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Abstract

In this manuscript, the behavior of the Wigner function of accelerated and non-accelerated two
qubit system passing through different noisy channels is discussed. The decoherence of the initial
quantum correlation due to the noisy channels and the acceleration process is investigated by means
of Wigner function. The negative (positive) behavior of the Wigner function predicts the gain of the
quantum (classical) correlations. Based on the upper and lower bounds of the Wigner function, the
entangled initial state loses its quantum correlation due the acceleration process and the strengths of
the noisy channels. However, by controlling the distribution angles, the decoherence of these quantum
correlation may be suppressed. For accelerated state, the robustness of the quantum correlations
contained in the initial state appears in different ranges of the distribution angles depending on
the noisy type. For the bit phase flip and the phase flip channels, the robustness of the quantum
correlations is shown at any acceleration and large range of distribution angles. However, the fragility
of the quantum correlation is depicted for large values for strength of the bit flip channel. Different
profiles of the Wigner function are exhibited for the quantum and classical correlations, cup, lune,
hemisphere.

1 Introduction.

It is well known that the reconstruction of density operator may be done by the quasi-probability dis-
tribution (Q − PD) of the radiation field [1]. These types of distributions are used as predictors of the
non-classicality behavior of the quantum state[2, 3, 4], where their negative values are indicators of the
existence of the quantum correlation. Due to their importance, there are many studies devoted to study
them on different systems. For example, Ref. [5] investigated analytically the Wigner function distribution
of a two-qubit field system in the presence of pure phase noisy. The s-parameterized Q− PD is described
in the angular momentum basis via atomic coherent state [6, 7]. However, the value of s-parameters deter-
mines the type of the Q−PD, where s = −1, 0, 1, represent the Husimi-Berezin Q-function, [8, 9], Wigner
quasi-distribution function[10, 11], and the P -function [12], respectively.

However, Wigner function has been used widely to study the phase space in continuous or discrete
variable [13]. The time evolution of superconducting flux qubits coupled to a system of electrons is
analyzed by SU(2) Wigner function[14]. The three qubit states has been reconstructed experimentally
through the Wigner distribution function [15]. A framework for representing any general quantum state
of arbitrary finite-dimension as a complete continuous Wigner function has been presented [16, 17].

As far as we know, the Wigner function of accelerated quantum systems was not discussed widely.
Therefore, we are motivated to study it for accelerated two qubit systems. Moreover, the effect of different
noisy channels on the behavior of the Wigner function is discussed. We employ the behavior of the Wigner
function as a predictor of the classical and the quantum correlations, where we investigate the effect of the
noisy channels strengths as well as the acceleration parameter on the quantum and classical correlations.

1e-mail:m.elmalky@azhar.edu.eg
2Nmetwally@aswu.edu.eg

1

ar
X

iv
:1

90
3.

09
46

1v
1 

 [
qu

an
t-

ph
] 

 2
2 

M
ar

 2
01

9



The layout of this manuscript is as follows: in Sec.(2), we introduce analytical forms of the quasi-
probability distributions Wigner function. The suggested model is introduced in Sec.(3), where an analyt-
ical form of the Wigner function of the non-accelerated system is obtained. Sec.(4), is devoted to discuss
the behavior of the Wigner function for accelerated system. The effect of the amplitude, bit-phase flip, bit
flip and phase noisy channels on the behavior of the Wigner function is discussed in Sec.(5). Finally, we
summarize our results in Sec.(6).

2 Formalism of SU(2) Quasi-Distribution.

The r-parameterized family of quasi-probability distributions (Q-PD) in SU(2) algebra are reconstructed
by the standard angular momentum basis |m,S〉,m = −S, ..., S as follows[18, 19]:

W
(r)
ρ̂ (θ, φ) = Tr[ρ̂a,bÂ

(r)
a (θ, φ)Â

(r)
b (θ, φ)], (1)

where r = −1, 0, 1 for the Qρ̂(θ, φ), Wigner Wρ̂(θ, φ) and the Pρ̂(θ, φ) functions, respectively. The operator

Â(r)(θ, φ) is defined by:

Â
(r)
i (θ, φ) =

√
4π

2S + 1

2S∑
Li=0

L∑
M=−L

(CS,S
S,S;L,0)

−rT̂
(Si)

†

L,M Y i
L,M(θ, φ), (2)

where i refers to qubit a(b), and Y i
L,M(θ, φ) are the spherical harmonics functions, while T

(Si)
†

L,M = (−1)MT
(S)
L,−M

are the orthogonal irreducible tensor operators which are represented in (2S+ 1)-dimensions Hilbert space
as a linear combination by [11]:

T̂
(Si)

†

L,M = (−1)M
√

2L+ 1

2S + 1

Si∑
m,m′=−Si

CSi,m
′

Si,m;L,−M |Si,m
′〉〈Si,m|, (3)

the coefficient CS,m′

S,m;L,−M is the Clebsch-Gordan coupling coefficient, where 0 ≤ Li ≤ 2S, and −L ≤M ≤ L.

The r-parameterized Q-PD at S = 1
2

is given by,

W
(r)
ρ̂ (θ, φ) = 2π Tr

[
ρ̂a,b
(
T̂

(a)†

0,0 Y a
0,0(θ, φ) + (

√
3)(r)

1∑
n=−1

T̂
(a)†

0,n Y
a
0,n(θ, φ)

)
×
(
T̂

(b)†

0,0 Y
b
0,0(θ, φ) + (

√
3)(r)

1∑
n=−1

T̂
(b)†

0,n Y
b
0,n(θ, φ)

)]
,

(4)

where,

T̂
(i)†

0,0 =
1√
2

(|0〉i〈0|+ |1〉i〈1|), T̂
(i)†

1,0 =
−1√

2
(|0〉i〈0| − |1〉i〈1|), T̂

(i)†

1,−1 = |1〉i〈0|

T̂
(i)†

1,1 = −|0〉i〈1|, |1〉 = |1
2
,
1

2
〉 = |−1

2
,
−1

2
〉, |0〉 = |−1

2
,
1

2
〉 = |1

2
,
−1

2
〉.

3 The Suggested Model.

In this contribution, we assume that a system of two qubits is initially prepared in the X− state. In the
set of the computational basis {|00〉, |01〉, |10〉, |11〉}, the density operator of the system is given by,

ρ̂ab(0) =(%11|0〉a〈0|+ %22|1〉a〈1|)|0〉b〈0|+ (%33|0〉a〈0|+ %44|1〉a〈1|)|1〉b〈1|
+ (%14|0〉a〈1|+ %23|1〉a〈0|)|0〉b〈1|+ (%32|0〉a〈1|+ %41|1〉a〈0|)|1〉b〈0|,

(5)
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where

%11 = %44 =
1

4
(1 + c3), %22 = %33 =

1

4
(1− c3), %14 = %41 =

1

4
(c1 − c2), %23 = %32 =

1

4
(c1 + c2)

and ci = Tr(ρ̂abσ
a
i σ

b
i ), σ

k
i , i = 1, 2 and 3 are the Pauli spin matrices, while k indicates to Alice’s qubit a

and Bob’s qubit b. The main task of this contribution is investigating the behavior of the Wigner function
when only one qubit accelerated. However, for the non-accelerated system, the Wigner function of the
system (5) is given by,

Wρ̂(θ, φ) = 2π
[
%11(Ψ

2
11 + Ψ2

22) + %14(Ψ
2
12 + Ψ2

21) + 2%22Ψ11Ψ22 + 2%23Ψ12Ψ21

]
, (6)

where the functions Ψij are defined by the following spherical harmonics,

Ψ11 =
1√
2

(Y0,0(θ, φ)− Y1,0(θ, φ)), Ψ12 = −Y1,1(θ, φ), ψ21 = Y1,−1(θ, φ), Ψ22 =
1√
2

(Y0,0(θ, φ) + Y1,0(θ, φ)).

4 Accelerated Winger Function.

Now, let us assume that, Alice’s qubit is traveling with a uniform acceleration and Bob’s qubit remains in
the inertial frame [20]. In the computational basis, |0k〉 and |1k〉 the Minkowski-Fock states are transformed
into the Rindler-Fock states as [21, 22]:

|0k〉 = cos r|0k〉I |0k〉II + sin r|1k〉I |1k〉II , |1k〉 = a†k|0k〉 = |1k〉I |0k〉II , (7)

where r is the acceleration such that, tan r = exp(−πωc/a), 0 ≤ r ≤ π/4, −∞ ≤ a ≤ ∞, c is the speed of
light, and ω is the frequency. Due to the transformation (7), the space is splitting into two regions, I and
II. By tracing out over all the degrees of freedom on the second region II, the final state which describes
the accelerated system, ρ̂acca,b is given by,

ρ̂accab =A11|00〉〈00|+A22(|01〉〈01|+ |10〉〈10|) +A33|11〉〈11|+A14|00〉〈11|+ (A23|10〉〈01|+ h.c.). (8)

where

A11 = cos4 r%11, A22 = cos2 r(sin2 r%11 + %22), A33 =
[
(sin4 r + 1)%11 + 2 sin2 r%22

]
, Aij = cos2 r%ij, i 6= j.

(9)

-0.3

-0.2

-0.1

0

0.1

0.2

Fig. 1: The behavior of the Wigner function W (θ , φ) of a system is initially prepared in the singlet state,
where (a)for the non-accelerated system and (b) for the accelerated state with r = 0.6.
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Fig. 2: The behavior of W (θ, φ) on a sphere where (a) r = 0, (b) r = 0.6, (d) r = 0.78.

By using Eqs.(4) into Eq.(8), one gets the Wigner function of the two qubit system as:

Wρ̂acc(θ, φ) = 2π
[
A11Ψ

2
11 +A33Ψ

2
22 + 2A22Ψ11Ψ22 +A14(Ψ

2
12 + Ψ2

21) + 2A23Ψ12Ψ21

]
. (10)

Figs.(1.a) and (1.b), display the behavior of the Wigner function, W (θ, φ) for a system initially prepared
in the singlet state ρψ− = |ψ−〉〈ψ−|. It is clear that, W (θ, φ) < 0 for all values of the distribution angle θ
and φ. This predicts that, the system is completely entangled. The behavior of the Wigner function(10),
when only Alic’s qubit is accelerated uniformly with r = 0.6 is displayed in Fig.(1.b), where the Wigner
function decreases gradually as θ increases. For the accelerated singlet state, the negative behavior of Wρ̂acc

is displayed at small values of the distribution angle θ. The phase parameter has non-noticeable effect on
the behavior of the Wigner function and consequently, the freezing phenomenon of the Wigner function is
displayed, where the freezing degree depends on the parameter θ.

Fig.(2), displays the Wigner functions behavior on a surface of a sphere at different values of the
acceleration r, where the green area indicates the negative behavior of the Wigner function, which means
the existence of the quantum correlation. These results are consistence with those displayed in Fig.(1.a)
at r = 0, where the green area is depicted in −1 ≤ z ≤ 1. However, as the acceleration increases, one can
notice that a red area appears, as upper cup with 1

2
≤ z ≤ 1 which indicates that the accelerated system

loses its quantum correlation and the classical correlations appear. However, the read area of the sphere
increase by increasing the acceleration parameter r = 0.78, where it is predicted in the region 0 ≤ z ≤ 1.

5 Noisy Channels Effect.

Now, let us assume that, the accelerated Alice’s qubit is forced to pass through one of the noisy channels,
which may be amplitude, phase, bit-flip or phase-bit channel [23]. Mathematically, a suitable description
of these channels is through the Kraus operators. However, the final output state may be given by [24]:

ρ̂chab =
∑
i=

(Ea
i ⊗ I2×2)ρ̂ab(0)(Ea†

i ⊗ I2×2), (11)

where Ea
i are the Kraus operators of the used channel.

5.1 Amplitude damping channel (Cad).
For the amplitude damning channel (Cad), the Kraus operators Ea

i may be defined as [25]:

E1 = diag(1,
√

1− pad), E2 =
√
pad|0〉〈1|, (12)
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where pad is the channel strength.

-0.50

-0.25

0

0.25

0.50

-0.3
-0.2
-0.1
0
0.1
0.2

-0.3

-0.2

-0.1

0

0.1

0.2

-0.2

0

0.2

0.4

Fig. 3: The effect of the amplitude damping channel on the Wigner function W (r, θ), where φ = π, and
(a) pad = 0.0, (b) pad = 0.4, (c) pad = 0.6, and (d) pad = 0.8.

The initial density operator ρ̂ab(0) in Eq.(5) evolves in the presence of the channel (Cad) according to
Eq.(7) as follows:

ρ̂adab = B11|00〉〈00|+ B22|10〉〈10|+ B33|01〉〈01|+ B44|11〉〈11|+ (B14|00〉〈11|+ B23|10〉〈01|+ h.c.), (13)

where

B11 = cos2r
[
pad%22 +

(
pad sin2 r + cos2 r

)
%11
]
, B33 = (1− pad) cos2 r

[
%22 + %11 sin2(r)

]
,

B22 = (pad + sin2 r cos2 r + pad sin4 r
)
%11 +

(
2pad sin2 r + cos2 r

)
%22,

B44 = (1− pad)
(
(1 + sin4 r)%11 + 2 sin2 r%22

)
, Bij =

√
1− pad%11 cos2 r.

(14)

The Wigner function in this case is given by,

Wρ̂acc−ad(θ, φ) =2π
[
B11Ψ2

11 + (B22 + B33)Ψ11Ψ22 + B44Ψ2
22 + B14(Ψ2

12 + Ψ2
21) + 2B23Ψ12Ψ21

]
. (15)

The effect of the amplitude damping channel is displayed in Fig.(3) at different values of the channel
strength pad. The behavior of W (r, θ) displays different effects of the channel strength, where at pad = 0,
the maximum entangled state loses its quantum correlation at r > 0.5 and θ < π/2. Moreover, as it
is displayed in Fig.(3.a), the maximum value of the Wigner function is exhibited as r → ∞ and θ = 0.
However, as one increases the channel’ strength, the entangled behavior of the initial state is reproduced
at larger acceleration. On the other hand, the minimum (maximum) values of the Wigner function are

5



-0.3
-0.2
-0.1
0
0.1
0.2
0.3

-0.4

-0.2

0

0.2

Fig. 4: (a) W (p, θ) at φ = π, r = 0.6, and (b) W (p, r) at θ = π/2, φ = π.

Fig. 5: The behavior of W (θ, φ) on the Bloch sphere for the accelerated system, where (a) r = 0.6, pad =
0.6, (b)r = 0.78, pad = 0.6, (c)r = 0.6, pad = 0.8, and (d)r = 0.78, pad = 0.8.

smaller than those displayed in Fig.(3.a). Different behaviors are displayed for any value of pad ∈ [0.5, 1],
where the violation of inseparability is illustrated at large values of the parameter θ ∈ [3π/4, π] and any
value of the acceleration. However, as one increases the channel strength (pad = 0.8) the robustness of the
inseparability is displayed at large acceleration and for any θ ∈ [0, π/4].

In Fig.(4.a), Wigner function behavior is displayed at a particular value of the acceleration, where
we set r = 0.6. The inseparability of the maximum accelerated entangled state is depicted at different
intervals of the channel strength pad and the distribution angle θ. The behavior of W (θ, p) displays that
the accelerated state keeps its inseparability at small values of p < 0.5 and large values of θ ∈ [π/2] or
large values of pad ≥ 0.5 and small values of θ ≤ π/4. The behavior of W (p, r) at the particular value
of θ = π/2 and φ = π is displayed in Fig.(4.b). It is clear that, the accelerated state loses its separability
gradually as the acceleration increases, where the positive behavior of the Wigner function is performed
at large large values of the acceleration parameter r and channel strength pad > 0.9.

Fig.(5), displays the behavior of W (θ, φ) on the Bloch sphere when the accelerated system passes
through the amplitude damping channel at some specific values of the channel strength pad and the ac-
celeration parameter r. In Fig.(5.a,5.b), we fix the value of the channel strength to pad = 0.6, while two
values of the acceleration namely r = 0, 6, and 0.78) are considered, respectively. It is clear that, the
classical correlation appears as a small bottom cap in the region −1 ≤ z ≤ −1

2
. This means that, the

channel strength transfers the quantum correlations which appear as upper cap on 0.5 ≤ z ≤ 1 to lower
cap. Moreover, the area of the green surface is larger than that displayed in Fig.(2.b). However, as one
increases the acceleration, the quantum and classical correlations are switched between the top and the
bottom of the sphere. Moreover, the red area increases on the expense of the green area (−0.5 ≤ z ≤ 1),
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namely the accelerated state loses its quantum correlations. In Figs.(5.c) and (5.d), we increase the value of
channel strength to pad = 0.8. It is clear that, the red area increases and the green area shrinks. However,
by comparing Figs.(5.b) and (5.d), we can see that larger values of the channel strength re-create again a
quantum correlations as an upper cap in the region 0.5 ≤ z ≤ 1.

5.2 The bit-phase flip channel Cbpf :
The bit-phase flip channel (Cbpf ) combines the error and the phase of the traveling density operator. This
channel is described by the following Kraus operators,

E1 =

√
1− pbpf

2
I2, E2 = −i

√
pbpf

2
(|0〉〈1| − |1〉〈0|), (16)

Consequently,

ρ̂B−PFab = D11|00〉〈00|+D22|10〉〈10|+D33|01〉〈01|+D44|11〉〈11|+ (D14|00〉〈11|+D23|10〉〈01|+ h.c.),

(17)

where,

D11 =
1

2
cos2 r

[
pbpf%22 + ν+%11

]
, D22 =

1

2

[
pbpf

(
%11 + ν+%22

)
+ 2 tan2 rD11

]
,

D33 =
1

2
cos2 r

(
%11ν

− + (2− pbpf )%22
)
, D44 =

1

2

(
(2− pbpf )

(
%11 + %22ν

−)+ 2 tan2 rD33

)
,

D14 =
−1

2
cos2 r (pbpf%23 + (pbpf − 2)%14) , D23 =

−1

2
cos2 r (pbpf%23 + (pbpf − 2)%14) ,

with ν± = (1± (1− pbpf ) cos 2r).

The Wigner function for this system is thus given by,

W
(s)

ρ̂B−PF−acc(θ, φ) =2π
[
D11Ψ

2
11 + (D22 +D33)Ψ11Ψ22 +D44Ψ

2
22 +D14(Ψ

2
1,2 + Ψ2

21) + 2D23Ψ12Ψ21

]
. (18)

The behavior of the Wigner function W (r, θ) at different values of the channel strength pbpf is displayed
in Fig.(6). The behavior is similar to that displayed in Figs.(3b-3d), but the inseparability of the accelerated
state is displayed at smaller acceleration and larger values of the distribution angle θ. For example, as
it is shown at (pbpf = 0.4), the inseparability of the accelerated state is shown by Wigner function at
r < 0.4 and θ > π/2. However, as one increases pbpf , the negative behavior of the Wigner function is
shown at smaller acceleration and lager values of θ (see Fig.(6.b,6.c)). The minimum values of the Wigner
function W (r, θ) displayed for Cbpf are larger than those displayed for the amplitude damping channel Cad.
Meanwhile, the maximum values of W (r, θ) when the accelerated state passes through Cbpf are larger than
those displayed when it passes through Cad. This means that, the accelerated state which passes through
the amplitude damping channel is more robust than that passes through the phase flip channel.

The effect of a particular value of the acceleration r on the behavior of the Winger function in the space
(pbpf − θ) is displayed in Fig.(7a). The inseparability of the accelerated state is depicted at small values of
pbpf and larger values of θ > π/2. However, in the space (pbpf−r), the behavior of W (r, φ = π) is displayed
at the specific value of θ = π/2. The inseparability behavior of the accelerated state is displayed at any
value of the acceleration r and pbpf < 0.5. From Figs.(4) and (7), one may conclude that, the accelerated
state that passes through the amplitude damping channel Cad the is more robust than that passes through
the bit-phase flip channel Cbpf .
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Fig. 6: The same as Fig.(1) but the final accelerated state passes through the bit-phase flip channel Cbpf .

Fig.(8) displays Wigner function W (θ, φ) on a Bloch sphere for accelerated system passes through the
bit-phase channel at some specific values of the acceleration (r) and the channel strength pbpf . As it is
illustrated in Fig.(8.a), the green area shrinks and appears in 0 ≤ y ≤ 1, which means that the accelerated
system loses some of its quantum correlation. By comparing Figs.(2.b) and (8.a), the classical correlation
increases gradually to cover the upper lune of the sphere. However, at large value of the acceleration
parameter r = 0.78, the green area shrinks more and the red area extends to cover most of the upper
sphere. At larger values of the channel strength pbpf , the green area decreases and appears as a cap in the
region 0.5 ≤ y ≤ 1, and consequently the amount of quantum correlation decreases.
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-0.1
0
0.1
0.2
0.3

-0.4

-0.2

0

0.2

Fig. 7: The same as Fig(3), but the accelerated state passes through the phase flip channel Cbpf
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Fig. 8: the same as fig(5) but the system influenced by bit phase flip channel.

5.3 The bit flip channel Cbf :
The representation of Kraus operators Ea

i for this channel [25] is given by,

E1 =

√
1− pbf

2
I2, E2 =

√
pbf
2

(|0〉〈1|+ |1〉〈0|). (19)

-0.4

-0.2

0
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0.4

0.6

-0.4

-0.2

0

0.2

0.4

-0.4

-0.2

0

0.2

0.4

Fig. 9: The same as Fig.(3), but the system passes through the bit flip channel Cbf , where we set pbf =
0.4, 0.6 and 0.8 for (a), (b), and (c) respectively.

According to Eqs.(5), (11)and (7), the final output state that passes through Cbf is given by,

ρ̂bfab = G11|00〉〈00|+ G22|10〉〈10|+ G33|01〉〈01|+ G44|11〉〈11|+ (G14|00〉〈11|+ G23|10〉〈01|+ h.c.), (20)

where, Gii = Dii which is defined in the diagonal elements in the density operator in equation (20), while

G14 =
1

2
cos2 r (pbf%23 + (2− pbf )%14) , G23 =

1

2
cos2 r (pbf%23 + (2− pbf )%14) .
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Subsequently, the Wigner function is obtained from Eq.(4) as:

Wρ̂BF (θ, φ) =2π
[
G11Ψ2

11 + (G22 + G33)Ψ11Ψ22 + G44Ψ2
22 + G14(Ψ2

12 + Ψ2
2,1) + 2G23Ψ1,2Ψ21

]
. (21)

-0.3
-0.2
-0.1
0
0.1
0.2
0.3

-0.5

-0.4

-0.3

-0.2

Fig. 10: The same as Fig.(4), but the accelerated state passes through the Cbf .

Fig. 11: the same as fig(5) but the system influenced by bit Flip channel.

Fig.(9), displays the behavior of W (r, θ) at different values of the channel strength. The general
behavior shows that at large acceleration, the accelerated state loses its quantum correlation as the channel
strength increases. The distribution parameter θ, may play as a control parameter to keep the survival
of the quantum correlation of the accelerated state. Moreover, at small values of the channel strength
(pbf = 0.3), the inseparability behavior (quantum correlation) is performed at small acceleration r < 0.4
and θ < π/4. On the other hand, at large values of the channel strength (pbf = 0.8), the inseparability of
the accelerated state is displayed in the interval π/2 < θ < 3π/7.

The behavior of the Wigner function at some specific values of r and θ is shown in Figs.(10.a),(10.b),
respectively. It is clear from Fig.(10.a), the negative behavior of W (pbf , θ) is independent of the channel
strength, if one chooses θ ∈ [π/4 , 3π/4]. However, if we set θ = π/2 and φ = π, the behavior of quantum
correlation of the accelerated state is depicted at values of the channel strength and the acceleration
parameter in the plan (pbf − r) (see Fig.(10.b)).

Fig.(11) shows that, on the Bloch sphere, the behavior of W (θ , φ) is almost similar to that displayed
for the phase-bit flip channel (see Fig.9). However, the sectors that predicted the red and green areas are
rotated. However, the green area (quantum correlation) is displayed in the region 0 ≤ x ≤ 1, while the red
area (classical correlations) are displayed in the region −1 ≤ x ≤ 0.
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5.4 Phase Flip Channel, Cpf
Physically the channel Cpf illustrates any change on the phase that can occur on the transported state
between Alice and Bob. The set of Kraus operators Ea

i corresponding to Cpf channel are defined as:

E1 =

√
1− ppf

2
I2, E2 =

√
ppf
2

(|1〉〈1| − |0〉〈0|), (22)

Consequently, the final output state is given by,

ρ̂pfab = A11|00〉〈00|+A22(|01〉〈01|+ |10〉〈10|) +A33|11〉〈11|+ (1− ppf )(A14|00〉〈11|+A23|10〉〈01|+ h.c.).

(23)

For this case, the Wigner function takes the form,

Wρ̂pf (θ, φ) =2π
[
A11Ψ

2
11 +A33Ψ

2
22 + 2A22Ψ11Ψ22 + (1− ppf )(A14(Ψ

2
12 + Ψ2

21) + 2A23Ψ12Ψ21)
]
. (24)
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Fig. 12: The same as Fig.(1) but the final accelerated state passes through the phase flip channel Cpf .

The effect of the phase flip channel on the behavior of the Wigner function in the plane (r, θ) at
some specific values of the channel strength ppf is displayed in Fig.(12). Similarly, the negative behavior
of the Wigner function W (r, θ) in the plane (r, θ) depends on different intervals of the acceleration and
the distribution angle θ. In general, the minimum (maximum) bounds of the Wigner function do not
depend on the values of the channel strength. It is clear that, the inseparability of the acceleration state
is independent of the acceleration at larger values of the distribution angle θ > π/2. The negativity of
W (r, θ) and consequently the quantum correlation is performed at small acceleration r < 0.5 and small
values of θ < π/4. Moreover, at large value of the channel strength (ppf = 0.8), the classical correlation is
displayed at value of r and π/4 < θ < π/2.
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Fig. 13: The same as Fig(4), but the accelerated state passes through the phase flip channel Cpf .

Fig. 14: the same as fig(5) but the system influenced by phase flip channel.

In Fig.(13.a), the behavior of the Wigner function in the plane (pbf , θ) is displayed at r = 0.6. It is clear
that, W (p, θ) decreases gradually as one increases both parameters ppf and θ. The minimum negative
value of the Wigner function is depicted at any value of the strength parameter ppf and θ > 3π/4. In
the plan (pbf − r), the behavior of W (p, r) at θ = π/2 and φ = π, as it is displayed in Fig.(13.b), is
similar to that displayed for Cad, Cfp and Cpf . However, only the intervals of these parameters, at which
the inseparability of the accelerated state predicted, is different. It is clear that, the smallest intervals of
ppf and θ in which the entangled behavior of the accelerated state is displayed when it passes through the
phase channel Cpf .

Finally, the effect of the phase flip channel on the Wigner function is displayed in Fig.(14), it has a
strong effect on the coherence of the quantum correlation, where the upper hemisphere, which predicts the
classical correlations, increases as the channel strength ppf increases, where the classical correlations are
displayed in 0 ≤ z ≤ 1, while the quantum correlations are described by a small lune.

6 summary.

In this contribution, we investigate the Wigner function distribution of accelerated and non-accelerated
state, which is initially prepared in a maximum entangled state. The robustness coherence of this system
against different noisy channels is discussed, where this decoherence is depicted either due to the noisy
channels or to the acceleration process. The negative values of the Wigner function represent an indicator
of the presence of the quantum correlation, while the positivity of Wigner function means that the system
contains classical correlation.

The effect of the channels strengths, distribution angles, and the acceleration parameter on the behavior
of the Wigner function is investigated. The general behavior of the Wigner function shows that, the
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separability (inseparability) of the accelerated system are shown in different intervals of these parameters.
The minimum (maximum) values of the Wigner function depend on the type of the noisy channel. Since,
we start with an entangled state, then the non-accelerated state has negative values over all the distribution
angles.

The behavior of the Wigner function on the surface of Bloch sphere is displayed at different values of
channel strengths and the acceleration parameter. Different views of the classical and quantum correlations
are exhibited, cap, lower(upper) hemispheres and lower(upper) lune. The amplitude and the phase channels
increase the classical correlation in z− directions, while the bit and the phase bit channels depict the
quantum correlation on y and z directions,respectively.

In general the Wigner function increases as the strength of any noisy channel increases. The distribution
angles may be used as control parameters to suppress the decoherence of the initial quantum correlations.
For the amplitude damping channel, at particular values of the acceleration, the robustness of quantum
correlation is shown either at small values of the channel strength and large values of the distribution
angles or large values of the channel strength and small values of the distribution angles. The quantum
correlation is displayed at small values of the channel strength and large values of the distribution angle, if
the accelerated state passes through the bit flip channel. For the phase channel, these quantum correlations
are independent of the channel strength if we set large values of the distribution angles.
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