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Abstract Reconciliation is a crucial procedure in post-processing of Quan-
tum Key Distribution (QKD), which is used for correcting the error bits in
sifted key strings. Although most studies about reconciliation of QKD fo-
cus on how to improve the efficiency, throughput optimizations have become
the highlight in high-speed QKD systems. Many researchers adpot high cost
GPU implementations to improve the throughput. In this paper, an alterna-
tive high throughput and efficiency solution implemented in low cost CPU is
proposed. The main contribution of the research is the design of a quantized
LDPC decoder including improved RCBP-based check node processing and
saturation-oriented variable node processing. Experiment results show that
the throughput up to 60Mbps is achieved using the bi-directional approach
with reconciliation efficiency approaching to 1.1, which is the optimal com-
bination of throughput and efficiency in Discrete-Variable QKD (DV-QKD).
Meanwhile, the performance remains stable when Quantum Bit Error Rate
(QBER) varies from 1% to 8%.
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1 Introduction

Quantum Key Distribution (QKD) is a promising technique to generate and
distribute secure keys with unconditional security for the remote two parties,
so called Alice and Bob [1]. To obtain a string of secure key using QKD, two
consecutive phases are involved: quantum phase and classical post-processing
phase [2]. In quantum phase, raw keys are obtained by transmitting and detect-
ing quantum signals via an untrusted quantum channel. Due to the physical
noises or the presence of an eavesdropper Eve, raw keys of two parties are
weakly correlated and partially secure [3]. Thus, a distilling phase called post-
processing is needed. The main task of post-processing is to convert imperfect
raw key strings to consistent secure key pairs via an authenticated classical
channel. To accomplish this task, a series of post-processing operations have
to be performed including sifting, error estimation, reconciliation, verification,
privacy amplification and authentication [4]. In this research, we focus on the
reconciliation which is often the bottleneck of a high speed QKD system lim-
iting the secure key rate [5]. The main issue of the reconciliation module is
to maximize the secure key rate through increased reconciliation efficiency
and throughput. Reconciliation efficiency is the parameter that indicates the
amount of information leakage. During reconciliation, some information have
to be exchanged to correct errors over public channel. The exchanged data may
be intercepted by Eve and therefore some information may leak. Throughput
determines the amount of data that can be processed by the reconciliation
module. The sifted keys that cannot be processed or corrected have to be dis-
carded, resulting a decrease in secure key rate. Unlike reconciliation efficiency,
the throughput has not attracted many attentions. However, it has been re-
ported that only an optimal combination of these two parameters: efficiency
and throughput, can maximize the secure key rate of a practical QKD system.
Especially, throughput plays more important role in high speed QKD systems.

In general, reconciliation protocols can be divided into two categories: in-
teractive and forward error correction code based [6]. Cascade is the most
widely used interactive reconciliation protocol for its simplicity and relatively
high efficiency [7–12]. However, lots of interactions are required in Cascade pro-
tocol leading to a degradation in throughput [6]. Indeed, nearly all interactive
reconciliation protocols are sensitive to latency in the communication chan-
nel, which may be unpredictable in practical QKD systems [5]. To overcome
such shortcomings, forward error correction codes, such as Polar and LDPC,
based reconciliation protocols have been proposed. Polar code was proposed
by Arikan in 2009 [13] and first used in post-processing of QKD by Jouguet in
2013 [14]. The throughput up to 10.9Mbps was achieved when QBER equals
to 2%. However, the Frame Error Rate (FER) was high leading to a limita-
tion of secure key rate. In 2018, Successive Cancellation List (SCL) decoding
algorithm was introduced into Polar reconciliation by YAN Shiling [15] result-
ing in a higher secret key rate. But the efficiency of Polar reconciliation still
lags behind LDPC reconciliation with the same frame length. Furthermore,
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the throughput significantly decreases when the number of paths L increases.
Nowadays, LDPC reconciliation is adopted in most current high speed QKD
systems for its advantages of high efficiency even using short frame length and
inherent parallelism [4,16]. The original LDPC reconciliation is very sensitive
to the Quantum Bit Error Rate (QBER), which severely limits its applica-
tion. In order to achieve high reconciliation efficiency over a wide range of
QBERs, rate-adaptive reconciliation protocol was proposed [17]. In 2014, the
bi-directional rate-adaptive LDPC reconciliations were implemented in both
CPU and GPU [5], achieving average throughput up to 5Mbps and 15Mbps
with high reconciliation efficiency respectively. To further improve reconcilia-
tion efficiency, blind reconciliation protocol was proposed [18]. However, the
required round of interaction is more than that in rate-adaptive protocol, which
affects the performance gain of throughput. In 2017, E. O. Kiktenko suggested
an improved blind reconciliation protocol [19]. Via introducing symmetry in
operations of two parties and consideration on unsuccessful decoding results,
the protocol gains a significant performance increase in both efficiency and in-
teractivity. However, the bi-directional reconciliation strategy cannot be used
in the symmetric blind protocol [19], which limits the achievable throughput.

LDPC reconciliation can be implemented using either hardware (FPGA,
ASIC) or software (CPU, GPU). In this research, we focus on software im-
plementations. To implement LDPC reconciliation in software, GPU is com-
monly used due to its massive parallel computing power [5,20,21]. Though the
throughput and efficiency can be very high in GPU implementations [5], the
disadvantages of the GPU scheme are obvious too. A GPU device is not able
to work alone, but has to work with its host CPU. Moreover, the relatively
large volume and high power consumption of a GPU device make it hard to
integrate. So the GPU scheme is not well suitable for a compact QKD solu-
tion. Comparing to the GPU scheme, the advantage of a CPU scheme is low
cost and the disadvantage is much less computing resources. According to the
Ref [5], the throughput of their CPU scheme is only one third of the GPU
scheme. How to implement the high performance reconciliation using a low
cost CPU scheme has not been well discussed in existing literatures so far.

Though the amount of computation resources of a CPU device is not as
plentiful as a GPU, the modern CPU offers some good features that can be
exploited to achieve high performance as well. These features include Single
Instruction Multiple Data (SIMD) instruction extensions, multi-core process-
ing module and multi-level caches [22]. SIMD instruction extensions improve
the performance of an application by operating on multiple data elements in
one instruction instead of processing the data individually. Using a multi-core
processing module, each autonomous core can execute the same program with
different inputs simultaneously in order to accomplish the computation fast.
Multi-level caches can decrease the impact of the mass memory latency which
is often the performance bottleneck.
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In this research, a high throughput and low cost software LDPC reconcil-
iation implemented in CPU is proposed. The main contributions of our work
are as follows. A quantized RCBP-based LDPC decoder is proposed, which
achieves high efficiency using fixed-point representation. Moreover, the aver-
age throughput of 57.60Mbps and the average efficiency of 1.108 within a wide
range of QBER is achieved using an i7-6700HQ CPU, by taking good advan-
tage of the features offered by modern CPUs. The average speedup factors of
×3.8 and ×11.3 are achieved by comparison with the latest GPU and CPU
works in DV-QKD [5]. It is worth to mention that the performance improve-
ment comes from our algorithm and implementation optimizations rather than
the performance boost of hardware.

The rest of the paper is organized as follows. The LDPC decoding al-
gorithms are introduced in Section 2. In Section 3, the proposed quantized
RCBP-based LDPC decoder is detailed. The experimental results and analy-
sis are presented in Section 4. Finally, a brief conclusion is provided in Section
5.

2 LDPC decoding algorithm

LDPC code is a kind of linear block code with error correction capability close
to Shannon limit. It is originally proposed by Robert Gallager in 1962 [23] and
is defined by a sparse parity check matrix H of size m × n. The code rate is
defined as R = 1−m/n, denoting the ratio of information bits. A LDPC code
can also be described by a bipartite graph with m check nodes (CNs) and n
variable nodes (VNs) corresponding to the rows and columns of H respectively.
The matrix element in H can be binary or non-binary alphabets [24]. In this
research, only binary LDPC codes are considered for the sake of simplicity. An
edge connects CNi and VNj in the bipartite graph if Hij = 1. The degree of
check node CNi named degCNi is defined by the number of ones in the ith row
of H. Similarly, the number of ones in the jth column is the degree of variable
node VNj named degVNj.

The iterative Sum-Product Algorithm (SPA) [25] is usually applied to de-
code LDPC codes for its high decoding efficiency. It consists of two main steps:
check node processing and variable node processing. During the decoding pro-
cess, messages are exchanged between check nodes and variable nodes along
the bipartite graph edges. Such message updating process will repeat until the
stopping criterion is satisfied. In practice, the sequence of message updating
usually influences the convergence of the decoding algorithm. In this research,
we focus on layered scheduling [26] rather than original flooding scheduling
because it enables the decoding convergence to speed-up by a factor of two.

The sign and magnitude of updated output messages in check node pro-
cessing using layered scheduling can be calculated as Equations (1) and (2),
where Ltij is the message from CNi to VNj in the tth iteration; Ltji is the mes-
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sage from VNj to CNi in the tth iteration; Ψ(i) is the set of VNs connected to
CNi; Ψ(i)/j is the set Ψ(i) excludes VNj.

sign(Ltij) =
∏

j′∈Ψ(i)/j

sign(Ltj′i) (1)

∣∣Ltij∣∣ = 2tanh−1

 ∏
j′∈Ψ(i)/j

tanh

∣∣Ltj′i∣∣
2

 (2)

Equation (2) can be formulated in two other ways [24] which are presented
in Equations (3) and (4). Mathematically there is no difference between all
these three equations, but each equation has its own advantage in practice.
For instance, the function φ(x) used in Equation (3) is an invertible function,
which is defined in Equation (5). By using φ(x), the multiplication and division
operations presented in Equation (2) are removed. Furthermore, the function
φ(x) can be implemented by using a look-up table which can be replaced by
piecewise linear approximation as discussed in [27, 28]. Although implemen-
tation of the φ(x) function by use of a look-up table is sufficient for some
software simulations, but due to dynamic-range issues, it is a difficult function
to approximate even with a large table. Unlike the Equation (3), the input and
output range keeps stable in Equation (4). The The box-plus operator used
in Equation(4) is presented in Equation (6), which can be easily implemented
by use of a two-input look-up table. For d − 1 operands, corresponding to a
degree-d check node, the box-plus operation can be computed via repeated
computation of β function as in Equation (7).

∣∣Ltij∣∣ = φ−1

 ∑
j′∈Ψ(i)/j

φ(
∣∣Ltj′i∣∣)

 (3)

∣∣Ltij∣∣ = �
j′∈Ψ(i)/j

∣∣Ltj′i∣∣ (4)

φ(x) = φ−1(x) = − ln
(

tanh
(x

2

))
(5)

L1 � L2 = β(L1, L2) = 2tanh−1
(

tanh

(
L1

2

)
tanh

(
L2

2

))
(6)

d−1
�
i=1
|Li| = β (|L1| , β (|L2| , · · · , β (|Ld−2| , |Ld−1|))) (7)

In order to further simplify the computation complexity of CNs, a series
of approximations are proposed including Min-Sum (MS) [29], Offset Min-
Sum (OMS) [30], Normalized Min-Sum (NMS) [30], Approximate Min∗ De-
coder [27], Richardson / Novichkov (RN) [31], Reduced-Complexity Box-Plus
(RCBP) decoder [32], and etc. The most commonly used approximations ac-
coding to the existing literatures are MS-based decoding algorithm including
MS, OMS and NMS. Although these approximations drastically reduce the
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computation complexity, it is hard to obtain high reconciliation efficiency in
QKD environment using these approximations. RN decoder is able to obtain
a better reconciliation efficiency than OMS and NMS but it is not software-
friendly. Based on the considerations as above, we adopt RCBP algorithm
which can be easily implemented in CPU environment with the potential to
achieve high efficiency.

The variable node processing using layered scheduling are presented in
Equations (8) and (9). E′j and Ej are the soft value of VN before and after
layered processing respectively. The sign of Ej is the hard decision estimate of
the VNj and the magnitude means the reliability of the decision. During the
iterative decoding process, the hard decision estimates and their reliabilities
are updated. Indeed, in layered decoding, only the latest Ej and Lij are stored
in memory. Lji are computed on the fly as in Equation (8).

Ltji = E′j − Lt−1ij (8)

Ej = Ltji + Ltij (9)

A stopping criterion is inherited in LDPC code to detect the correct word.
At the end of each decoding iteration, parity check constraints are tested
with the latest Ej . A correct code can be obtained only when all the parity-
check constraints are satisfied. If a correct code has not been detected until
the iteration number reaches the predefined maximum iteration number, the
decoding process will terminate in failure. Even if all parity check constraints
are satisfied, there may exists undetected errors. During decoding process,
SPA decoding algorithm may converge to an inappropriate code satisfying the
constraints as well. This problem rarely appears and can be solved by the
subsequent processing, so called verification.

3 Quantized RCBP-based LDPC decoder

In this section, a high throughput and efficiency LDPC decoder is proposed.
High throughput performance mainly comes from quantization process which
is detailed in Section 3.1. Quantization process is able to improve the through-
put by a factor of four, but it is certain to have negative impacts on reconcilia-
tion efficiency. In order to maintain the high efficiency as the LDPC decoder of
floating-point version, the improved RCBP-based check node processing and
saturation-oriented variable node processing are proposed in Section 3.2 and
Section 3.3 respectively.

3.1 Quantization

Quantization is a common used approach in hardware implementations to
reduce the storage consumption, while it is not common in CPU implemen-
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tations since the storage space is not a big issue in most CPU applications.
Nevertheless, quantization is an effective technique to decrease processing de-
lay when the performance of throughput is pursued in a CPU implementation.
The reduction of processing delay using quantization mainly comes from the
increasing of SIMD unit utilization and cache hit rates.

In practice, SIMD processing are performed using several sets of instruc-
tion extensions supported by specific architectures. In this research, we focus
on x86 architecture. Two commonly used instruction extensions are Streaming
SIMD Extensions (SSE) with 128-bit registers and Advanced Vector Exten-
sions (AVX) with 256-bit registers [33]. Only 4 and 8 floating-point computa-
tions can be processed in one clock cycle in SSE and AVX mode respectively.
If the data are quantized as 8-bit fixed-point numbers, 16 and 32 computations
can be processed in one clock cycle in these two models respectively, which
means nearly four times speed-up.

Moreover, the memory access latency varies among different levels of caches
in multi-level cache architecture. It takes about 4/10/40 clock cycles to access
L1/L2/L3 cached data [34], and more than thousand clock cycles for uncached
data. Unfortunately, the sizes of fast caches are quite limited. For instance, an
i7-4790K CPU contains four cores. Each core has only one 32KB L1 data cache
and one 256KB L2 cache respectively. The size of L3 cache is 8MB, but it is
shared by all cores. Reducing memory size helps in fitting better into faster
cache, which decreases execution time. If 8-bit fixed-point is used instead of
floating-point representation, the memory size can be reduced by at least four,
leading to an improvement in throughput.

As mentioned above, the throughput can be improved by a factor of at
least four via using 8-bit fixed-point representation, which is the major source
of throughput improvement. However, an efficient implementation of LDPC
decoder using 8-bit fixed point representation is a challenging task. The issue
of quantization precision affects reconciliation efficiency negatively. To over-
come the bad influence, algorithm optimizations of check node and variable
processing are presented in the following sections.

3.2 Improved RCBP-based check node processing

In QKD environment, the reconciliation efficiency of original RCBP approxi-
mation still lags behind BP algorithm, especially for low QBERs which most
DV-QKD systems focus on. The efficiency lost mainly comes from the rough
quantization. Such practical issue motivates us to propose an improved RCBP
approximation applying more accurate quantization step size. Meanwhile, to
maintain the same range of message representation as in original RCBP ap-
proximation, a larger scale look-up table is designed. Let τ(p, q) represent the
integer output value of the loop-up table. Thus, τ(p, q) is the integer represen-
tation of the function value β

(
p∆+ ∆

2 , q∆+ ∆
2

)
.
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It is noticed that the pre-stored loop-up table is not always a good solution.
As mentioned in Section 3.1, four clock cycles are needed even if L1 cached
data is accessed. If the loop-up table can be described by a simple equation,
the calculation time may by significantly less than the access time of the
look-up table, especially when SIMD technique is applied. Thus, according to
the process described in the literature [32], a new look-up table generation
algorithm is designed as Algorithm 1, involving a series of simple operations.
The result of the comparison (d < c) returns 1 if true and 0 if false. The
constant number MSGmax is determined by the size of loop-up table. For
example, if the input p and q are 6-bit input, MSGmax is set as 63.

Algorithm 1: Computation of τ(p, q)

Input: Quantified intger p, q
Output: τ(p, q)

1 a←MIN(p,MSGmax);
2 b←MIN(q,MSGmax);
3 g ←MAX(a, b);
4 l←MIN(a, b);
5 d← g − l;
6 if l > 2 then
7 τ ← l − (d < 2)− (d < 6);
8 end
9 else

10 τ ←MAX(l − (d < 4), 0);
11 end

3.3 Saturation-oriented variable node processing

Variable node processing is simple, since only addition operations are involved.
However, some novel operations have to be designed to avoid the efficiency lost
caused by the saturation of quantized values. For instance, during the decoding
process, the reliability of some variable nodes may be very high. Assuming
that the integer representation of a variable node’s soft value is 330 and the
increment values of the adjacent check nodes computed by equation Ltij−L

t−1
ij

are -50, -40 and -70, respectively. At the end of the decoding iteration, the soft
value of the variable node should be updated to 170. However, using 8-bit
fixed-point representation, the original and updated soft value are 127 and -33
respectively. Not only the magnitude but also the sign is incorrect. This sort
of situation may lead to an incorrect result, which should be avoided.

To overcome such issue, a variable node updating rule applying in lay-
ered scheduling is proposed in Algorithm 2. The updating rule is simple that
only the variable nodes whose magnitudes have not reach maximum should
be updated. The function ABS(x) returns absolute value of the input x. The
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constant number Emax is the predefined maximum magnitude and ITERmax

represents the maximum number of iterations. Using 8-bit fixed-point repre-
sentation, the value of Emax is set as 127. The variable t indicates the iteration
number.

Algorithm 2: Saturation-oriented variable node processing

Input: Lt
ji, L

t
ij

Output: Ej

1 for t = 1→ ITERmax do
2 foreach i ∈ C do
3 foreach j ∈ Ψ(i) do
4 if ABS(Ej) 6= Emax then
5 Ej ← Lt

ji + Lt
ij ;

6 end

7 end

8 end

9 end

The proposed updating rule is effective in most cases. Nevertheless, this rule
may introduce a new problem: an incorrect hard decision of a variable node
with the maximal magnitude will no longer update. Although the decoding
process will terminate in failure under that situation, the probability of such
situation is so small that it has little effect on reconciliation performance.

4 Experiments and results

4.1 Experiment environment

Structured QC-LDPC codes are used in the experiment [24]. A QC-LDPC code
is defined by a base matrix of size Mb ×Nb. Each element of the base matrix
is a sub-matrix with the expansion-factor Z. Each nonzero entry is replaced
by a cyclically shifted identity matrix while each zero entry is replaced by a
all-zero matrix. To evaluate the performance of the reconciliation module, a
set of QC-LDPC codes are constructed with frame length of 100kb using the
finite field approach [35]. This approach ensures that the girth of a LDPC
code is at least 6. The check and variable node degree distributions are both
irregular and optimized using the Density Evolution (DE) algorithm [36]. The
masking matrices are constructed by using standard PEG algorithm [37] with
the obtained degree distributions. It is noticed that the structural properties
of QC-LDPC codes contribute to the obtaining of good degree distributions.

The rate-adaptive LDPC reconciliation protocol using bi-directional and
interactive approach is applied in the implementation. The positions of short-
ened and punctured bits are chosen based on the following principles. The
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positions with low column weights are chosen as puncturing bits first. The
shortened bits are selected in turn from the puncturing bits when addition
information revealing is necessary.

For software implementations of LDPC reconciliation in DV-QKD systems,
the optimal combination of throughput and efficiency is presented in Ref [5].
The evaluation platform of our experiment and Ref [5] are detailed in Table 1.
It can be seen from the table that the CPU platforms of i7-6700HQ and X5675
are used in our experiment and Ref [5] respectively. In general, the performance
of CPU platforms are evaluated by the core number and working frequency
of the processor. The base frequency of i7-6700HQ is only 2.6GHz which is
lower than X5675. Thanks to the more advanced turbo boost technology, the
max turbo frequency of i7-6700HQ is able to reach 3.50GHz which is almost
the same as X5675. However, the max turbo frequency is achieved only when
a single processor core is used. When all processor cores are switched on,
the working frequencies of both i7-6700HQ and X5675 will reduce to about
3.1GHz. Besides, the core number of i7-6700HQ and X5675 are four and six
respectively. Thus, comprehensively considering the effects of core number and
working frequency, the performance of our CPU platform is only two thirds
of that used in Ref [5]. In addition, the GPU platform that is more powerful
than i7-6700HQ and X5675 is not adopted in our experiment, but is used in
Ref [5].

Table 1: Evaluation platforms

Ours CPU [5] GPU [5]

Processor Intel i7-6700HQ Intel X5675 NVidia M2090
Number of Cores 4 6 512
Vertical Segment Mobile Server Server
Base Frequency 2.60GHz 3.06GHz 1.3GHz

Max Turbo Frequency 3.50GHz 3.46GHz —

4.2 Experiment results

Simulation results are presented in Figure 1. It can be seen that the through-
put and efficiency surpass comparative schemes during the whole range of
QBER. The efficiency and throughput are achievable when the number of er-
rors in reconciliation data blocks are known. In the implementation, SIMD
and multi-core techniques are applied to intra-frame and inter-frame paral-
lelism respectively.

The reconciliations modes called high throughput and high efficiency are
provided in Ref [5]. The high throughput performance is achieved by decreas-
ing the reconciliation efficiency of high efficiency mode properly, leading to a
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Fig. 1: Throughput(upper panel) and efficiency(lower panel). It is noticed
that efficiencies of CPU and GPU are same.

faster convergence speed. Using the same approach, the throughput of our im-
plementation can further improve as well. Thus, only the high efficiency mode
with the same level of efficiency is concentrated on. Compared to CPU high
efficiency mode in Ref [5], an average speedup factor of ×11.3 is obtained. The
high throughput improvement mainly comes from quantization and simpli-
fied check-node processing which increase the throughput at least four times.
Taking advantage of AVX-2 instruction extensions can double the throughput
as well. Other implementation optimizations, such as early termination and
parallel scheme optimization, also contribute to the throughput improvement.
Even though compared with the GPU implementation, the average speedup
factor still reaches ×3.8. The throughput improvement is gained by the better
balance among multiple influence factors of throughput. From the angle of
computational resources, GPU device is undoubtedly the most powerful one
among the three evaluation platforms in Table 1. However, the throughput
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of a practical application is not only determined by the amount of computa-
tional resources, but also affected by multiple factors. For instance, Wang et
al. [38] has demonstrated that the bottleneck of the LDPC decoder on GPU
is the slow memory accesses. Besides, layered scheduling that can reduce the
decoding latency by a factor of two is used in our implementation. But due to
the data dependencies between consecutive layers, it is not suitable for GPU
implementations.

As depicted in Figure 1, not only the throughput but also the efficiency
surpasses comparative schemes. The efficiency improvement is achieved by the
use of algorithm optimization in Section 3 and the interactive rate-adaptive
LDPC reconciliation protocol. In the original rate-adaptive reconciliation pro-
tocol [17], interaction is only an optional step. However, multi-interaction is
an essential step in our implementation to further improve reconciliation ef-
ficiency. Although the interactions have negative impacts on throughout per-
formance, it is worthwhile from a comprehensive point of view.

In addition to the comparison with software implementations, a perfor-
mance comparison with the latest hardware(FPGA) implementation [16] is
also made in Table 2. An average throughput of 55Mbps with efficiency about
1.16 has been achieved in Ref [16]. To our best knowledge, this work is the best
hardware LDPC reconciliation in DV-QKD systems till now. The throughput
of our implementation does not apparently outperform that in Ref [16]. How-
ever, the throughput of our implementation will be further increased by using
more powerful CPU processor. As can be seen from Table 2, the throughput
has reached 122.17Mbps by using the latest i9-9900K processor, which is more
than two times faster than comparative implementations.

Table 2: Performance Comparison

Refs. Target Device Throughput(Mbps) Efficiency

This work CPU Intel i9-9900K 122.17 1.108
This work CPU Intel i7-4790K 65.59 1.108
This work CPU Intel i7-6700HQ 57.60 1.108

[5] GPU NVidia M2090 30.70 1.250
[5] CPU Intel X5675 9.00 1.250
[16] FPGA Altera Stratix V 5SGXA7 55 ≈ 1.16

Reconciliation module is not a standalone system, but a part of entire
QKD system. The important metric of a QKD system is the final secure key
rate. Thus, using the parameter settings in Ref [16] which is the representative
of state of the art DV-QKD systems, the secure rate of the QKD system is
simulated. The secure key rates at different distances by using ideal reconcil-
iation are calculated as a benchmark. The ideal reconciliation is assumed to
have unlimited throughput and disclose the theoretical minimum amount of
information leakage. Fig 2 shows the secure key rates calculated for the high



Title Suppressed Due to Excessive Length 13

speed QKD system using both ideal and theoretical reconciliation modules.
At short distances, the processing demands of reconciliation module is large.
Once the throughput of reconciliation is not sufficient, the final secure key rate
will be fixed. As the distance becomes longer, the throughput is to satisfy the
processing demand. In such case, the secure key rate is determined principally
by the reconciliation efficiency. Above all, both throughput and efficiency are
important to final secure key rates of high speed QKD systems. Because both
the throughput and efficiency of our reconciliation module are higher than
those of comparative ones, the final secure key rates are higher as well.
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Fig. 2: Secure key rate calculated for a typical high speed QKD system using
real implementations

What’s more, our implementation is applicable to nearly all kinds of DV-
QKD systems. For a low speed QKD system, low performance CPU is sufficient
to reduce the cost of whole system. Moreover, blind reconciliation with more
communication rounds can be applied to achieve higher efficiency since the
throughput of our implementation is much more than demand. For a high
speed DV-QKD system, the additional GPU hardware is no longer needed
when our scheme is applied.
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5 Conclusion

In this research, a high throughput and efficiency LDPC reconciliation scheme
on a low cost platform is proposed, which is applicable to both low speed and
high speed QKD systems. The proposed scheme is adaptive to different QBERs
ranging from 1% to 8% with maximum throughput up to 60Mbps. Except for
the high performance, our scheme has a good extendibility. First, although
this is a software scheme designed for CPU, the optimization is suitable for
hardware implementation as well. Secondly, by means of adjusting the quanti-
zation step size and the size of loop-up table, the decoding algorithm may also
fit for CV-QKD systems. It is noticed that AVX-512 instruction sets are now
available in some high-end CPUs, which are able to increase the throughput of
the proposed scheme by up to a factor of two. Thus, the throughput of our im-
plementation has the potential to further increase, meeting the requirements
of faster QKD systems or short distance applications in the future.
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