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The original version of this article unfortunately contained errors in the proofs of
Lemma 1, Lemma 5 and Proposition 1. Corrections to the proofs of Lemmas 1 and 5
and Proposition 1 are given below:

1 Correction to [1, Lemma 5]

In the proof of Lemma 5, it was incorrectly claimed that (T (1) ⊗ T (2))|H0(C2n ) =
T (1)|H0(C2n1 )

⊗T (2)|H0(C2n2 )
. However, since the constituting subsystems are taken to

be non-interacting and initialized in a product state [1, §4, paragraph 1], this erroneous
argument in the proof is unnecessary. A correct and simpler argument showing that
T (1) ⊗ T (2) is again convergent when restricted to product states of the subsystems,
and the polynomial algebra F consists of fading memory maps, is the following. To
show the convergence property when restricted to product states of the subsystems,
given any two initial product states ρ1,0 ⊗ ρ2,0 and σ1,0 ⊗ σ2,0, we have
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The original article can be found online at https://doi.org/10.1007/s11128-019-2311-9.
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k‖σ2,k‖2 ≤ 2(1 − ε2)
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k,

where the last two inequalities follow from the property that for any density operator ρ,
‖ρ‖2 ≤ 1. Furthermore, the subsystems are initialized in a product state ρ

(1)
−∞ ⊗ρ

(2)
−∞.

Therefore, the terms in the output functionals FT (1) + λFT (2)
and FT (1)

FT (2)
are

products of quantum expectations of the form Tr
(

Z ( j1)
(−→∏∞

k=0T
(1)(u−k)

)

ρ
(1)
−∞

)

for

j1 = 1, . . . , n1 or Tr
(

Z ( j2)
(−→∏∞

k=0T
(2)(u−k)

)

ρ
(2)
−∞

)

for j2 = 1, . . . , n2. Since T (1)

and T (2) satisfy the conditions in Lemma 3, these quantum expectations are continuous
with respect to ‖ · ‖w. The fading memory property follows from the fact that finite
sums and products of continuous elements are again continuous.

2 Correction to [1, Proposition 1]

In the argument showing that TK (x) satisfies the conditions in Lemma 3 for all x ∈
[0, 1], T̃ was incorrectly claimed to be a CPTP map. However, the proof only requires
T̃ to be bounded. This is automatically satisfied since T̃ is a linear operator on a finite
dimensional normed space.

3 Weaker condition for [1, proof of Lemma 1]

The original proof of Lemma 1 requires the conditions of Theorem 1 to hold. However,
the authors noticed that Lemma 1 still holds under the weaker requirement of the
convergence property defined in Definition 1. This implies that a convergent CPTP
map induces a unique filter. To see this, for any ρ ∈ D(C2n ) and j ≤ m,

‖S j − Sm‖2 = ‖T (uk)T (uk−1) · · · T (uk− j )(ρ − T (uk− j−1) · · · T (uk−m)ρ)‖2
= ‖T (uk)T (uk−1) · · · T (uk− j )(ρ − ρ′)‖2.

By the convergence property, for any ε > 0, there exists N (ε) ∈ N such that for all
j,m ≥ N, ‖S j − Sm‖2 < ε. Therefore, S j is Cauchy and lim j→∞ S j exists due to the
completeness of (D(C2n ), ‖ · ‖2). It also follows from this argument that lim j→∞ S j

is independent of the initial choice of ρ ∈ D(C2n ).
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