CORRECTION

Correction to: Learning nonlinear input–output maps with dissipative quantum systems

Jiayin Chen¹ · Hendra I. Nurdin¹

Received: 7 July 2019 / Accepted: 10 September 2019 / Published online: 10 October 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Correction to: Quantum Information Processing (2019) 18(7):198 https://doi.org/10.1007/s11128-019-2311-9

The original version of this article unfortunately contained errors in the proofs of Lemma 1, Lemma 5 and Proposition 1. Corrections to the proofs of Lemmas 1 and 5 and Proposition 1 are given below:

1 Correction to [1, Lemma 5]

In the proof of Lemma 5, it was incorrectly claimed that $(T^{(1)} \otimes T^{(2)})|_{H_0(\mathbb{C}^{2^n})} = T^{(1)}|_{H_0(\mathbb{C}^{2^{n_1}})} \otimes T^{(2)}|_{H_0(\mathbb{C}^{2^{n_2}})}$. However, since the constituting subsystems are taken to be non-interacting and initialized in a product state [1, §4, paragraph 1], this erroneous argument in the proof is unnecessary. A correct and simpler argument showing that $T^{(1)} \otimes T^{(2)}$ is again convergent when restricted to product states of the subsystems, and the polynomial algebra \mathscr{F} consists of fading memory maps, is the following. To show the convergence property when restricted to product states of the subsystems, given any two initial product states $\rho_{1,0} \otimes \rho_{2,0}$ and $\sigma_{1,0} \otimes \sigma_{2,0}$, we have

$$\begin{split} \|\rho_{1,k} \otimes \rho_{2,k} - \sigma_{1,k} \otimes \sigma_{2,k}\|_{2} \\ &\leq \left\| \overleftarrow{\prod}_{j=1}^{k} \left(T^{(1)}(u_{j}) \otimes T^{(2)}(u_{j}) \right) \rho_{1,0} \otimes (\rho_{2,0} - \sigma_{2,0}) \right\|_{2} \\ &+ \left\| \overleftarrow{\prod}_{j=1}^{k} \left(T^{(1)}(u_{j}) \otimes T^{(2)}(u_{j}) \right) (\rho_{1,0} - \sigma_{1,0}) \otimes \sigma_{2,0} \right\|_{2} \end{split}$$

The original article can be found online at https://doi.org/10.1007/s11128-019-2311-9.

Hendra I. Nurdin h.nurdin@unsw.edu.au

¹ School of Electrical Engineering and Telecommunications, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia

$$= \|\rho_{1,k}\|_{2} \left\| \left(\overleftarrow{\prod}_{j=1}^{k} T^{(2)}(u_{j}) \right) (\rho_{2,0} - \sigma_{2,0}) \right\|_{2} \\ + \|\sigma_{2,k}\|_{2} \left\| \left(\overleftarrow{\prod}_{j=1}^{k} T^{(1)}(u_{j}) \right) (\rho_{1,0} - \sigma_{1,0}) \right\|_{2} \\ \le 2(1 - \varepsilon_{2})^{k} \|\rho_{1,k}\|_{2} + 2(1 - \varepsilon_{1})^{k} \|\sigma_{2,k}\|_{2} \le 2(1 - \varepsilon_{2})^{k} + 2(1 - \varepsilon_{1})^{k},$$

where the last two inequalities follow from the property that for any density operator ρ , $\|\rho\|_2 \leq 1$. Furthermore, the subsystems are initialized in a product state $\rho_{-\infty}^{(1)} \otimes \rho_{-\infty}^{(2)}$. Therefore, the terms in the output functionals $F^{T^{(1)}} + \lambda F^{T^{(2)}}$ and $F^{T^{(1)}}F^{T^{(2)}}$ are products of quantum expectations of the form $\operatorname{Tr} \left(Z^{(j_1)} \left(\overrightarrow{\prod}_{k=0}^{\infty} T^{(1)}(u_{-k}) \right) \rho_{-\infty}^{(1)} \right)$ for $j_1 = 1, \ldots, n_1$ or $\operatorname{Tr} \left(Z^{(j_2)} \left(\overrightarrow{\prod}_{k=0}^{\infty} T^{(2)}(u_{-k}) \right) \rho_{-\infty}^{(2)} \right)$ for $j_2 = 1, \ldots, n_2$. Since $T^{(1)}$ and $T^{(2)}$ satisfy the conditions in Lemma 3, these quantum expectations are continuous with respect to $\|\cdot\|_w$. The fading memory property follows from the fact that finite sums and products of continuous elements are again continuous.

2 Correction to [1, Proposition 1]

In the argument showing that $T_K(x)$ satisfies the conditions in Lemma 3 for all $x \in [0, 1]$, \tilde{T} was incorrectly claimed to be a CPTP map. However, the proof only requires \tilde{T} to be bounded. This is automatically satisfied since \tilde{T} is a linear operator on a finite dimensional normed space.

3 Weaker condition for [1, proof of Lemma 1]

The original proof of Lemma 1 requires the conditions of Theorem 1 to hold. However, the authors noticed that Lemma 1 still holds under the weaker requirement of the convergence property defined in Definition 1. This implies that a convergent CPTP map induces a unique filter. To see this, for any $\rho \in \mathscr{D}(\mathbb{C}^{2^n})$ and $j \leq m$,

$$||S_j - S_m||_2 = ||T(u_k)T(u_{k-1})\cdots T(u_{k-j})(\rho - T(u_{k-j-1})\cdots T(u_{k-m})\rho)||_2$$

= ||T(u_k)T(u_{k-1})\cdots T(u_{k-j})(\rho - \rho')||_2.

By the convergence property, for any $\varepsilon > 0$, there exists $N(\varepsilon) \in \mathbb{N}$ such that for all $j, m \ge N$, $||S_j - S_m||_2 < \varepsilon$. Therefore, S_j is Cauchy and $\lim_{j\to\infty} S_j$ exists due to the completeness of $(\mathscr{D}(\mathbb{C}^{2^n}), \|\cdot\|_2)$. It also follows from this argument that $\lim_{j\to\infty} S_j$ is independent of the initial choice of $\rho \in \mathscr{D}(\mathbb{C}^{2^n})$.

References

Chen, J., Nurdin, H.I.: Learning nonlinear input–output maps with dissipative quantum systems. Quantum Inf. Process. 18(7), 198 (2019)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.