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Abstract Memory effects play a fundamental role in the dynamics of open quan-

tum systems. There exist two different views on memory for quantum noises.

In the first view, the quantum channel has memory when there exist correla-

tions between successive uses of the channels on a sequence of quantum systems.

These types of channels are also known as correlated quantum channels. In the sec-

ond view, memory effects result from correlations which are created during the

quantum evolution. In this work we will consider the first view and study the

quantum speed limit time for a correlated quantum channel. Quantum speed

limit time is the bound on the minimal time which is needed for a quantum sys-

tem to evolve from an initial state to desired states. The quantum evolution is

fast if the quantum speed limit time is short. In this work, we will study the quan-

tum speed limit time for some correlated unital and correlated non-unital channels.

As an example for unital channels we choose correlated dephasing colored noise.

We also consider the correlated amplitude damping and correlated squeezed general-

ized amplitude damping channels as the examples for non-unital channels. It will be

shown that the quantum speed limit time for correlated pure dephasing colored

noise is increased by increasing correlation strength, while for correlated ampli-

tude damping and correlated squeezed generalized amplitude damping channels

quantum speed limit time is decreased by increasing correlation strength.
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1 Introduction

It is impossible to isolate a quantum system from its surroundings leading to infor-

mation loss in the form of dissipation and decoherence. The theory of open quantum

systems offers the necessary tools for describing and analyzing the interactions of

a system with its surrounding [1]. In the theory of open quantum systems, various

methods have been proposed to illustrate the environment and its effects on the dy-

namics of the desired system [1,2]. If the coupling strength between the system and

the environment is weak and the relaxation time of the system is longer than corre-

lation time of the environment, then there exist a one-way flow of information from

the system to the environment. Such a quantum evolution is called Markovian [3]

and it can be described by the master equation in Lindblad form [4,5,6]. In a more

realistic situation, the coupling strength between the system and the environment is

strong and the relaxation time of the system is shorter than the correlation time of the

environment. In this case there exist a back-flow of information from environment

to the system. This type of quantum evolution is called non-Markovian[7,8,9,10,11,

12,13]. In the theory of open quantum systems, dynamical memory effects play a

fundamental role in various physical phenomena such as quantum biology [14,15,

16], quantum cryptography [17], quantum metrology [18] and quantum control [19].

According to the types of dynamical memory effects, quantum evolutions can be

divided into two categories: memory-less evolution (Markovian evolution) and

quantum process with memory (non-Markovian evolution). In the case of non-

Markovian evolution, future states of a system can be depend on its past because

of the back-flow of information . So it is natural to conclude that the back-flow

of information from the environment to the system has a direct relation to the

existence of memory.

This view about the dynamical memory effects and non-Markovianity as a typi-

cal part of the theory of open quantum systems is completely different from the con-

cept of quantum channels with memory. In order to distinguish between these two,

the term "correlated quantum channel" is used to describe quantum channels with

memory. The memory of the quantum channel is depicted by successive uses of the

channels on a sequence of quantum systems [20,21,22]. In this sense, channels with

memory and without memory channels represent cases in which the successive

uses of the channels are correlated or independent, respectively. In the case of

a correlated quantum channel, memory is not due to the correlations created during

the time evolution but due to the correlated action of channels on the system consist-

ing of a set of individual quantum systems. Addis et al. have studied the connection

between these two insight about memory in Ref. [23].

The dynamics of quantum correlations under correlated quantum channels has

been studied previously. In Ref. [24], the effects of correlated quantum channels have

been investigated on the entanglement of X-type state of the Dirac fields in the non-

inertial frame. In Ref. [25], the authors have shown that how the correlated channel

affects the dynamics of quantum correlations. The behavior of memory-assisted en-

tropic uncertainty relation under the effects of the correlated quantum channels has

been investigated in Refs. [26,27].
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We study the quantum speed limit QSL time for correlated and uncorrelated quan-

tum channels. QSL time is the bound on the minimal time which is needed for a

quantum system to evolve from an initial state at initial time τ to desired states at

time τ + τD , where τD is the driving time. In Ref.[28], Mandelstam and Tamm have

provided a bound for closed quantum systems which is given by

τ ≥ τQSL =
π~

2∆E
, (1)

where ∆E =

√

〈Ĥ2〉 − 〈Ĥ〉2 is the inverse of the variation of energy of the initial

state and Ĥ is time-independent Hamiltonian describing the dynamics of quantum

system. This bound is known as the MT bound. Margolus and Levitin have presented

the bound for closed quantum system based on the mean energy E = 〈Ĥ〉 as [29]

τ ≥ τQSL =
π~

2E
, (2)

which is called the ML bound. Combining the MT and ML bounds in Eqs. (1) and

(2) provides a unified bound for the QSL time for the dynamics of closed quantum

system as [30]

τ ≥ τQSL = max{ π~

2∆E
,
π~

2E
}. (3)

Recently, QSL time has also been studied for the dynamics of open quantum systems

which are described by positive non-unitary maps. For open quantum systems QSL

time has quantified based on quantum Fisher information [31,32], Bures angle [33],

relative purity [34,35] and other proper geometric approach [36,37,38,39,40,41,42,

43].

In this work, we will show how correlations in the application of quantum chan-

nels can effect QSL time. We provide results for some unital and non-unital correlated

channels. We will consider random dephasing correlated noise as an example for

unital correlated quantum channels and consider correlated amplitude damp-

ing and correlated squeezed generalized amplitude damping channels SGAD as

examples for the non-unital correlated quantum channels.

In this work, we investigate the effects of correlations in the quantum channel

on QSL time, so we do not limit ourselves to choose a particular measure of

QSL time. We use the bound based on relative purity for QSL time which was

introduced in [35]. We choose this bound because it can be used for arbitrary

initial pure and mixed states.

This work is organized as follows. In Sec. 2 we review the geometric approaches

based on relative purity for driving the QSL bounds. In Sec. 3, the QSL time for

correlated and uncorrelated quantum channel is investigaed. We will consider corre-

lated pure dephasing colored noise as an example for correlated unital channel and

consider correlated amplitude damping and squeezed generalized amplitude damping

SGAD channels as examples for the non-unital correlated quantum channels. In Sec.

4, we summarize the results.
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2 The quantum speed limit time for open quantum system

The state of the open quantum system at time t is characterized by density ma-

trix ρt. Time evolution of an open quantum system is defined by the following

time-dependent master equation as

ρ̇t = Lt(ρt), (4)

where Lt is the positive generator [1]. The goal is to find the minimum time for

evolving from the state ρτ at time τ to desire state ρτ+τD at time τ + τD. Here,

τD is the driving time of the open quantum system. Based on relative purity

the QSL time has been introduced by the authors in Refs. [34,35]. Zhang et al.

have shown that this QSL time is applicable for arbitrary initial mixed and pure

states. The relative purity f(τ) between initial state ρτ and desire state ρτ+τD is

given by [44]

f(τ + τD) =
tr(ρτρτ+τD)

tr(ρ2τ )
. (5)

The ML bound of QSL time for open quantum systems is given by (see Ref. [35]

for details)

τ ≥ |f(τ + τD)− 1|tr(ρ2τ )
∑n

i=1 Λiβi
, (6)

where Λi and βi are the singular values of Lt(ρt) and ρτ , respectively and in

the denominator of the bound, we have � = 1
τD

∫ τ+τD
τ �dt. Following the same

procedure the MT bound of QSL-time for open quantum systems can be written

as

τ ≥ |f(τ + τD)− 1|tr(ρ2τ )
√
∑n

i=1 Λ
2
i

. (7)

Combining Eqs. (6) and (7) leads to a unified bound for QSL time as

τQSL = max{ 1
∑n

i=1 Λiβi
,

1
√
∑n

i=1 Λ
2
i

} × |f(τ + τD)− 1|tr(ρ2τ ). (8)

Zhang et al. have shown that the QSL-time is associated with quantum coher-

ence of an arbitrary initial state ρτ [35]. They have also shown that for open

quantum systems the ML bound of the QSL time in Eq. (6) is tighter than MT

bound. QSL time is shorter than τD. It is worth noting that QSL-time τ(QSL)

can be interpreted as the potential capacity for further evolution acceleration. If

τQSL = τD then the evolution is now in the situation with the highest speed, thus

the evolution does not have the potential capacity for further acceleration. How-

ever, when τQSL < τD, the potential capacity for further acceleration will be

greater. Another important point to be noted is that when the coupling strength

between the system and environment is weak τQSL tends to the actual driving

time τD. On the contrary, in the strong coupling limit between the system and

environment, τQSL can reduce below the actual driving time τD [33].
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3 Correlated quantum channels

We provide a brief review on quantum channel with correlated noise [20,21,22,23,

24,25,50,51]. Quantum channels are divided into two categories of with memory

and without memory channels. If the correlation time of the environment is shorter

than the time between successive application then there is no correlation between

consecutive uses of the channel, i.e. a quantum channel ε for N consecutive uses

obey εN = ε⊗N . These kinds of channels are known as channel without memory

(uncorrelated channels). However, in real physical quantum noise, it is logical to

have correlations between consecutive application of the channels. In this case, the

correlation time of the environment is longer than the time between the successive

application of the channels, i.e. a quantum channel ε for N successive uses obeys

εN 6= ε⊗N . These kinds of channels are known as memory channels (correlated

channels). For correlated channels, the channel acts dependently on each input. Here

we consider N consecutive uses of the quantum channel. A quantum channel ε can

be represented as a completely positive, trace-preserving map from input state ρ to

output ε(ρ) in Kraus form

ε(ρ) =
∑

i1...iN

Ei1...iNρE
†
i1...iN

, (9)

where Ei1...iN ’s are Kraus operators which are defined as

Ei1...iN =
√

Pi1...iNAi1 ⊗ ...⊗AiN ,
∑

i

Pi1...iN = 1. (10)

Here Pi1...iN is the probability that a random sequence of operations is acted on the

sequence input N qubits which are transmitted through the channel. In general, the

Kraus operators for two consecutive uses of a two-qubit quantum channel can be

represented as

Eij =
√

PijAi ⊗Aj . (11)

For uncorrelated channel we have Pij = PiPj and Kraus operators are indepen-

dent of each other. Whereas, for correlated channel based on Bayes rule we have

Pij = PiPj|i, where Pj|i is the conditional probability. Thus, for two consecutive

uses of a two-qubit quantum channel with partial correlation the Kraus operators can

be represented as

Eij =
√

Pi[(1 − µ)Pj + µδij ], (12)

where µ ∈ [0, 1] defines the correlation of the quantum channel. According to the

Kraus operator formalism the final state is given by

ε(ρ) = (1− µ)
∑

i,j

EijρE
†
ij + µ

∑

k

EkkρE
†
kk

= (1− µ)εun(ρ) + µεco(ρ), (13)

where εun represents the uncorrelated channel and εco stands for the correlated chan-

nel. In the case µ = 0, there is no correlation between two consecutive uses of channel
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and when µ = 1, the channel is fully correlated. In other words, µ = 0 represents the

channel without memory and µ = 1 implies the channel with memory. Note that, in

all parts of this work, we will consider the following initial states

ρ0 = r|ψ〉〈ψ| + 1− r

4
I, (14)

where |ψ〉 =
√
1− α2|01〉 + α|10〉, 0 ≤ α ≤ 1 and r represents the purity of the

initial state.

3.1 Unital correlated channel

The completely positive trace preserving channel ε is unital if it maps the identity

operator σ0 = I to itself in the same space, i.e. ε(σ0) = σ0. For single-qubit sys-

tems, the unital channel can be represented in terms of a convex combination of the

Pauli operators [52,53,54]. From geometrical insights, the unital channels map the

center of the Bloch sphere to itself. Here we consider dephasing colored noise in the

category of Pauli channels as an example of an unital channel [55]. We will study the

QSL time for correlated dephasing colored noise.

Pure dephasing colored noise: Let us consider the interaction between a single-qubit

system and an environment which has the property of random telegraph signal noise

[55]. The dynamics of a single-qubit is described by the time-dependent Hamiltonian

H(t) =

3
∑

k=1

Γk(t)σk, (15)

where σk’s are the Pauli operators in (x, y, z)directions, and Γk(t)’s are random vari-

ables which follow the statistics of a random telegraph signal. Γk(t) depends on the

random variable nk(t) as Γk(t) = αknk(t), where nk(t) has a Poisson distribution

with an average value equal to t/2τk and αk’s are coin-flip random variables that

can have values ±αk randomly. We have a dephasing model with colored noise if

α1 = α2 = 0 and α3 = α. In this case, the dynamics of single-qubit system can be

described by the following Kraus operators

E0 =
√

P0σ0, E3 =
√

P3σ3, (16)

with P0 = 1− zt and P3 = zt, where zt =
1−Λ(t)

2 and Λ(t) = e−t/2ν [cos(µt/2ν) +

sin(µt/2ν)/µ], µ =
√

(4ν)2 − 1 . Here, the range of ν quantifies the interval in

which the channel is non-Markovian. Based on the results presented in Ref. [11], the

quantum evolution will be non-Markovian if ν ≥ 1/4. When two-qubit are transmit-

ted through the colored pure dephasing channel, the channel with uncorrelated noise

can be defined by the following Kraus operators

Eij =
√

PiPjσi ⊗ σj , i, j ∈ {0, 3}. (17)

In the presence of correlation between two successive uses of the colored pure de-

phasing channel on two-qubit system, the Kraus operators Ekk are given by

Ekk =
√

Pkσk ⊗ σk, k ∈ {0, 3}. (18)
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Fig. 1 QSL time for correlated pure dephasing colored as a function of the driving time τD when the

initial state parameters are r = 1/2 and α = 1/
√

2 and τ = 1. (a)The dynamics is Markovian ν = 0.1
(b)The dynamics is non-Markovian ν = 1. The inset represents the QSL time as a function of initial time

τ when τD = 1.

From Eq. (13), the elements of the time-dependent density matrix of a two qubit

system under correlated dephasing colored noise can be written as

ρt11 = ρt44 =
1− r

4
,

ρt22 =
1

4

((

3− 4α2
)

1 + r
)

,

ρt33 =
1

4

(

1−
(

1− 4α2
)

r
)

,

ρt23 = ρt⋆32 = α
√

1− α2r
(

µ+ (1− µ)(1 − zt)
2
)

. (19)

So, QSL time in Eq. (8) is derived as

τQSL =
2α2|

(

1− α2
)

r2
(

µ+ (1− µ)(zτ − 1)2
) (

(zτ+τD − 1) 2 − (zτ − 1)2
)

|
2
√
2α

√
1−α2r

τD

∫ τ+τD
τ

(1− zt)żtdt
(20)

In Fig. 1, the QSL time is plotted as a function of driving time τD for correlated

colored pure dephasing channel for different values of the correlation parameter

µ when τ = 1. The insets represent the QSL time in terms of the initial time τ
for different values of correlation parameter µ when τD = 1. In Fig. 1(a) the en-

vironmental parameter is chosen such that the evolution is Markovian (ν = 0.1).

As can be seen from Fig. 1(a), the QSL time is increased by increasing the cor-

relation parameter µ. In Fig. 1(b) the evolution is non-Markovian (ν = 1). As
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can be seen from Fig. 1(b), the QSL time is also increased by increasing correla-

tion parameter. From Figs. 1(a) and 1(b) one can find that for both Markovian

and non-Markovian evolution the QSL time for correlated channel (µ = 1) is

greater than uncorrelated channel (µ = 0). In other word, in the presence of

correlation between two successive uses of the colored pure dephasing channel

on two-qubit system the quantum evolution will be slower than the case in which

the correlation does not exist.

3.2 Non-unital correlated channel

In this section we will study the QSL time for non-unital correlated channels. Here,

we consider correlated amplitude damping and correlated squeezed generalized am-

plitude damping channels as the examples for non-unital correlated channels.

Correlated amplitude damping channel:

Let us consider a two-level quantum system that interacts with a zero temperature

environment which is described by a collection of bosonic oscillators . In this model

the corresponding interaction Hamiltonian is given by

H = ω0σ+σ− +
∑

k

ωka
†
kak + (σ+B + σ−B

†), (21)

where σ± are the raising and lowering operators of the two-level quantum system

having the transition frequency ω0 and B =
∑

k gkak. ak and a†k are the annihila-

tion and creation operators of the environment with the frequencies ωk, respectively.

Let us assume that the environment has an spectral density of the form J(ω) =
γ0λ

2/2π
[

(ω0 − ω)2 + λ2
]

, where the the coupling spectral width λ is connected

to the correlation time of the environment τB by τB ∼ 1/λ. γ0 is related to the relax-

ation time of the system τR by τR ∼ 1/γ0. The dynamics of the two-level quantum

system, with this spectral density, can be described by a master equation having the

form of

ρ̇t = Ltρt = γt

(

σ−ρtσ+ − 1

2
{σ+σ−, ρt}

)

, (22)

where time-dependent decay rate is given by

γt =
2γ0λ sinh(dt/2)

d cosh(dt/2) + λ sinh(dt/2)
, d =

√

λ2 − 2γ0λ. (23)

The dynamics of such a two-level quantum system can be expressed by the following

Kraus operators as

A0 =

(√
1− pt 0
0 1

)

, A1 =

(

0 0√
pt 0

)

, (24)

where the parameter pt is given by

pt = 1− e−λt

[

cosh(
dt

2
) +

λ

d
sinh(

dt

2
)

]2

. (25)
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So, the quantum amplitude damping channel with uncorrelated noise can be de-

fined as

Eij = Ai ⊗Aj , (i, j = 0, 1). (26)

The Kraus operators for two consecutive uses of a two-qubit amplitude damping cor-

related quantum channel can be represented as

A00 =









√
1− pt 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, A11 =









0 0 0 0
0 0 0 0
0 0 0 0√
pt 0 0 0









(27)

From Eq. (13), the evolving density matrix elements of a two qubit system under

correlated amplitude damping channel can be written as

ρt11 =
1

4
(1− r)(1 − pt)(1 − (1− µ)pt),

ρt22 =
1

4

(

−4
(

1− α2
)

(1− µ)rpt − (1− µ)(1 − r)ptpt +
(

3− 4α2
)

r + 1
)

,

ρt33 =
1

4

(

−4α2(1− µ)rpt − (1− µ)(1 − r)ptpt −
(

1− 4α2
)

r + 1
)

,

ρt44 =
1

4
((2− 3µ)rpt + (1− µ)(1 − r)ptpt − µpt + 2pt − r + 1),

ρt23 = ρt⋆32 = α
√

1− α2r(1 − (1− µ)pt) (28)

One can obtain the singular value of ρ̇t as

Λ1 =
1

2
(µ− 1)(r − 1)p(t)ṗt,

Λ2 =
1

2
(µ− 1)(rp(t) − p(t)− 2r)ṗt,

Λ3 =
1

4
(−µ+ 2µrp(t)− 2rp(t)− 2µp(t) + 2p(t)− 3µr + 2r + 2)ṗt,

Λ4 =
1

4
(µ+ 2µrp(t)− 2rp(t)− 2µp(t) + 2p(t)− µr + 2r − 2)ṗt. (29)

Now from Eq. 8, one can obtain the QSL time for correlated amplitude damping

quantum channel.

In Fig. 2, the QSL time is plotted as a function of driving time τD for corre-

lated amplitude damping channel with different values of correlation parameter

µ when τ = 1. The inset shows the quantum speed limit time in terms of the ini-

tial time τ for different values of correlation parameter µ when τD = 1. In Fig.

2(a) we choose λ/γ0 = 2 and the evolution is Markovian. As can be seen from

Fig. 2(a), the QSL time is decreased by increasing the correlation parameter µ.

In Fig. 2(b) we have λ/γ0 = 0.2 and the evolution is non-Markovian. As can

be seen from Fig. 2(b), the QSL time is also decreased by increasing correla-

tion parameter. From Figs. 1(a) and 2(b) one can find that for both Markovian

and non-Markovian evolution the QSL time for correlated channel (µ = 1) is

smaller than uncorrelated channel (µ = 0). In other word, in the presence of
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(a) (b)

Fig. 2 QSL time for correlated amplitude damping channel as a function of the driving time τD when

the initial state parameters are r = 1/2 and α = 1/
√

2 and τ = 1. (a)The dynamics is Markovian

λ/γ0 = 2(b)The dynamics is non-Markovian λ/γ0 = 0.2. The inset represents the QSL time as a

function of initial time τ when τD = 1.

correlation between two successive uses of the colored pure dephasing channel

on two-qubits system the quantum evolution will be faster than the case in which

the correlation does not exist.

Correlated Squeezed Generalized Amplitude Damping Channels:

An amplitude damping channel represents a physical process such as energy dissipa-

tion of a two-level quantum system due to spontaneous emission of a photon into the

vacuum at zero temperature [52]. The generalized amplitude damping (GAD) chan-

nel describes the relaxation of a quantum system when the surrounding environment

is at finite temperature initially i.e., when the environment starts from a mixed state

[56]. Generalized amplitude damping channel is developed as a squeezed generalized

amplitude damping (SGAD) channel by considering a squeezed thermal environment

[57]. The SGAD channel is a combination of both effects of dissipation at finite tem-

perature and environment squeezing [58,59,60,61].

The SGAD channel defines the quantum noise in which the quantum system in-

teracts with an environment that is initially in a squeezed thermal state under the

Markov and Born approximations. The dynamics of such a quantum system can be

described by following Lindblad master equation

L(ρt) = −Ω(n+ 1)

2
(σ+σ−ρt + ρtσ+σ− − 2σ−ρtσ+)

− Ωn

2
(σ−σ+ρt + ρtσ−σ+ − 2σ+ρtσ−)

− Ωm(σ+ρtσ+ + σ−ρtσ−), (30)
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Fig. 3 QSL time as a function of the driving time τD when the initial state parameters are r = 1/2 and

α = 1/
√

2 when τ = 1 for (a) Generalized amplitude damping channel with m = 0, n = 1 and (b)

squeezed Generalized amplitude damping channel with m = 1, n = 1. The inset represents the QSL time

as a function of initial time τ when τD = 1.

where σ+ = 1
2 (σ1 + iσ2) and σ− = 1

2 (σ1 − iσ2) are creation and annihilation

operators, respectively, n is associated with the number of thermal photons, m is the

squeezing parameter (m and n satisfy m < n + 1/2) and Ω is the dissipation rate

related to spontaneous emission at zero-temperature [1,52,58]. If m = 0 then SGAD

transforms to the GAD channel. When m = n = 0 the SGAD channel reduces to

the amplitude damping channel. We first review the simple method for solving the

master equation in Eq. (30) to find the structure of uncorrelated SGAD channel. The

dynamics of single-qubit state with initial input ρ0 =
∑1

i,j=0 |i〉〈j|, associated with

this Lindblad master equation has the following form [58]

ρt = eLtρ

=
∑

i

tr(Riρ)e
ηitLi =

∑

i

tr(Liρ)e
ηitRi, (31)

where Ri and Li are the right and left eigenoperators of super-operatorL in Lindblad

master equation, ηi’s are corresponding eigenvalues of these eigenoperators, such that

LRi = ηiR, LiL = ηiLi, (32)

with tr(LiRj) = δij . For SGAD channel, Ri’s and Li’s can be defined as [62]

R1 =
1√
2
(I2×2 −

1

2n+ 1
σ3), L1 =

1√
2
I2×2,
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R2 = L2 =
1√
2
(σ+ + σ−),

R3 = −L3 =
1√
2
(σ− − σ+),

R4 =
1√
2
σ3, L4 =

1√
2
(

1

2n+ 1
I2×2 + σ3). (33)

The eigenvalues ηi are given by

η1 = 0, η2 = −Ω(n+m+
1

2
),

η3 = −Ω(n−m+
1

2
), η4 = −2Ω(n+

1

2
). (34)

From Eqs. (31), (32), (33) and (34), the evolved single-qubit density matrix can be

quantified as

ρt =

(

n+p2

t
(n+1)ρ11−nρ22

2n+1 pt(qtρ12 − rtρ21)

pt(qtρ21 − rtρ12) 1− n+p2

t
(n+1)ρ11−nρ22

2n+1

)

, (35)

where pt = e−Ω(n+1/2)t, qt = cosh(Ωmt) and rt = sinh(Ωmt). From Eq. (35), the

Kraus operatorsAi for single-qubit dynamics under SGAD channel can be written as

A1 =

(√

n
2n+1 + n+1

2n+1p
2
t − ptqt 0

0 0

)

,

A2 =

(

0 0
√

n+1
2n+1 (1− p2t )− ptrt 0

)

,

A3 =

(

0 0

0
√

n+1
2n+1 + n

2n+1p
2
t − ptrt

)

,

A4 =

(√
ptqt 0
0

√
ptqt

)

,

A5 =

(

0
√
ptrt√

ptrt 0

)

,

A6 =

(

0
√

n
2n+1 (1− p2t )− ptrt

0 0

)

. (36)

Now, we consider two consecutive uses of the SGAD channel on two-qubit quan-

tum system. Uncorrelated SGAD channel εun can be shown by the following Kraus

operators [62]

Eij = Ai ⊗Aj , i, j = 1, ..., 6, (37)

We consider the following correlated Lindblad master equation for two-qubit system

to find the structure of the correlated SGAD channel

L̃(ρt) = −Ω(n+ 1)

2
(σ⊗2

+ σ⊗2
− ρt + ρtσ

⊗2
+ σ⊗2

− − 2σ⊗2
− ρtσ

⊗2
+ )
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− Ωn

2
(σ⊗2

− σ⊗2
+ ρt + ρtσ

⊗2
− σ⊗2

+ − 2σ⊗2
+ ρtσ

⊗2
− )

− Ωm(σ⊗2
+ ρtσ

⊗2
+ + σ⊗2

− ρtσ
⊗2
− ), (38)

where σ⊗2
± = σ± ⊗ σ±. The correlated dynamics of a two-qubit state can be found

to be similar to the single-qubit case by using Eqs.(31) and (32). We consider a gen-

eral two-qubit state ρ0 =
∑4

α1,α2=1 ρα1,α2
|α1〉〈α2| as an initial input state, where

|α1,2〉 ∈ {|00〉, |01〉, |10〉, |11〉}. The solution of correlated master equation in Eq.38

is derived as

ρ11(t) =
1

2n+ 1

((

(n+ 1)p2t − (2n+ 1)st (1− ut) + n
)

ρ11

+ (n− pt (npt + 2(2n+ 1)rt)) ρ44) ,

ρ12(t) =
√
stutρ12,

ρ13(t) =
√
stutρ13,

ρ14(t) = (
√
stut − pt (1− qt))ρ14 − ptrtρ41,

ρ22(t) = ρ22,

ρ23(t) = ρ23,

ρ24(t) =
√
utρ24,

ρ33(t) = ρ33,

ρ34(t) =
√
utρ34,

ρ44(t) = 1− ρ11(t)− ρ22 − ρ33. (39)

From Eq. (39), the Kraus operators Ekk for correlated part is obtained as

E11 =









√
st 0 0 0
0 1 0 0
0 0 1 0
0 0 0

√
ut









,

E22 =











0 0 0 0
0 0 0 0
0 0 0 0

√

n+1
2n+1 (1− p2t )− ptrt 0 0 0











,

E33 =











0 0 0
√

n
2n+1 (1 − p2t )− ptrt

0 0 0 0
0 0 0 0
0 0 0 0











,

E44 =











√

n
2n+1 + n+1

2n+1p
2
t − pt(qt − 1)− st 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0











,
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E55 =











0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
√

n+1
2n+1 + n

2n+1p
2
t − pt(qt − 1)− ut











,

E66 =









√

pt(qt)− 1 0 0 0
0 0 0 0
0 0 0 0

0 0 0
√

pt(qt)− 1









,

E77 =









0 0 0 i
√
ptrt

0 0 0 0
0 0 0 0

i
√
ptrt 0 0 0









, (40)

where ut = e−Ωnt and st = e−Ω(n+1)t. From Eq. (8), one can find the QSL time

for correlated SGAD quantum channel after some straightforward calculation with

large output . In Fig. 3, the QSL time is plotted as a function of driving time τD
for correlated GAD channel and correlated SGAD channel with different values

of correlation parameter µ when τ = 1. The inset shows the quantum speed

limit time in terms of the initial time τ for different values of correlation param-

eter µ when τD = 1. In Fig. 3(a) QSL time is plotted as a function of driving

time for correlated generalized amplitude damping i.e. the correlated channel

with parameters m = 0, n = 1. As can be seen from Fig. 3(a), the QSL time

is decreased by increasing the correlation parameter µ. In Fig. 3(b) QSL time

is plotted as a function of driving time τD for correlated squeezed generalized

amplitude damping i.e. the correlated channel with parameters m = 1, n = 1.

As can be seen from Fig. 3(b), the QSL time is also decreased by increasing cor-

relation parameter. From Figs. 3(a) and 3(b) one can find that for both GAD and

SGAD correlated channels the QSL time is decreased by increasing correlation

parameter µ. In other word, in the presence of correlation between two succes-

sive uses of these channels on two-qubits system the quantum evolution will be

faster than the case in which the correlation does not exist.

4 Summary and conclusion

We have studied the QSL time for correlated quantum channels, where the term cor-

related indicates the existence of correlations between two consecutive uses of the

quantum channel on a two-qubit quantum system. We have used correlated pure

dephasing colored noise as an example for the unital correlated quantum channels

and correlated amplitude damping and SGAD channels as the examples for the non-

unital quantum channels. We found that in the case of correlated dephasing col-

ored noise for both Markovian and non-Markovian evolution the QSL time is

increased by increasing correlation parameter of quantum channel µ. In other

word, in the presence of correlation between two successive uses of the colored
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pure dephasing channel on two-qubits quantum system the quantum evolution

will be slower than the case in which the correlation does not exist. In the case of

correlated amplitude damping channel for both Markovian and non-Markovian

evolution the QSL time is decreased by increasing correlation parameter of

quantum channel µ. In the case of correlated generalized amplitude damping

and correlated squeezed generalized amplitude damping channel the quantum

speed limit time is decreased by increasing correlation parameter of quantum

channel.
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