3 6= 0, 1 0 i2
1 g′3 h2 i4 6= 0, 1

f5 6= 0, 1 1 h′2 i′2
f5 0 1 i′4
f ′5 g3 1 i′2
f ′5 g′3 h′2 1


, (A22)

(iii)F6(i2 = i′3) =



0 0 0 0

0 1 h2 6= 0, 1 i2 6= 0, 1, i4, i
′
4

1 g3 6= 0, 1 0 i′2
1 g′3 h2 i4 6= 0

f5 6= 0, 1 1 h′2 i2
f5 0 1 i′4
f ′5 g3 1 i′2
f ′5 g′3 h′2 1


, (A23)

F6(i2 = i′3, i4 = 1) =



0 0 0 0

0 1 h2 6= 0, 1 i2 6= 0, 1

1 g3 6= 0, 1 0 i′2
1 g′3 h2 1

f5 6= 0, 1 1 h′2 i2
f5 0 1 0

f ′5 g3 1 i′2
f ′5 g′3 h′2 1


, (A24)

(iv) F6(i2 = i′4) =



0 0 0 0

0 1 h2 6= 0, 1 i2 6= 0, 1, i3, i
′
3

1 g3 6= 0, 1 0 i3 6= 0

1 g′3 h2 i′2
f5 6= 0, 1 1 h′2 i′3

f5 0 1 i2
f ′5 g3 1 i′2
f ′5 g′3 h′2 1


. (A25)

Appendix B: The proof of Lemma 4

In this section we prove Lemma 4.

(i) Using F1 in Appendix A we have

S11 =



0 1 0 1

1 g3 6= 0, 1 h3 6= 0, 1 i3 6= 0, 1, i4
1 g′3 h3 i4 6= 0, 1

f5 6= 0, 1 g′3 1 i′4
f5 g3 1 i′3
f ′5 0 h′3 1

f ′5 1 h′3 0


.(B1)



10

Let the 4×4 product state |x, y〉 ∈ T11. Lemma 2 (i) and
(ii) imply that we have two cases. First, |x〉 is orthogonal
to four product vectors in {|a1i, b1i〉, i = 2, ..., 8}, and |y〉
is orthogonal to three product vectors in {|c1i, d1i〉, i =
2, ..., 8}. Second, |x〉 is orthogonal to three product vec-
tors in {|a1i, b1i〉, i = 2, ..., 8}, and |y〉 is orthogonal to
four product vectors in {|c1i, d1i〉, i = 2, ..., 8}.

In the first case using Lemma 2 (iii) we obtain

|0, 0, 0, 0〉, |f ′5, 0, h′3, 0〉, |f5, g3, β3〉, |f5, g′3, β4〉 ∈ T21,(B2)

where β3, β4 are two-qubit states in HC ⊗ HD. In the
second case, we still use Lemma 2 (iv) and exclude the
same states in (B2). If i3 = i′4 then we obtain

|β5, h3, i3〉, |β6, h3, i′3〉 ∈ T21. (B3)

Hence |T11| = 4 or 6. The latter holds if and only if
i3 = i′4.

(ii) Using F2(i2 = i3, i4 = 0) we have

S21(i2 = i3, i4 = 0)

=



0 1 0 i3 6= 0, 1

1 g3 6= 0, 1 h3 6= 0, 1 i3
1 g′3 h3 0

f5 6= 0, 1 g′3 1 1

f5 g3 1 i′3
f ′5 1 h′3 i′3
f ′5 0 h′3 1


.

Similar to case (i), we obtain
|0, 0, 0, 0〉, |f ′5, 0, h′3, 0〉, |f5, g3, 0, i′3〉, |f5, g′3, γ1〉,
|γ2, h′3, i3〉, |f ′5, g3, h3, i′3〉 ∈ T21(i2 = i3, i4 = 0). Hence
|T21(i2 = i3, i4 = 0)| = 6.

(iii) Using F3 we have
|0, 0, 0, 0〉, |f ′5, 0, δ1〉, |f5, g3, δ2〉, |f5, g′3, 0, i′2〉 ∈ T31.
Further if h3 = h′4 then |δ3, h3, 0〉 ∈ T31. Hence |T31| = 4
or 5.

(iv) Using F4 we have
|0, 0, 0, 0〉, |f ′5, 0, h′3, 0〉, |ε1, h3, i3〉, |ε2, h3, i′3〉 ∈ T41.
Hence |T41| = 4.

(v) Using F5 we have
|0, 0, 0, 0〉, |ζ1, h′3, i′2〉, |ζ2, 0, i2〉, |0, g′3, h3, i′2〉 ∈ T51. If
f5 = f ′6 then |f ′5, g3, ζ3〉, |f5, g′3, ζ4〉 ∈ T61. Hence
|T51| = 4 or 6.

(vi) Using F6(i2 = i3) we have
|0, 0, 0, 0〉, |f ′5, g′3, h′2, 0〉, |f ′5, g3, 0, i′2〉, |f5, 0, η1〉,
|η2, h′2, i2〉, |η3, h2, i′2〉 ∈ T61. Hence |T61| = 6.

Appendix C: The construction of six four-qubit
UOMs F1, F2, ..., F6 (to be shortened greatly)

We introduce a simple fact from [13, Lemma 2]. It will
be used in the proof of Lemma 13.

Lemma 9 (i) If S ⊆ (C2)⊗n is a UPB, then for all |v〉 ∈
S and all integers 1 ≤ j ≤ n there is another product

vector |w〉 ∈ S such that |v〉 and |w〉 are orthogonal on
the j-th subsystem or j-th qubit.

(ii) The number of distinct vectors of any qubit in a
UPB is an even integer.

The following result from [27, Lemma 5] will be used
in the proof of Lemma 14.

Lemma 10 Let X=[xi,j ]∈ O(m,n) be a UOM, and µ(x)
the multiplicity of element x. If pj =

∑
µ(x)µ(x′), where

the summation is over all pairs {x, x′} in column j of X,
then

∑
pj ≥ m(m− 1)/2.

We refer to the positive integer pj as the o-number of
column j of X. It represents the number of all orthogonal
pairs in column j of X. We refer readers to [27] for more
details on UOMs.

We present a special partition of a positive integer into
smaller positive integers. It will be also used in the proof
of Lemma 14.

Lemma 11 Suppose p is the sum of 2n positive integers
a1, a2, ..., a2n. Then the maximum of a1a2 + a3a4 + ...+
a2n−1a2n is dp−2n+2

2 e · bp−2n+2
2 c+n− 1. It is achievable

if and only if up to the permutation of subscripts, we have
a1 = dp−2n+2

2 e, a2 = bp−2n+2
2 c and ai = 1 for i > 2.

Proof. Let N = a1a2 + a3a4 + ...+ a2n−1a2n. We fix
the values of a1, a3, .., a2n−1 and a6, a8, .., a2n, and make
a1 > a3 > ... > a2n−1 by renaming the subscripts. Then
we have a2 + a4 = p− a1− a3− a5− a6− ...− a2n. Since
a1 > a3 is given, so a4 = 1 and a2 = p − a1 − a3 − a5 −
a6 − ... − a2n − 1 come to N greater. When free a2, a4
and a6, using the argument same to freeing a2 and a4, N
is greater if a4 = a6 = 1 and a2 = p− a1− a3− a5− a7−
a8 − ...− a2n − 2 is satisfied . Deducing the rest by this
method, one obtain that N reaches the maximum when
we fix a1, a3,...,a2n−1 and take a4 = a6 = ... = a2n = 1,
a2 = p−a1−a3− ...−a2n−1− (n− 1). Using the similar
argument to fixing a1, a3,...,a2n−1, one can show that N
reaches the maximum when we fix a2, a4,...,a2n and take
a3 = a5 = ... = a2n−1 = 1, a1 = p− a2 − a4 − ...− a2n −
(n−1). It is to say that, we have a3 = a4 = ... = a2n = 1
and a1 + a2 = p− (2n− 2). So N reaches the maximum
when a1 = dp−2n+2

2 e, a2 = bp−2n+2
2 c and ai = 1 for

i = 3, 4, ..., 2n. ut
From now on we will study 4-qubit UPBs of size 8,

and show how to find the UPBs F1, ..,F6. First of all,
we present the following observation by counting the data
in [13].

Lemma 12 Let TA:B:C:D={|f1, g1, h1, i1〉,
|f2, g2, h2, i2〉,...,|f8, g8, h8, i8〉} be a UPB of size 8.
If one of the following three conditions holds, then
TAB:CD is not a UPB in the coarse graining C4 ⊗ C4.

(i) TA:B:C:D has a qubit having at least four identical
vectors.

(ii) There are three subscripts j1, j2, j3 such that
|fj1〉 = |fj2〉 = |fj3〉 and |gj1〉 = |gj2〉 = |gj3〉.
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(iii) There are five distinct subscripts j1, j2, ..., j5 such
that |fj1〉 = |fj2〉 = |fj3〉 and |gj4〉=|gj5〉.

Proof. Take TAB:CD={|p1, q1〉, |p2, q2〉,...,|p8, q8〉},
where |pj〉 = |fj , gj〉 and |qj〉 = |hj , ij〉 for j = 1, 2, ..., 8.

(i) By renaming the subscripts and permuting the
qubits we may assume that |f1〉 = |f2〉 = |f3〉 = |f4〉.
Also |g1〉, |g2〉, |g3〉, |g4〉 is linearly dependent. So |p1〉,
|p2〉, |p3〉, |p4〉 are linearly dependent. Then the space
spanned by |p1〉, |p2〉, |p3〉, |p4〉 has dimension at most
two. Therefore, there exists a |p〉 ∈ C4 orthogonal to |p1〉,
|p2〉, |p3〉, |p4〉 and |p5〉. Moreover, there is a |q〉 ∈ C4 or-
thogonal to |q6〉, |q7〉 and |q8〉. So |p, q〉 is orthogonal to
TAB:CD. By definition TAB:CD is not a UPB in C4⊗C4.

(ii) We have |pj1〉=|pj2〉=|pj3〉. Therefore, the space
spanned by |pj1〉, |pj2〉, |pj3〉, |pj4〉 and |pj5〉 has dimen-
sion at most three. Besides the space spanned by |qj6〉,
|qj7〉 and |qj8〉 also has dimension at most three. Then,
there exist |p〉, |q〉 ∈ C4 such that |p, q〉 is orthogonal to
TAB:CD.

(iii) Since the space spanned by |q7〉, |q8〉 and |q9〉 has
dimension at most three, there is a |q〉 ∈ C4 orthogonal
to |q7〉, |q8〉 and |q9〉. Then |f ′i1 , g

′
i2
, q〉 is orthogonal to

TAB:CD. ut

Lemma 13 Let TA:B:C:D={|f1, g1, h1, i1〉,
|f2, g2, h2, i2〉,...,|f8, g8, h8, i8〉} be a UPB of size 8.
If there are |f1〉 = |f2〉 = |f3〉 and |g2〉 = |g3〉 = |g4〉,
then the remaining vectors |f4〉, |f5〉,...,|f8〉 are pairwise
linearly independent or TAB:CD is no longer a UPB in
HAB : HCD. Similarly, the remaining vectors |g1〉, |g5〉,
|g6〉,...,|g8〉 are pairwise linearly independent or TAB:CD

is no longer a UPB in HAB : HCD.

Proof. First of all, we prove that either the vec-
tors |f4〉, |f5〉,...,|f8〉 are pairwise linearly independent or
TAB:CD is no longer a UPB in HAB : HCD. If the set
{f4, f5,..., f8} has two identical elements, then the same
element has multipicity two, three, four or five. When
the element has multiplicity three, four or five, TAB:CD

is no longer a UPB from lemma 12 (iii). Also a qubit
has an even number of distinct elements from lemma 9
(ii). So when the set {f4, f5,..., f8} has an element of
multiplicity two, it must contain two different elements of
both multiplicity two. It is a contradiction with lemma
12 (iii). Now we have proved it.

Using the similar argument, one may show that the
vectors |g1〉, |g5〉, |g6〉,...,|g8〉 are pairwise linearly inde-
pendent or TAB:CD is no longer a UPB in HAB : HCD.

ut

Lemma 14 Let TA:B:C:D={|f1, g1, h1, i1〉,
|f2, g2, h2, i2〉,...,|f8, g8, h8, i8〉} be a 4-qubit UPB of
size 8. If the first and second qubit respectively have
three identical vectors, then TA:B:C:D is not a UPB of
size 8 in HAB ⊗HCD.

Proof. Suppose |a1〉, |a2〉, |a3〉 are three identical
vectors among |f1〉, |f2〉,...,|f8〉 and |b1〉, |b2〉, |b3〉 are

three identical vectors among |g1〉, |g2〉,...,|g8〉. If |a1〉,
|a2〉, |a3〉, |b1〉, |b2〉, |b3〉 are in three, five or six distinct
product vectors of TA:B:C:D, then TAB:CD is not a UPB
from Lemma 12 (ii) and (iii).

We only need to investigate the case that |a1〉, |a2〉,
|a3〉, |b1〉, |b2〉, |b3〉 are in four distinct product vec-
tors. Denote by U the UOM over the UPB TA:B:C:D.
Moreover, pj are o-number of column j of the U for
j = 1, 2, 3, 4. Then U has p1 = 5 and p2 = 5 in con-
dition of Lemma 13. Also p1 + p2 + p3 + p4 ≥ 8(8− 1)/2
from Lemma 10 (vi). So p3 + p4 ≥ 18. We have p3, p4
≤ ( 8−2n+2

2 )2 = n2 − 9n + 24 from Lemma 11 and p = 8
in condition of Lemma 11. Then the possible value of
n is 1, 2, 3, 4. If n = 1, then a1 = a2 = 8−2×1+2

2 = 4
in Lemma 11. That is, TA:B:C:D has a qubit having
four identical vectors. Then TA:B:C:D is not a UPB from
Lemma 12 (i). If n = 3 or 4, then p3, p4 ≤ 6 or 4. It
makes a contradiction with p3 + p4 ≥ 18. If n = 2, then
p3, p4 ≤ 10. So the case n = 2 is the only case that satis-
fies the condition p3 + p4 ≥ 18. To satisfy p3 + p4 ≥ 18,
one of them must be 3×3+1×1 and the other one could
be either of 3 × 3 + 1 × 1, 3 × 2 + 2 × 1, 2 × 2 + 2 × 2.
There is no harm in supposing p3 = 3× 3 + 1× 1. Then
p4 = 3× 3 + 1× 1, 3× 2 + 2× 1 or 2× 2 + 2× 2. We can
obtain hi1 = hi2 = hi3 and ii4 = ii5 for five distinct de-
scripts i1, i2, i3, i4, i5 ∈ {1, 2, 3, 4, 5, 6, 7, 8}. So TA:B:C:D

is not a UPB from Lemma 12 (iii). ut

Lemma 15 Let TA:B:C:D={|f1, g1, h1, i1〉,
|f2, g2, h2, i2〉,...,|f8, g8, h8, i8〉} be a 4-qubit UPB of
size 8. Then TAB:CD is not a UPB of size 8 in
HAB ⊗ HCD when one of the following three conditions
is satisfied.

(i) There are three subscripts j1, j2, j3 such that |fj1〉 =
|fj2〉 = |fj3〉 and |hj1〉 = |hj2〉 = |hj3〉.

(ii) There are three subscripts j1, j2, j3 such that
|fj1〉 = |fj2〉 = |fj3〉, |gj1〉 = |gj2〉 and |hj1〉 = |hj2〉.

(iii) There are three subscripts j1, j2, j3 such that
|fj1〉 = |fj2〉, |gj1〉 = |gj2〉 and |hj1〉 = |hj2〉 = |hj3〉.

Proof. (i) We prove the assertion by contradiction.
Suppose TAB:CD is a UPB of size 8 in HAB ⊗HCD. Up
to the equivalence, we can assume j1 = 1, j2 = 2 and
j3 = 3, and f1 = f2 = f3 = h1 = h2 = h3 = 0. We
express the UOM of TA:B:C:D as

U1 =



0 g1 0 i1
0 g2 0 i2
0 g3 0 i3
f4 g4 h4 i4
f5 g5 h5 i5
f6 g6 h6 i6
f7 g7 h7 i7
f8 g8 h8 i8


. (C1)

Since the first three rows of U1 correspond to
three orthogonal product vectors, we obtain that
|g1, i1〉, |g2, i2〉, |g3, i3〉 are orthogonal. Up to equivalence



12

we may assume that g1 = g2 = 0 and g3 = 1. Since
TAB:CD is a UPB of size 8 in HAB ⊗ HCD, Lemma 12
(iii) shows that g4, g5, ..., g8 are distinct. In addition, we
have g4, g5, ..., g8 6= 0 from Lemma 14. So one of them
must be 1 by Lemma 9 (ii). So U1 is equivalent to



0 0 0 i1
0 0 0 i′1
0 1 0 i3
f4 1 h4 i4
f5 g5 h5 i5
f6 g′5 h6 i6
f7 g7 h7 i7
f8 g′7 h8 i8


. (C2)

We have g5, g7 6= 0, 1 from the discussion in the para-
graph above (C2). Since the first and second row vectors
are orthogonal to the last four row vectors of U2, we ob-
tain that |0, 0〉 ∈ HA ⊗ HC is orthogonal to |fj , hj〉 for
j = 5, 6, 7, 8. Since TAB:CD is a UPB of size 8, Lemma 12
(iii) shows that f5, f6, f7, f8 contain exactly two 1’s, and
so do h5, h6, h7, h8. So the matrix in (C2) is equivalent
to

U11 =



0 0 0 i1
0 0 0 i′1
0 1 0 i3
f4 1 h4 i4
1 g5 h5 i5
1 g′5 h6 i6
f7 g7 1 i7
f8 g′7 1 i8


or U12 =



0 0 0 i1
0 0 0 i′1
0 1 0 i3
f4 1 h4 i4
1 g5 h5 i5
f6 g′5 1 i6
1 g7 h7 i7
f8 g′7 1 i8


,(C3)

where g5 6= g7, g
′
7. For U11, Lemma 12 shows that

h5, f7, f8 6= 0. Since row 5 is orthogonal to row 7 and
8, we have i′5 = i7 = i8. So column 3 and 4 of U11 shows
a contradiction with Lemma 12 (iii) and the fact that
TAB:CD is a UPB of size 8.

On the other hand for U12, similar to the above argu-
ment for U11 one can show that i8 = i′5, i7 = i′6, f8 = f ′6
and h7 = h′5. Then row 4 of U12 is not orthogonal to
all four bottom row vectors of U12. It is a contradiction
with the fact that U12 is a UOM. We have proven that
TAB:CD is not a UPB of size 8 in HAB ⊗HCD.

(ii) We prove the assertion by contradiction. Suppose
TAB:CD is a UPB of size 8 in HAB ⊗ HCD. Up to the
equivalence, we can assume j1 = 1, j2 = 2 and j3 = 3
and f1 = f2 = f3 = g1 = g2 = h1 = h2 = 0. We express

the UOM of TA:B:C:D as

U1 =



0 0 0 0

0 0 0 1

0 g3 h3 i3
f4 g4 h4 i4
f5 g5 h5 i5
f6 g6 h6 i6
f7 g7 h7 i7
f8 g8 h8 i8


. (C4)

We claim that there are only two cases U11 and U12 in
(C5), where f5 may be f7 or f ′7 and f5, f6, f7 6= 0, 1 is
satisfied.

U11 =



0 0 0 0

0 0 0 1

0 g3 h3 i3
1 g4 h4 i4
f5 g5 h5 i5
f ′5 g6 h6 i6
f7 g7 h7 i7
f ′7 g8 h8 i8


, U12 =



0 0 0 0

0 0 0 1

0 g3 h3 i3
1 g4 h4 i4
1 g5 h5 i5
f6 g6 h6 i6
f6 g7 h7 i7
f ′6 g8 h8 i8


. (C5)

We can obtain that k of f4, f5, f6, f7, f8 of U1 equal to
1 from Lemma9(i), where 1 ≤ k ≤ 5 and k is a positive
integer. Moreover, we have f4, f5, f6, f7, f8 6= 0 and 1 ≤
k ≤ 3 from Lemma 12(i). However, if k = 3, then column
1, 2 of U1 make a contradiction with the fact that U1 is
a UOM and Lemma 12(iii). Then we have k = 1, 2.
Namely, up to equivalence we obtain two cases, f4 =
1, f5, f6, f7, f8 6= 1 and f4 = f5 = 1, f6, f7, f8 6= 1. For
f4 = 1, f5, f6, f7, f8 6= 1, at most two of f5, f6, f7, f8 are
the same from 12(iii). Moreover, from Lemma 9(i) we
can obtain f6 = f ′5, f8 = f ′7 up to equivalent, where f5
may be f7 or f ′7. So we have proved the claim in the line
above (C5).

For U11 in (C5), we claim that there are two cases,
U111 and U112. We can obtain f5, f

′
5, f7, f

′
7 6= 1 from

f5, f7 6= 0, 1 in the line above (C5). Since row 1, 2
are othogonal to row 3, 5, 6, 7 and 8 of U11, we ob-
tain that |0, 0〉 ∈ HB ⊗ HC is orthogonal to gj , hj for
j = 3, 5, 6, 7, 8. First, one can show at most two of
g3, g5, g6, g7, g8 are 1’s. Otherwise, row 1 and 2 of U11

is a contradiction with Lemma 12(iii) and the fact that
U11 is a UOM by the assumption U1 in (C4) is a UOM.
Second, one can show at most three of h3, h5, h6, h7, h8
are 1’s from Lemma 12(i). Then we have shown that two
of g3, g5, g6, g7, g8 are 1’s and three of h3, h5, h6, h7, h8 are
1’s in U11. If g3 = 1, up to equivalence we can assume
g5 = 1. We directly obtain h6 = h7 = h8 = 1. Then
U11 becomes U111. On the other hand for g3 6= 1, that
is h3 = 1, up to equivalence we can assume g5 = g6 = 1.
We directly obtain h7 = h8 = 1. Then U11 becomes U112.
Now we have proved the claim at the beginning of this
paragraph.
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There is |1, 0, 0, i′4〉 ∈ HA⊗HB⊗HC ⊗HD orthogonal
to all row vectors of U111 and U112. It is a contradiction
with the fact U111 and U112 are UOMs of size 8 in HCD⊗
HCD by the assumption U1 in (C4) is a UOM.

U111 =



0 0 0 0

0 0 0 1

0 1 h3 i3
1 g4 h4 i4
f5 1 h5 i5
f ′5 g6 1 i6
f7 g7 1 i7
f ′7 g8 1 i8


, U112 =



0 0 0 0

0 0 0 1

0 g3 1 i3
1 g4 h4 i4
f5 1 h5 i5
f ′5 1 h6 i6
f7 g7 1 i7
f ′7 g8 1 i8


.(C6)

For U12 in (C5), we claim that there are four cases
U121, U122, U123 and U124 in (C7). Since row 1, 2 are
othogonal to row 3, 6, 7 and 8 of U11, we obtain that
|0, 0〉 ∈ HB⊗HC is orthogonal to |gj , hj〉 for j = 3, 6, 7, 8.
First, one can show at most two of g3, g6, g7, g8 are 1’s.
Otherwise, row 1 and 2 of U11 is a contradiction with

Lemma 12(iii) and the fact that U12 is a UOM by the
assumption that U1 in (C4) is a UOM. Second, one can
show at most three of h3, h6, h7, h8 are 1’s from Lemma
12(i). If three of h3, h6, h7, h8 are 1’s, then there exists
|0, 1, 0, i′3〉 orthogonal to U12 for g3 = 1 and there exists
|0, 1, 0, ij〉 orthogonal to U12 for h3 = 1 and gj = 1 for
j = 6, or 7, or 8. It is a contradiction with the definition
of UPB and the fact U12 is a UOM by the assumption
U1 in (C4) is a UOM. Then we have shown that two
of g3, g6, g7, g8 are 1’s and two of h3, h6, h7, h8 are 1’s in
U12. For g3 = 1, we have two cases, g6 = 1 and g8 = 1.
In case one one can directly obtain h7 = h8 = 1. Then
U12 becomes U121. In case two one can directly obtain
h6 = h7 = 1. Then U12 becomes U122. On the other
hand for g3 6= 1, that is h3 = 1, we also have two cases,
g6 = g7 = 1 and g6 = g8 = 1. In case one one can
directly obtain h8 = 1. Then U12 becomes U123. In case
two one can directly obtain h7 = 1. Then U12 becomes
U124. Now we have proved the claim at the beginning of
this paragraph.

U121 =



0 0 0 0

0 0 0 1

0 1 h3 i3
1 g4 h4 i4
1 g5 h5 i5
f6 1 h6 i6
f6 g7 1 i7
f ′6 g8 1 i8


, U122 =



0 0 0 0

0 0 0 1

0 1 h3 i3
1 g4 h4 i4
1 g5 h5 i5
f6 g6 1 i6
f6 g7 1 i7
f ′6 1 h8 i8


, U123 =



0 0 0 0

0 0 0 1

0 g3 1 i3
1 g4 h4 i4
1 g5 h5 i5
f6 1 h6 i6
f6 1 h7 i7
f ′6 g8 1 i8


, U124 =



0 0 0 0

0 0 0 1

0 g3 1 i3
1 g4 h4 i4
1 g5 h5 i5
f6 1 h6 i6
f6 g7 1 i7
f ′6 1 h8 i8


. (C7)

In the following we show that neither of U121, U122,
U123, U124 is a UOM in HAB⊗HCD. This will prove the
claim of (ii).

For U121 in (C7), we have f6, f
′
6 6= 1 from the line

above (C5). We obtain g7, g8 6= 0 from Lemma 14 and
h3 6= 0 from Lemma 15 (i). Since row 3 is orthogonal to
row 7, 8, we can obtain i7 = i8 = i′3. Then U121 becomes
U1211 in (C8). So there exists |0, 0, 1, i3〉 ∈ HA ⊗ HB ⊗
HC⊗HD orthogonal to all row vectors of U1211. It shows
a contradiction with the definition of UOM and the fact
that U1211 is a UOM by the assumption U1 in (C4) is a
UOM.

For U122 in (C7), we have f6 6= 1 from the line above
(C5). We obtain g6, g7 6= 0 from Lemma 14 and h3 6= 0
from Lemma 15 (i). Since row 3 is orthogonal to row
6, 7, we can obtain i6 = i7 = i′3. Then U122 becomes
U1221 in (C8). So there exists |0, 0, 1, i3〉 ∈ HA ⊗ HB ⊗
HC⊗HD orthogonal to all row vectors of U1221. It shows
a contradiction with the definition of UPB and the fact

that U1221 is a UOM.

U1211 =



0 0 0 0

0 0 0 1

0 1 h3 i3
1 g4 h4 i4
1 g5 h5 i5
f6 1 h6 i6
f6 g7 1 i′3
f ′6 g8 1 i′3


, U1221 =



0 0 0 0

0 0 0 1

0 1 h3 i3
1 g4 h4 i4
1 g5 h5 i5
f6 g6 1 i′3
f6 g7 1 i′3
f ′6 1 h8 i8


.(C8)

For U123 in (C7), we have f6 6= 0, 1 from the line above
(C5). We obtain g3, g4, g5 6= 0 from Lemma 14. In the
following we show h4, h5, h7 6= 1. First, one can obtain
h4 6= 1. Otherwise, we have |1, 0, 0, i′5〉 ∈ HA⊗HB⊗HC⊗
HD is orthogonal to all row vectors of U123. Second, one
can obtain h5 6= 1. Otherwise, we have |1, 0, 0, i′4〉 ∈
HA ⊗HB ⊗HC ⊗HD is orthogonal to all row vectors of
U123. Lastly, one can obtain h7 6= 1. Otherwise, we have
|0, 1, 0, i′6〉 ∈ HA ⊗ HB ⊗ HC ⊗ HD is orthogonal to all
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row vectors of U123. Then we have proved

f6, f
′
6 6= 0, 1, g3, g4, g5 6= 0, 1 h4, h5, h7 6= 1. (C9)

We claim that U123 in (C7) has two cases U1231 and
U1232 in (C10). Since row 3 is orthogonal to row 6, 7, we
can obtain |1, i3〉 is orthogonal to |h6, i6〉 and |h7, i7〉 from
f6 6= 1, g3 6= 0 by (C9). One can show that h6, h7 are not
equal to 0 at the same time. Otherwise, column 3 of U123

shows a contradiction with Lemma 12 (i) and the fact
U123 is a UOM by the assumption U1 in (C4) is a UOM.
Then we have h6 = 0, h7 6= 0 or h6 6= 0, h7 = 0 or h6, h7 6=
0. Since f6 = f7, g6 = g7 and i6, i7 is undetermined,
one can obtain the first two cases h6 = 0, h7 6= 0 and

h6 6= 0, h7 = 0 are equivalent. Up to equivalence, we
have two cases h6 = 0, h7 6= 0 or h6, h7 6= 0 for U123.
For h6 = 0, h7 6= 0 in U123, since |1, i3〉 is orthogonal to
|h7, i7〉 from the second line in this paragraph, we obtain
i7 = i′3. Since h7 6= 1 by (C9) and row 5 is orthogonal
to row 6, we have i6 = i′7 = i3. Since f6 6= 0, g4, g5 6=
0, h4, h5 6= 1 by (C9) and row 6 is orthogonal to row
4, 5, we have i4 = i5 = i′6 = i′3. Then U123 becomes
U1231 in (C10). For h6, h7 6= 0 in U123, since |1, i3〉 is
orthogonal to |h6, i6〉 and |h7, i7〉 from the second line in
this paragraph, we can obtain i6 = i7 = i′3. Then U123

becomes U1232 in (C10). We have proved the claim at
the beginning of this paragraph.

U1231 =



0 0 0 0

0 0 0 1

0 g3 1 i3
1 g4 h4 i′3
1 g5 h5 i′3
f6 1 0 i3
f6 1 h7 6= 0 i′3
f ′6 g8 1 i8


, U1232 =



0 0 0 0

0 0 0 1

0 g3 1 i3
1 g4 h4 i4
1 g5 h5 i5
f6 1 h6 6= 0 i′3
f6 1 h7 6= 0 i′3
f ′6 g8 1 i8


. (C10)

For U1231 in (C10), there exists |1, 0, 0, i3〉 ∈ HA ⊗
HB ⊗HC ⊗HD is orthogonal to all row vectors of U1231.
It shows a contradiction with the definition of UOM and
the fact U1231 is a UOM in HA⊗HB ⊗HC ⊗HD by the
assumption U1 in (C4) is a UOM. That is, U1231 is not a
UOM in HAB ⊗HCD.

For U1232 in (C10), there exists |0, 1, 0, i3〉 ∈ HA ⊗
HB ⊗HC ⊗HD is orthogonal to all row vectors of U1232.
It shows a contradiction with the definition of UOM and
the fact U1232 is a UOM in HA⊗HB ⊗HC ⊗HD by the
assumption U1 in (C4) is a UOM. That is, U1232 is not a
UOM in HAB ⊗HCD.

Therefore, U123 in (C10) is not a UOM in HAB⊗HCD.
For U124 in (C7), we have f6, f

′
6 6= 0, 1 from the line

above (C5). We obtain g3, g4, g5 6= 0 from Lemma 14.
In the following we show that h4, h5 6= 1. First, one
can obtain h4 6= 1. Otherwise, we have |1, 0, 0, i′5〉 ∈
HA ⊗ HB ⊗ HC ⊗ HD is orthogonal to all row vectors
of U124. Second, one can obtain h5 6= 1. Otherwise, we
have |1, 0, 0, i′4〉 ∈ HA ⊗HB ⊗HC ⊗HD is orthogonal to
all row vectors of U124. Then we have proved

f6, f
′
6 6= 0, 1, g3, g4, g5 6= 0, h4, h5 6= 1. (C11)

We claim that U124 in (C7) has three cases U1241, U1242

and U1243 in (C12). Since row 3 is orthogonal to row 6, 8,
we can obtain |1, i3〉 is orthogonal to |h6, i6〉 and |h8, i8〉
from f6, f

′
6 6= 1, g3 6= 0 by (C11). One can show that

h6, h8 are not equal to 0 at the same time. Otherwise,
column 3 of U124 shows a contradiction with Lemma 12
(i) and the fact U124 is a UOM by the assumption U1 in
(C4) is a UOM. Then we have three cases h6 = 0, h8 6= 0
or h6 6= 0, h8 = 0 or h6, h8 6= 0 for U124. For h6 =
0, h8 6= 0 in U124, since f6 6= 0, g4, g5 6= 0, h4, h5 6= 1
by (C11) and row 6 is orthogonal to row 4, 5, we have
i4 = i5 = i′6. Then U124 becomes U1241 in (C12). For
h6 6= 0, h8 = 0 in U124, since f ′6 6= 0, g4, g5 6= 0, h4, h5 6= 1
by (C11) and row 8 is orthogonal to row 4, 5, we have
i4 = i5 = i′8. Then U124 becomes U1242 in (C12). For
h6, h8 6= 0 in U124, since |1, i3〉 is orthogonal to |h6, i6〉
and |h7, i7〉 from the second line in this paragraph, we
can obtain i6 = i8 = i′3. Then U124 becomes U1243 in
(C12). We have proved the claim at the beginning of
this paragraph.
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U1241 =



0 0 0 0

0 0 0 1

0 g3 1 i3
1 g4 h4 i′6
1 g5 h5 i′6
f6 1 0 i6
f6 g7 1 i7
f ′6 1 h8 6= 0 i8


, U1242 =



0 0 0 0

0 0 0 1

0 g3 1 i3
1 g4 h4 i′8
1 g5 h5 i′8
f6 1 h6 6= 0 i6
f6 g7 1 i7
f ′6 1 0 i8


, U1243 =



0 0 0 0

0 0 0 1

0 g3 1 i3
1 g4 h4 i4
1 g5 h5 i5
f6 1 h6 6= 0 i′3
f6 g7 1 i7
f ′6 1 h8 6= 0 i′3


. (C12)

For U1241 in (C12), there exists |1, 0, 0, i6〉 ∈ HA ⊗
HB ⊗HC ⊗HD is orthogonal to all row vectors of U1241.
It shows a contradiction with the definition of UOM and
the fact U1241 is a UOM in HA⊗HB ⊗HC ⊗HD by the
assumption U1 in (C4) is a UOM. That is, U1241 is not a
UOM in HAB ⊗HCD.

For U1242 in (C12), there exists |1, 0, 0, i8〉 ∈ HA ⊗
HB ⊗HC ⊗HD is orthogonal to all row vectors of U1242.
It shows a contradiction with the definition of UOM and
the fact U1242 is a UOM in HA⊗HB ⊗HC ⊗HD by the
assumption U1 in (C4) is a UOM. That is, U1242 is not a
UOM in HAB ⊗HCD.

For U1243 in (C12), there exists |0, 1, 0, i3〉 ∈ HA ⊗
HB ⊗HC ⊗HD is orthogonal to all row vectors of U1243.
It shows a contradiction with the definition of UOM and
the fact U1243 is a UOM in HA⊗HB ⊗HC ⊗HD by the
assumption U1 in (C4) is a UOM. That is, U1243 is not a
UOM in HAB ⊗HCD.

So U124 in (C10) is not a UOM in HAB ⊗HCD.

We haved proved the claim below (C7).

Therefore, we have proved that TAB:CD is not a UPB
of size 8 in HAB ⊗HCD.

(iii) We prove the assertion by contradiction. Suppose
TAB:CD is a UPB of size 8 in HAB ⊗ HCD. Up to the
equivalence, we can assume j1 = 1, j2 = 2 and j3 = 3
and f1 = f2 = g1 = g2 = h1 = h2 = h3 = 0. We express
the UOM of TA:B:C:D as

U1 =



0 0 0 0

0 0 0 1

f3 g3 0 i3
f4 g4 h4 i4
f5 g5 h5 i5
f6 g6 h6 i6
f7 g7 h7 i7
f8 g8 h8 i8


. (C13)

We claim that there are only two cases U11 and U12,

where c1, c2, c3, c4, c5 are not 0’s or 1’s.

U11 =



0 0 0 0

0 0 0 1

f3 g3 0 i3
f4 g4 1 i4
f5 g5 c1 i5
f6 g6 c2 i6
f7 g7 c3 i7
f8 g8 c4 i8


, U12 =



0 0 0 0

0 0 0 1

f3 g3 0 i3
f4 g4 1 i4
f5 g5 1 i5
f6 g6 c5 i6
f7 g7 c5 i7
f8 g8 c′5 i8


.(C14)

In fact, if one of c1, c2, c3, c4, c5 is 0 or 1 then TAB:CD

is not a UPB from Lemma 12 (i) or U11 = U12. If two of
c1, c2, c3, c4 are 1’s, we can assume c1 = c2 = 1. Then
the space spanned by |h4, i4〉, |h5, i5〉, |h6, i6〉, |h7, i7〉 has
dimension at most three. Also the space spanned by
|f1, g1〉, |f2, g2〉, |f3, g3〉, |f8, g8〉 has dimension at most
three. So there exist φ, ψ ∈ C4 such that φ and ψ is re-
spectively orthogonal to |f1, g1〉, |f2, g2〉, |f3, g3〉, |f8, g8〉
and |h4, i4〉, |h5, i5〉, |h6, i6〉, |h7, i7〉. It makes a con-
tradiction with the assumption that TAB:CD is a UPB.
Therefore, the form U11 and U12 are all possible cases.
We have proved the claim above (C14).

For U11, since the first two rows are orthogonal to row
3, 5, 6, 7, 8, we obtain that |0, 0〉 ∈ HAB is orthogonal to
|fj , gj〉 for j = 3, 5, 6, 7, 8. Namely, three of f3, f5, f6,
f7, f8 or g3, g5, g6, g7, g8 are 1’s. It’s a contradiction
with Lemma 12 (iii) and the fact that TAB:CD is a UPB
of size 8.

For U12, we have f3, g3, f4, g4, f5, g5, f6, g6, f7, g7, f8, g8 6=
0 from Lemma 15(ii). And the first rows are orthogonal
to each of the last six rows of U12. So |0, 0〉 ∈ HAB is
orthogonal to each of |f3, g3〉, |f6, g6〉, |f7, g7〉, |f8, g8〉.
Also the first two rows both have at most two identical
product vectors from Lemma 12 (iii). So we have the
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two cases U121 and U122.

U121 =



0 0 0 0

0 0 0 1

1 g3 0 i3
f4 g4 1 i4
f5 g5 1 i5
1 g6 a5 i6
f7 1 a5 i7
f8 1 a′5 i8


, U122 =



0 0 0 0

0 0 0 1

1 g3 0 i3
f4 g4 1 i4
f5 g5 1 i5
f6 1 a5 i6
f7 1 a5 i7
1 g8 a′5 i8


.(C15)

For U121, row 3 is orthogonal to row 7 and 8, so |i3〉 is
orthogonal to |i7〉 and |i8〉. That is, i7 = i8 = i′3. Using
the similar argument, we can obtain i6 = i7 = i′3 in U122

because row 3 is orthogonal to row 6 and 7. So U121 and
U122 are respectively equivalent to U1211 and U1221.

U1211 =



0 0 0 0

0 0 0 1

1 g3 0 i3
f4 g4 1 i4
f5 g5 1 i5
1 g6 a5 i6
f7 1 a5 i′3
f8 1 a′5 i′3


, U1221 =



0 0 0 0

0 0 0 1

1 g3 0 i3
f4 g4 1 i4
f5 g5 1 i5
f6 1 a5 i′3
f7 1 a5 i′3
1 g8 a′5 i8


.(C16)

So column 3 and 4 of U1211 and U1221 shows a contradic-
tion with Lemma 12 (iii) and the fact that TAB:CD is a
UPB of size 8. ut

The following proposition can be proven similarly to
Lemma 12, 13, 14, 15.

Proposition 16 Let TA:B:C:D={|f1, g1, h1, i1〉,
|f2, g2, h2, i2〉,...,|f8, g8, h8, i8〉} be a 4-qubit UPB of
size 8 in HA ⊗HB ⊗HC ⊗HD.

(i) If there are two subscripts j1, j2 such that |fj1〉 =
|fj2〉, |gj1〉 = |gj2〉 and |hj1〉 = |hj2〉, then TA:B:C:D is no
longer a UPB in HAB ⊗HCD.

(ii) If there are two subscripts j1, j2 such that |fj1〉 =
|fj2〉, |gj1〉 = |gj2〉, |hj1〉 = |h′j2〉 and |ij1〉 = |i′j2〉, then
TA:B:C:D is no longer a UPB in HAB ⊗HCD.

(iii) If there are two subscripts j1, j2 such that |fj1〉 =
|fj2〉, |gj1〉 = |g′j2〉, |hj1〉 = |hj2〉 and |ij1〉 = |i′j2〉, then
F1 in Appendix A happen to be all UOMs satisfying this
condition.

(iv) If there are two subscripts j1, j2 such that |fj1〉 =
|fj2〉 and |gj1〉 = |gj2〉, then TA:B:C:D is no longer UPB
in HAB ⊗HCD.

(v) If there are two subscripts j1, j2 such that |fj1〉 =
|fj2〉 and |hj1〉 = |hj2〉, then F2, F3, F4, F5 in Appendix A
happen to be all UOMs satisfying this condition.

(vi) If there are five distinct subscripts j1, j2, j3, j4, j5
such that |fj1〉 = |fj2〉 = |fj3〉 and |hj3〉 = |hj4〉 = |hj5〉,
then F2, F3, F4, F5 in Appendix A happen to be all UOMs
satisfying this condition.

(vii) If there are three distinct subscripts j1, j2, j3 such
that |fj1〉 = |fj2〉 = |fj3〉, then F2, F3, F4, F5 in Appendix
A happen to be all UOMs satisfying this condition.

(viii) If there are three distinct subscripts j1, j2 such
that |fj1〉 = |fj2〉, then F2, F3, F4, F5, F6 in Appendix A
happen to be all UOMs satisfying this condition.
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[16] Géza Tóth, Christian Knapp, Otfried Gühne, and
Hans J. Briegel. Optimal spin squeezing inequalities de-
tect bound entanglement in spin models. Phys. Rev.
Lett., 99:250405, Dec 2007.

[17] Lin Chen and Shmuel Friedland. The tensor rank of ten-
sor product of two three-qubit w states is eight. Linear
Algebra and Its Applications, 543:1–16, 2018.

[18] Leonid Gurvits. Classical deterministic complexity of ed-
monds’ problem and quantum entanglement. 2003.

[19] F Monteiro, Vivoli V Caprara, T Guerreiro, A Martin,
J. D. Bancal, H Zbinden, R. T. Thew, and N Sangouard.
Revealing genuine optical-path entanglement. Physical
Review Letters, 114(17), 2015.

[20] Y Yeo and W. K. Chua. Teleportation and dense coding
with genuine multipartite entanglement. Physical Review
Letters, 96(6):060502, 2006.

[21] Marcus Huber and Ritabrata Sengupta. Witnessing gen-
uine multipartite entanglement with positive maps. Phys-
ical Review Letters, 113(10):100501, 2014.

[22] Adn Cabello, Alessandro Rossi, Giuseppe Vallone,
Francesco De Martini, and Paolo Mataloni. Proposed
bell experiment with genuine energy-time entanglement.
Physical Review Letters, 102(4):040401, 2009.

[23] T. Kraft, C. Ritz, N. Brunner, M. Huber, and O. Ghne.

Characterizing genuine multilevel entanglement. Physical
Review Letters, 120(6):060502, 2018.

[24] Gza Tth and Otfried Ghne. Detecting genuine mul-
tipartite entanglement with two local measurements.
Phys.rev.lett, 94(6):060501, 2005.

[25] M Huber, F Mintert, A Gabriel, and B. C. Hiesmayr.
Detection of high-dimensional genuine multipartite en-
tanglement of mixed states. Physical Review Letters,
104(21):210501, 2010.

[26] Lin Chen, Kai Wang, Yi Shen, Yize Sun, and Lijun Zhao.
Constructing 2 × 2 × 4 and 4 × 4 unextendible prod-
uct bases and positive-partial-transpose entangled states,
2018. arXiv:1810.08932v1.

[27] Lin Chen and Dragomir Z. Djokovic. Multiqubit upb:
The method of formally orthogonal matrices. Journal of
Physics A Mathematical and Theoretical, 51(26), 2018.

[28] Stijn De Baerdemacker, Alexis De Vos, Lin Chen, and
Li Yu. The birkhoff theorem for unitary matrices of ar-
bitrary dimensions. Linear Algebra and Its Applications,
514:151–164, 2017.

[29] S. B Bravyi. Unextendible product bases and locally un-
convertible bound entangled states. Quantum Informa-
tion Processing, 3(6):309–329, 2004.

[30] Lin Chen and Dragomir Z Dokovic. Separability problem
for multipartite states of rank at most 4. Journal of
Physics A Mathematical and Theoretical, 46(46):1103–
1114, 2013.

[31] The non-orthogonal UPB is a set of product vectors that
are not orthogonal to any product vector at the same
time


	I Introduction
	II Preliminaries
	III The summary of 44 UPBs of size eight
	IV Application 1: constructing PPT entangled states using a proper subset of UPB
	V Application 2: the UPB orthogonal to an almost GE space
	VI Conclusions
	 Acknowledgments
	A The description of six four-qubit UOMs F1,F2,...,F6
	B The proof of Lemma 4 
	C The construction of six four-qubit UOMs F1,F2,...,F6 (to be shortened greatly)
	 References

