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Abstract
We study a problem that arises naturally in the discrete quantum computation model
introduced in Gatti and Lacalle (Quantum Inf Process 17:192, 2018). Given an
orthonormal system of discrete quantum states of level k (k ∈ N), can this system be
extended to an orthonormal basis of discrete quantum states of the same level? This
question turns out to be a difficult problem in number theory with very deep implica-
tions. In this article, we focus on the simplest version of the problem, 2-qubit systems
with integers (instead of Gaussian integers) as coordinates, but with normalization
factor

√
p (p ∈ N

∗), instead of
√
2k , being p a prime number. With these simplifica-

tions, we prove the following orthogonal version of Lagrange’s four-square theorem:
Given a prime number p and v1, . . . , vk ∈ Z

4, 1 ≤ k ≤ 3, such that ‖vi‖2 = p for
all 1 ≤ i ≤ k and 〈vi |v j 〉 = 0 for all 1 ≤ i < j ≤ k, then there exists a vector
v = (x1, x2, x3, x4) ∈ Z

4 such that 〈vi |v〉 = 0 for all 1 ≤ i ≤ k and

‖v‖2 = x21 + x22 + x23 + x24 = p.

This means that, in Z
4, any system of orthogonal vectors of norm p can be completed

to a basis. Besides, we conjecture that the result holds for every integer norm p ≥ 1
and for every space Z

n where n ≡ 0mod 4, and that the initial question has a positive
answer.
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1 Introduction

Themodel of discrete quantumcomputation introduced in [5] is focused on the discrete
quantum states (from now on discrete states). Its objective is to define a set of discrete
states that verify the following properties: It describes real states in quantum physics,
preserves themain characteristics of quantum states (superposition and entanglement),
allows to approximate general quantum states and, above all, contains simple quantum
states. Of all the possible sets of discrete states, there is one that, fulfilling the first three
properties, is the most outstanding in terms of simplicity of the states. It is the set of
Gaussian coordinate states, which includes all the quantum states whose coordinates
in the computational basis, except for a normalization factor

√
2−k , belong to the ring

of Gaussian integers

Z[i] = {a + bi | a, b ∈ Z}.

For this, the authors introduce a set of quantum gates that verify the following
properties: It contains quantum gates that transform discrete states into discrete states
and it generates all discrete states. The model includes two elementary quantum gates
that verify the above properties: H andG. TheHadamard gate H allows superposition,
while the other one, G, is a 3-qubit gate. Two of them are control qubits, while the
third is the target. If the control qubits are in state |1〉, then the gate V is applied to the
third qubit

V =
(
1 0
0 i

)
.

These quantum gates allow the construction of all Gaussian coordinate states ([5],
Theorem 3.8) and allow to identify these states with the discrete states on which the
model of discrete quantum computation is based.

Then an n-qubit Ψ is a discrete state if and only if there is a natural number k such
that

Ψ = 1√
2k

2n−1∑
j=0

(a j + b j i)| j〉 with a j , b j ∈ Z for all 0 ≤ j < 2n . (1)

Therefore, the discrete state Ψ is associated with the Diophantine equation

a20 + b20 + · · · + a22n−1 + b22n−1 = 2k with a j , b j ∈ Z for all 0 ≤ j < 2n . (2)

The index k in the normalization factor provides an interesting point of view about the
discrete states [5]. Namely, the states can be classified in different levels of discretiza-
tion, depending on k. Given a discrete state, the authors say that it belongs to the level
k if k is in smaller natural number for which Eq. (2) is fulfilled. These levels depict the
degree of precision or approximation of discrete states in relation to continuous states.

The results that we present in this article are closely linked to the properties and to
the conjecture about the generation of discrete quantum gates (from now on discrete
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gates) exposed in [5]. The authors define the discrete gates as those quantum gates that
leave the set of discrete states invariant. They prove that a quantum gate is a discrete
gate if and only if in its matrix representation, with respect to the computational
basis, its columns are discrete states of levels of the same parity ([5], Theorem 4.2).
Obviously the rows of the discrete gates verify the same property. They also prove a
surprising property that initially was not part of the objectives of the discrete quantum
computing model: Every 2-qubit discrete gate can be decomposed into a product of H
andG gates ([5], Theorem 4.16). They also conjecture that every n-qubit discrete gate,
with n ≥ 3, can also be generated within the model ([5], Abstract and Introduction).
In our work, we reformulate (expand) this conjecture in the following way.

Conjecture 1 Given a set of n-qubit discrete states of levels of the same parity and
orthogonal two to two, it is possible to build all of them simultaneously (applying a
given circuit to different states of the computational basis), using the conforming gates
H and G.

Observe that the conjecture also makes sense for 2-qubits, since in [5] it has only
been proved for sets of 4 discrete states. And note that the conjecture is also interesting
in the non-discrete case, since it asks about the possibility of simultaneously construct-
ing up to 2n quantum states simultaneously. In this case, the conjecture is obviously
true. Simply complete the orthonormal basis, for example using the Gram–Schmidt
method, and decompose the resulting unitary matrix into product of basic quantum
gates. Therefore, it makes sense to ask whether it is in the case of discrete quantum
computation.

Before continuing, let us relax the discrete state level definition given in [5] to
any value of k for which the discrete state verifies Eq. (2). We will call these values
widespread levels. Note that if k is a widespread level of a discrete state then k + 2 is
also. To prove this, it is enough to divide the normalization factor by 2 and multiply by
2 the Gaussian coordinates of the representation of the discrete state with widespread
level k [in Eq. (1)]. Then, a discrete state has widespread level k if and only if it is of
the form k0 + 2 j , where k0 is the level of the discrete state and j a natural number.
This property allows to write all discrete states (with levels of the same parity) at the
same widespread level.

Let us see that, somehow, building a set of orthogonal discrete states is equivalent
to completing the set to an orthonormal basis. For this reason, we will focus on this
article in the following problem.

Problem 1 Given a natural number k and Ψ1, . . . , Ψ j n-qubit discrete states with
widespread level k, 1 ≤ j < 2n, such that 〈Ψi |Ψm〉 = 0 for all 1 ≤ i < m ≤ j , then
is there an n-qubit discrete state with widespread level k, Ψ , such that 〈Ψi |Ψ 〉 = 0
for all 1 ≤ i ≤ j?

Based on the following result, every 2-qubit discrete gate can be decomposed into
a product of H and G gates ([5], Theorem 4.16); it is easy to establish the follow-
ing equivalence: For 2-qubits, Conjecture 1 is true if and only if Problem 1 has an
affirmative answer.

We have established the relationship between Problem 1, whose study is the objec-
tive of this article, and the simultaneous construction of discrete states of levels of the
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same parity and orthogonal two to two (Conjecture 1). The resolution of this prob-
lem would allow us to build bases with special characteristics, and it would help us to
demonstrate the conjecture that any n-qubit discrete gate, with n ≥ 3, can be generated
with the elementary quantum gates of the discrete quantum computation model [5].

Undoubtedly the problem that is studied in this article has important connections
with the model of discrete quantum computing and, consequently, with quantum com-
puting. As we are going to see, it also has implications for scientific fields such as
number theory, geometry of numbers and theory of lattices. In addition, we believe that
discrete models will have a great influence on quantum information theory and, indi-
rectly, on quantum physics itself. Quantum computing, to be viable, needs some kind
of discretization and that quantum physics, somehow, allows some self-correcting sys-
tem beyond the quantum error-correcting codes. We will analyze these considerations
in the conclusions.

Now, let us analyze the connection between discrete quantum computing and
Lagrange’s four-square theorem. The fact that establishes this connection is that the
discrete states have to satisfy Eq. (2). Lagrange’s four-square theorem [8] says that
every natural number is a sum of four squared integer numbers and, consequently,
guarantees that there exist discrete states for any level k ≥ 0 and for any number of
qubits n ≥ 1.

As we have already commented, the discrete quantum computation model would
have better properties if all orthonormal systems of discrete states could always be
extended to an orthonormal basis, i.e., if Problem 1 has an affirmative answer.

Problem 1 is an orthogonal version of Lagrange’s four-square theorem, i.e., the dis-
crete stateΨ must verify the Diophantine equation (2) and the following orthogonality
conditions:

〈Ψi |Ψ 〉 = 0 for all 1 ≤ i ≤ j .

Note that given a value of k, if Eq. 2 has a solution for a 1-qubit, then it has a
solution for every number of qubits n ≥ 2. Nevertheless, this generalization is not
necessarily true for Problem 1, because of orthogonality conditions. Therefore, the
problem has its own entity for any number of qubits n.

Problem 1 turns out to be a difficult question in number theory and has deep implica-
tions. For this reason, we begin with the following simplification that most resembles
Lagrange’s four-square problem: n = 2, integers as coordinates instead of Gaussian
integers and normalization factor

√
p, being p a prime number, instead of

√
2k .

Problem 2 Given a prime number p and v1, . . . , vk ∈ Z
4, 1 ≤ k ≤ 3, such that

‖vi‖2 = p for all 1 ≤ i ≤ k and 〈vi |v j 〉 = 0 for all 1 ≤ i < j ≤ k, then is
there a vector v = (x1, x2, x3, x4) ∈ Z

4 such that 〈vi |v〉 = 0 for all 1 ≤ i ≤ k and
‖v‖2 = x21 + x22 + x23 + x24 = p?

The outline of the article is as follows: In Sect. 2, we prove themain result. In Sect. 3,
we expose several generalizations and conjectures related to the proposed problems. In
Sect. 4, we include some conclusions. Finally we include references and “Appendices
A and B,” respectively. In “Appendix A,” we put Problem 2 in context, discussing
the main results related to Lagrange’s four-square problem. And in “Appendix B,” we
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include the demonstration of the most complicated case of the main result given in
Sect. 2.

2 Orthogonal version of Lagrange’s four-square theorem

First of all, let us introduce somebasic concepts.Given a natural number 1 ≤ k ≤ 4 and
a set of vectors v1, . . . , vk ∈ Z

4 such that ‖vi‖2 = p for all 1 ≤ i ≤ k and 〈vi |v j 〉 = 0
for all 1 ≤ i < j ≤ k, we will say that S = { v1, . . . , vk } is a p-orthonormal system
and, if k = 4, that S is a p-orthonormal basis.

Given a p-orthonormal system S, we will call support of S, supp(S), to
{ i | ∃ j such that the i-coordinate of v j �= 0 } and we will say that |supp(S)| is the
support size of S.

In this context, the problem we are dealing with (Problem 2) is stated as follows:
Given a prime number p and a p-orthonormal system S = { v1, . . . , vk }, 1 ≤ k ≤ 3,
prove that there exists v ∈ Z

4 such that 〈vi |v〉 = 0 for all 1 ≤ i ≤ k and ‖v‖2 = p.
To prove the result, we consider four cases. Three of them are solved with basic

linear algebra techniques. However, the fourth case is muchmore difficult and requires
the use of lattices and some number theory results. The details of this case are included
in “Appendix B.”
Case 1: one-vector p-orthonormal systems.
If the p-orthonormal system S has a single vector v1 = (x1, x2, x3, x4), the solu-
tion (valid for all p ≥ 1) is trivial: The required vector is, for example, v =
(x2,−x1, x4,−x3).
Case 2: two-vector p-orthonormal systems with support size 2.
If the p-orthonormal system S has two vectors with |supp(S)| = 2, the solution (valid
for all p ≥ 1) is as well trivial. Suppose, without loss of generality, that supp(S) =
{1, 2}, v1 = (x1, x2, 0, 0) and v2 = (y1, y2, 0, 0). Then, the required vector is, for
example, v = (0, 0, x1, x2).
Case 3: three-vector p-orthonormal systems.
If the p-orthonormal system S has three vectors, their exterior product allows us to
obtain the required vector (valid for all p ≥ 1).

We will use identities among polynomials in many variables whose demonstration
only requires proving that the polynomial expansion of the difference of bothmembers
of the equalities equals 0. We will call this type of proof polynomial checking.

Given the coordinates of the three vectors of S, v1 = (x1, x2, x3, x4), v2 = (y1, y2,
y3, y4) and v3 = (z1, z2, z3, z4), we consider the exterior product t = (t1, t2, t3, t4)
where

t1 = −
∣∣∣∣∣∣
x2 x3 x4
y2 y3 y4
z2 z3 z4

∣∣∣∣∣∣ , t2 =
∣∣∣∣∣∣
x1 x3 x4
y1 y3 y4
z1 z3 z4

∣∣∣∣∣∣ ,

t3 = −
∣∣∣∣∣∣
x1 x2 x4
y1 y2 y4
z1 z2 z4

∣∣∣∣∣∣ and t4 =
∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣ .

It can be proved, by polynomial checking, that 〈vi |t〉 = 0 for all 1 ≤ i ≤ 3.
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In order to calculate ‖t‖2, let us prove that t2i = p2(p − x2i − y2i − z2i ) for all
1 ≤ i ≤ 4. We do it for t4 since, by symmetry, the demonstration for the rest of
coordinates of t is analogous.

Considering the vectors x = (x1, x2, x3), y = (y1, y2, y3) and z = (z1, z2, z3), we
can prove, again by polynomial checking, that

t24 = ‖x‖2 ‖y‖2 ‖z‖2 + 2〈x |y〉〈x |z〉〈y|z〉
−‖x‖2〈y|z〉2 − ‖y‖2〈x |z〉2 − ‖z‖2〈x |y〉2. (3)

Now we can prove that

p2
(
p − x24 − y24 − z24

)
= ‖x‖2 ‖y‖2 ‖z‖2 + 2〈x |y〉〈x |z〉〈y|z〉

−‖x‖2〈y|z〉2 − ‖y‖2〈x |z〉2 − ‖z‖2〈x |y〉2, (4)

entering on the right side of the previous equality the values

‖x‖2 = p − x24 , 〈x |y〉 = −x4y4,
‖y‖2 = p − y24 , 〈x |z〉 = −x4z4,
‖z‖2 = p − z24, 〈y|z〉 = −y4z4

and applying, once again, polynomial checking.
Joining Eqs. 3 and 4, it is concluded that t24 = p2(p − x24 − y24 − z24).
Finally, the vector v = t/p has the required properties: 〈vi |v〉 = 0 for all 1 ≤ i ≤ 3

and ‖v‖2 = p.
Case 4: two-vector p-orthonormal system with support size > 2.
Given a prime number p and a p-orthonormal system S = { v1, v2 } with |supp(S)| >

2, there exists v ∈ Z
4 such that it verifies 〈v1|v〉 = 〈v2|v〉 = 0 and ‖v‖2 = p (see

Theorem 3).
Details of the demonstration are included in “Appendix B.”
The following theorem is a consequence of the four cases considered previously.

Theorem 1 Given a prime number p and a p-orthonormal system in Z
4, S, then S

can be extended to a p-orthonormal basis.

3 Generalizations

We have proved that every p-orthonormal system of vectors in Z
4 can be extended to

a p-orthonormal basis if p is a prime number. Besides, we have verified the result for
every 1 ≤ p ≤ 10,000. In this section, all verifications for given values of p and n
have been made by exhaustive checking of all p-orthonormal systems in Z

n , using a
specific C program on a personal computer. From the previous results, we conjecture
that the following result holds.

Conjecture 2 Given an integer number p ≥ 1 and a p-orthonormal system in Z
4, S,

then S can be extended to a p-orthonormal basis.
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The most natural generalization of the problem is to consider it in any dimension
n ≥ 1, i.e., to study the problem in Z

n .

Problem 3 Given an integer number p ≥ 1 and a p-orthonormal system in Z
n, S, can

S be extended to a p-orthonormal basis?

Ananalogous construction to that given in Sect. 2, Case 1 shows the result for n = 2.
Note that if p cannot be written as a sum of two squares [6] (the prime decomposition
of p contains a prime congruent to 3mod 4 raised to an odd power), there are no
p-orthonormal systems in Z

2. The case of dimension 4 has already been studied, and
in the case n = 8, we have checked the result for 1 ≤ p ≤ 36.

To analyze the problem in other dimensions, we try to find counterexamples that
help us to understand in which cases the problem has a positive answer. If p is not a
square and there exists a p-orthonormal basis inZ

n , then there are counterexamples for
p in dimension n + 1. Indeed, let {v1 . . . , vn} be a p-orthonormal basis in dimension
n. Then {w1 . . . , wn} is a p-orthonormal system in dimension n + 1 that cannot be
extended to a p-orthonormal basis, being:

w j = (v j,1, . . . , v j,n, 0) where v j = (v j,1, . . . , v j,n) 1 ≤ j ≤ n.

This construction allows us to find counterexamples for any dimension n �≡
0mod 4, n �= 1 and n �= 2. Given an integer p ≥ 1, we consider the p-orthonormal
basis S1 = {v1, v2, v3, v4} in Z

4 and the matrix A,

v1 = (x1, x2, x3, x4)
v2 = (−x2, x1,−x4, x3)
v3 = (−x3, x4, x1,−x2)
v4 = (x4, x3,−x2,−x1)

and A =

⎛
⎜⎜⎝

x1 x2 x3 x4
−x2 x1 −x4 x3
−x3 x4 x1 −x2
x4 x3 −x2 −x1

⎞
⎟⎟⎠ ,

where p = x21 +x22 +x23 +x24 . If p can bewritten as a sum of two squares, p = y21 + y22 ,
we define the p-orthonormal basis S2 = {u1, u2} in Z

2 and the matrix B,

u1 = (y1, y2)
v2 = (−y2, y1)

and B =
(

y1 y2
−y2 y1

)
.

Then, the rows of the following matrices C1, C2 and C3 define non-extensible p-
orthonormal systems, for dimensions n such that n mod 4 is 1, 2 or 3, respectively:

(i) C1 if p is not a square, n ≡ 1mod 4 and n �= 1.
(ii) C2 if p cannot be written as a sum of two squares, n ≡ 2mod 4 and n �= 2.
(iii) C3 if p is not a square and can bewritten as a sum of two squares and n ≡ 3mod 4.

C1 =
⎛
⎜⎝

A · · · 0 0
.
.
.

. . .
.
.
.

.

.

.

0 · · · A 0

⎞
⎟⎠ C2 =

⎛
⎜⎝

A · · · 0 0 0
.
.
.

. . .
.
.
.

.

.

.
.
.
.

0 · · · A 0 0

⎞
⎟⎠ C3 =

⎛
⎜⎜⎜⎝

A · · · 0 0 0
.
.
.

. . .
.
.
.

.

.

.
.
.
.

0 · · · A 0 0
0 · · · 0 B 0

⎞
⎟⎟⎟⎠ .
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The experimental verifications and the previous counterexamples make us think
that the generalization of Conjecture 2 should be the following.

Conjecture 3 Given n ≡ 0mod 4 (n ≥ 1) and p ≥ 1 and a p-orthonormal system in
Z
n, S, then S can be extended to a p-orthonormal basis.

But, what happens if p is a square? We have verified the result for n = 3, 5 and
12 ≤ p ≤ 1002, n = 6 and 12 ≤ p ≤ 332, n = 7 and 12 ≤ p ≤ 132 and n = 9
and 12 ≤ p ≤ 22. Nevertheless, we have found that Problem 3 has a negative answer
if n = 9, p = 9 and S = {(1, . . . , 1)}. This counterexample can be generalized as
follows: If n = n̄2 and p = n p̄2 are odd integers, then the set S = {v1 = ( p̄, . . . , p̄)}
cannot be extended to a p-orthonormal basis in Z

n . Indeed, S cannot be extended with
a vector v because, on the one hand, the number of odd components of v must be odd
because ‖v‖2 = p is odd and, on the other hand, the number of odd components of v

must be even because 〈v1|v〉 = 0 is even. Hence, if p is a square, our conjecture is as
follows.

Conjecture 4 Given numbers n ≥ 1 and p ≥ 1, so that either n is even or p is
even or n � p, and a p2-orthonormal system in Z

n, S, then S can be extended to a
p2-orthonormal basis.

3.1 Structural properties of the problem

Given the integer number k and the vectors u = (x1, . . . , xn) and v = (y1, . . . , yn)
belonging to Z

n , we denote the parity of k by P(k) ≡ kmod 2, the parity of u by
P(u) ≡ (x1 + · · · + xn)mod 2 and the parity of u and v by P(u, v) ≡ 〈u|v〉mod 2.
Note that P(u) = P(‖u‖2).

These definitions allow us to consider the conditions of p-orthonormality in terms
of parities (module 2), proving the following result.

Proposition 1 Given a p-orthonormal system in Z
n, S = {v1, . . . , vk}, then it holds

that P(p) = P(vi ), 1 ≤ i ≤ k, and P(vi , v j ) = 0, 1 ≤ i < j ≤ k.

3.2 Orthogonal extensions

Given a set of vectors belonging to Z
n , S = {v1, . . . , vk}, such that 〈vi |v j 〉 = 0 for all

1 ≤ i < j ≤ k, we will say that S is an orthogonal system and, if k = n, that S is an
orthogonal basis.

The relaxation of the condition from p-orthonormality to orthogonality allows to
extend any orthogonal system. Indeed, Lemma 1 (“Appendix B”) does not depend
on the normalization of the vectors and can be applied in Z

n , proving the following
proposition.

Proposition 2 Given an orthogonal system in Z
n, S, then S can be extended to an

orthogonal basis.

Given an orthogonal set in Z
n , S = {v1, . . . , vk} (1 ≤ k ≤ n), we denote the norm

of S by N (S) = max{‖vi‖2 | 1 ≤ i ≤ k}. So, an interesting problem, in view of
Proposition 2, is the following:
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Problem 4 Given an orthogonal system in Z
n, S, determine the orthogonal basis with

the smallest norm that extends S.

3.3 Conjecture about discrete states

Finally, we also believe that the answer to Problem 1 is positive. This fact is gathered
in the following conjecture.

Conjecture 5 Given a natural number k andΨ1, . . . , Ψ j n-qubit discrete states of with
widespread level k, 1 ≤ j < 2n, such that 〈Ψi |Ψm〉 = 0 for all 1 ≤ i < m ≤ j , then
there exists an n-qubit discrete state with widespread level k,Ψ , such that 〈Ψi |Ψ 〉 = 0
for all 1 ≤ i ≤ j .

4 Conclusions

As we have established in “Introduction,” the orthogonal version of Lagrange’s four-
square theorem presented in this article is closely related to the discrete quantum
computation model. The results obtained in the analysis of the proposed problem as
well as in the generalizations included in Sect. 3 establish key properties of this model.
The complexity of the proof presented in “Appendix B” clearly shows the difficulty
of the studied problem and its connection to number theory, geometry of numbers and
theory of lattices.

In “Introduction,” we also comment that, in our opinion, the discrete quantum
computation model, and indirectly the results of the present article, will have great
influence on quantum information theory and on quantum physics. Researchers in
quantum computing have learned that error control is a hugely complex problem,
have mostly abandoned the project of building a quantum computer and have gone to
work in quantum simulation.

We believe that with the current quantum physics, quantum computing is not scal-
able without technological cost overruns. The unitary evolution of quantum systems
prevents the design of self-correcting systems based on attraction basins. These sys-
tems, which include digital electronics, automatically transform any state of the basin
of attraction into the state without error that this represents. Obviously the current
quantum physics does not allow to do this. And quantum error-correcting codes do
not verify any of the two key hypotheses with which classic error-correcting codes
work:All small errors are corrected and correction circuits do not introduce new errors.
Decoherence introduces non-local errors that, although they are small if we consider
them in short time intervals, the quantum error-correcting codes are not able to correct.

From the point of view of physics, a universal quantum computer is a system that
can evolve from the |0 . . . 0〉 state of zero entropy to any state (final n-qubit) following
any path (algorithm) and keeping the entropy (error) close to zero. Raised like this,
the second principle of thermodynamics puts serious doubts about the viability of the
construction of such a system, more if we also take into account the impossibility of
implementing an effective self-correcting structure.
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All these difficulties could be overcome if quantum physics, in some way, could be
discretized. We believe that current quantum physics predicts an unlimited capacity
of superposition and, consequently, of entanglement and parallelism and that this fact
is unrealistic. A second quantization, presumably of quantum states, would allow a
physics with less capacity of superposition, entanglement and parallelism, but easier
to control. We believe that in this context models of discrete quantum computing will
be important.

Appendix A: Main results related to Lagrange’s four-square problem

Long before Lagrange proved his theorem, Diophantus had asked whether every pos-
itive integer could be represented as the sum of four perfect squares greater than or
equal to zero. This question later became known as Bachet’s conjecture, after the 1621
translation of Diophantus by Bachet. In parallel, Fermat proposed the problem of rep-
resenting every positive integer as a sum of at most n n-gonal numbers. Lagrange [8]
proved the square case of the Fermat polygonal number theorem in 1770, also solving
Bachet’s conjecture. Gauss [4] proved the triangular case in 1796 and the full polyg-
onal number theorem was not solved until it was finally proved by Cauchy in 1813.
Later, in 1834, Jacobi discovered a simple formula for the number of representations
of an integer as the sum of four integer squares.

The same year in which Lagrange proved his theorem, Waring asked whether each
natural number k has an associated positive integer s such that every natural number
is the sum of at most s natural numbers to the power of k. For example, every natural
number is the sum of at most 4 squares, 9 cubes or 19 fourth powers. The affirmative
answer to theWaring’s problem, known as the Hilbert–Waring theorem, was provided
by Hilbert in 1909.

A natural generalization of Lagrange’s problem is the following: Given natural
numbers a, b, c and d, can we solve n = ax21 + bx22 + cx23 + dx24 for all positive
integers n in integers x1, x2, x3 and x4? Lagrange’s four-square theorem answered
in the positive the case a = b = c = d = 1 and the general solution was given
by Ramanujan [10]. He proved that if we assume that a ≤ b ≤ c ≤ d then there
are exactly 54 possible choices for a, b, c and d such that the problem is solvable in
integers x1, x2, x3 and x4 for all n ∈ N. Ye [15] establishes formulas for the number of
representations of integers by the quadratic forms x21 +· · ·+ x2k +m(x2k+1+· · ·+ x22k)
for m = 2, 4, and Eum et al. [3] study the representation number of a nonnegative
integer by the quaternary quadratic form x21 + 2x22 + x23 + x24 + x1x3 + x1x4 + x2x4.
Sun [13] and Ju et al. [7] have studied a generalization of the problems of Lagrange
and Remanujan, in which x1, x2, x3 and x4 are replaced by generalized octagonal
numbers.

Another generalization, due toMordel [9], tries to represent positive definite integral
binary quadratic forms instead of positive integers. He proved that the quadratic form
x21 + x22 + x23 + x24 + x25 represents all positive definite integral binary quadratic forms.

Sun et al. [12,14] has proposed some refinements of Lagrange’s theorem such
as, for example, the following: n ∈ N can be written as x21 + x22 + x23 + x24 with
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x1, x2, x3, x4 ∈ Z such that x1 + x2 + x3 (or x1 + 2x2, or x1 + x2 + 2x2) is a square
(or a cube).

Appendix B: Case 4—two-vector p-orthonormal system with support
size > 2

Notations and basic properties

WeconsiderZ4 as a part of the vector spaceR
4 providedwith the inner product 〈v|w〉 =

x1y1 + x2y2 + x3y3 + x4y4, where v = (x1, x2, x3, x4) and w = (y1, y2, y3, y4) are
vectors of R

4, and with the canonical basis {e1, . . . , e4}.
Given a set of linearly independent vectors v1, . . . , vk ∈ R

4, they generate the
lattice Λ = { b1v1 + · · · + bkvk | b1, . . . , bk ∈ Z } [1] and constitute a basis of Λ, B.
So the dimension of Λ will be k. From now on, we will only consider bases whose
vectors belong to Z

4, i.e., Λ will always be an integral lattice.
Given a point v ∈ Λ, described by its coordinates in B, v = (bi )B , the num-

ber N (v) = ‖v‖2 = 〈v|v〉 is called the norm of v and can be calculated by the
expression N (v) = btGb, where G is theGram matrix of the vectors of B. The deter-
minant of G, det(G), is an invariant of Λ whose square root is denoted by det(Λ). So
det(Λ) = √

det(G), and geometrically, it is interpreted as the volume of the funda-
mental parallelepiped of Λ. The matrix G is symmetric and positive definite and is
associated with a quadratic form that collects the main properties of Λ.

Let us consider the coordinate matrix V , formed by the vectors of the basis B of Λ

placed by rows. If V is a square matrix, we can compute the determinant of Λ from
V , det(Λ) = |det(V )|, and it holds that det2(V ) = det(G).

However, we are not interested in Λ, but rather in its orthogonal lattice

Λ⊥ = { v ∈ Z
4 | 〈vi |v〉 = 0 for all 1 ≤ i ≤ k }.

The resolution method of systems of linear Diophantine equations [2] computes a
basis of Λ⊥ with 4 − k vectors. Then the dimension of Λ⊥ will be k⊥ = 4 − k. In
order to do this we have to solve the linear system V X = 0, computing the Smith
normal form [11] of V and its invariant factors α1, . . . , αk :

L V R =
⎛
⎜⎝

α1
. . .

αk

⎞
⎟⎠ = N such that

L ∈ GLk(Z)

R ∈ GL4(Z)

0 < α1, . . . , αk

α1|α2, . . . αk−1|αk .

Lemma 1 Given a number p ≥ 1 and a p-orthonormal system S = { v1, . . . , vk },
1 ≤ k ≤ 3, with associated lattice Λ, then the last 4 − k columns of the matrix R, in
the Smith normal form of V , constitute a basis of Λ⊥.

Proof It holds that V X = 0 ⇔ L V R R−1 X = L 0 = 0, and considering Y =
R−1 X , we have that V X = 0 ⇔ N Y = 0 ⇔ y1 = · · · = yk = 0. So, the basis
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that generates the solutions of V X = 0 is B⊥ = { R ek+1, . . . , R e4 }, i.e., the set with
the last 4 − k columns of R. ��

Wewill use again the polynomial checking introduced in Sect. 2 Case 3, specifically
in Propositions 3 and 4 and in Lemma 3.

Proposition 3 Given a prime number p and a p-orthonormal system S = { v1, v2 },
v1 = (x1, . . . , x4) and v2 = (y1, . . . , y4), with |supp(S)| > 2, then gcd(x1, . . . , x4) =
gcd(y1, . . . , y4) = 1 and the invariant factors of V also verify α1 = α2 = 1.

Proof Suppose, by contradiction, that gcd(x1, . . . , x4) = g > 1. Then N (v1) =
g2(x ′ 2

1 + · · · + x ′ 2
4 ) = p, where x ′

i = xi
g

for all 1 ≤ i ≤ 4, and this fact contradicts

the primality of p. So, we have that gcd(x1, . . . , x4) = 1, and in the same way, we
conclude that gcd(y1, . . . , y4) = 1. Applying these results, together with the property
of the first invariant factor, we get α1 = 1.

In order to obtain the value of α2, we will use the following identity, that can be
proved by polynomial checking:

N (v1)N (v2) − 〈v1|v2〉2 =
∣∣∣∣ x1 x2
y1 y2

∣∣∣∣
2

+
∣∣∣∣ x1 x3
y1 y3

∣∣∣∣
2

+ · · · +
∣∣∣∣ x3 x4
y3 y4

∣∣∣∣
2

.

By hypothesis, N (v1)N (v2) − 〈v1|v2〉2 = p2. Suppose, again by contradiction, that
g = gcd(m12, . . . ,m34) > 1, where

mi j =
∣∣∣∣ xi x j
yi y j

∣∣∣∣ and m′
i j = mi j

g
.

Then p2 = g2(m′ 2
12 + · · · + m′ 2

34) and there are, at least, two minors different from
0 because |supp(S)| > 2. These facts contradict the primality of p. So, we have that
gcd(m12, . . . ,m34) = 1, and since this value matches the second invariant factor, we
get α2 = 1. ��

Finally, we introduce the fundamental result of the branch of number theory called
the geometry of numbers, proved by Minkowski in 1889.

Theorem 2 ([1]) Let K be a convex set in R
n which is symmetric with respect to the

origin. If the volume of K is greater than 2n times the volume of the fundamental
domain (parallelepiped) of a lattice Λ, then K contains a nonzero lattice point.

Two-vector p-orthonormal systemwith support size > 2

First of all, let us get a basis of Λ⊥, B⊥, by computing a Smith quasi-normal form
in which L ∈ GLk(Q). Note that in this case Lemma 1 also holds. Let V be the
coordinate matrix of the p-orthonormal system S = { v1, v2 } with |supp(S)| > 2,
v1 = (x1, x2, x3, x4), v2 = (y1, y2, y3, y4) and p ≥ 1. Suppose, rearranging the
coordinates of v1 and v2 if necessary, that
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x1 �= 0,

∣∣∣∣ x1 x2
y1 y2

∣∣∣∣ �= 0 and 4 ∈ supp(S), i.e., x4 �= 0 or y4 �= 0.

The Smith quasi-normal form of S is:

L V R =
(
c 0 0 0
0 cd 0 0

)
such that

L ∈ GLk(Q)

R ∈ GL4(Z)

0 < c, d
R = R1 R2 R3 R4 R5,

where the matrices L and Ri , 1 ≤ i ≤ 5, and the parameters c and d are those that
appear in Table 1.

Lemma 2 Given a number p ≥ 1 and a p-orthonormal system S = { v1, v2 } with
associated lattice Λ, then B⊥ = { w1, w2 } is a basis of Λ⊥, where

w1 =
(
x2 y′

3

c1 d1
− x3 y′

2 σ1

c2 d1
,− x1 y′

3

c1 d1
− x3 y′

2 τ1

c2 d1
,
c1 y′

2

c2 d1
, 0

)

w2 =
(
y′
4(c1 x3 σ1 τ4 + c2 x2 σ4)

c1 c2 d
− d1 x4 σ1 σ2

c d
,

y′
4(c1 x3 τ1 τ4 − c2 x1 σ4)

c1 c2 d
− d1 x4 σ2 τ1

c d
,−d1 x4 τ2

c d
− c1 y′

4 τ4

c2 d
,
c2 d1
c d

)
.

Proof We obtain the result just by multiplying the matrices R1, R2, R3, R4 and R5
and applying Lemma 1 to the Smith quasi-normal form of S. ��

Remark 1 Let V and GV be the coordinate matrix and the Gram matrix, respectively,
of the set of vectors B ∪ B⊥, and let G be the Gram matrix of the set of vectors B⊥.
Then, det2(V ) = det(GV ) = p2det(G), and since det2(Λ⊥) = det(G), we concluded

that det(Λ⊥) = |det(V )|
p

.

We can use Remark 1 to compute det(Λ⊥) and, indirectly, to study the matrix G,
considered as a symmetric positive definite quadratic form.

Proposition 4 Given a number p ≥ 1 and a p-orthonormal system S = { v1, v2 },
with associated latticeΛ, then det(Λ⊥) = p

c d
, where c and d are the parameters that

appear in Table 1.

Proof To obtain the result we only have to compute det(V), by Remark 1. Developing
the expression of the determinant of V , where w1 and w2 are the vectors obtained in
Lemma 2, we obtain:
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Table 1 Smith quasi-normal form data

R1 =

⎛
⎜⎜⎜⎝

σ1
−x2
c1

0 0

τ1
x1
c1

0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠

x1σ1 + x2τ1 = c1 = gcd(x1, x2)
y′
1 = σ1y1 + τ1y2

y′
2 = −x2

c1
y1 + x1

c1
y2

R2 =

⎛
⎜⎜⎜⎝

σ2 0 −x3
c2

0
0 1 0 0
τ2 0 c1

c2
0

0 0 0 1

⎞
⎟⎟⎟⎠

c1σ2 + x3τ2 = c2 = gcd(c1, x3)
y′′
1 = σ2y

′
1 + τ2y3 = σ2σ1y1 + σ2τ1y2 + τ2y3

y′
3 = −x3

c2
y′
1 + c1

c2
y3 = −x3

c2
σ1y1 + −x3

c2
τ1y2 + c1

c2
y3

R3 =

⎛
⎜⎜⎝

σ3 0 0 −x4
c

0 1 0 0
0 0 1 0
τ3 0 0 c2

c

⎞
⎟⎟⎠ c2σ3 + x4τ3 = c = gcd(c2, x4)

y′′′
1 = σ3y

′′
1 + τ3y4 = σ3σ2σ1y1 + σ3σ2τ1y2 + σ3τ2y3 + τ3y4

y′
4 = −x4

c
y′′
1 + c2

c
y4 = −x4

c
σ2σ1y1 + −x4

c
σ2τ1y2 + −x4

c
τ2y3 + c2

c
y4

L =
(

1 0
−y′′′

1 c

)

R4 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 σ4
−y′

3
d1

0

0 τ4
y′
2
d1

0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ y′

2σ4 + y′
3τ4 = d1 = gcd(y′

2, y
′
3)

R5 =

⎛
⎜⎜⎜⎝
1 0 0 0

0 σ5 0
−y′

4
d

0 0 1 0

0 τ5 0 d1
d

⎞
⎟⎟⎟⎠ d1σ5 + y′

4τ5 = d = gcd(d1, y
′
4)

det(V )c1c2d1cd = cy′
4

(
c1

(
x21 y4 − x1x4y1 + x2 (x2y4 − x4y2)

)

+ x3
(
x1σ1 + x2τ1

)
(x3y4 − x4y3)

) (
y′
2σ4 + y′

3τ4

)

+ d1

(
c21 y

′
2

(
c2 (x1y2 − x2y1) + x1x4y4σ2τ1

− x4σ2

(
x2y4σ1 + x4 (y1τ1 − y2σ1)

))

+ c1x3y
′
2

(
c2

(
x1y3τ1 − x2y3σ1 + x3 (y2σ1 − y1τ1)

)

+ x4τ2

(
x1y4τ1 − x2y4σ1 + x4 (y2σ1 − y1τ1)

))

+ c2y
′
3

(
c2

(
x21 y3 − x1x3y1 + x2 (x2y3 − x3y2)

)

+ x4

(
x21 y4τ2 − x1

(
x3y4σ1σ2 + x4 (y1τ2 − y3σ1σ2)

)

+ x2

(
x2y4τ2 − x3y4σ2τ1 + x4 (y3σ2τ1 − y2τ2)

))))
,
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Table 2 Monomials of det(V )c1c2cd

1 c1c2x
2
1 y

2
2 2 c1c2x

2
1 y

2
3

3 c1c2x
2
1 y

2
4 4 −2c1c2x1x2y1y2

5 × −c1c2x1x3y1y3 6 × −c1c2x1x4y1y4

7 c1c2x
2
2 y

2
1 8 c1c2x

2
2 y

2
3

9 c1c2x
2
2 y

2
4 10 × −c1c2x2x3y2y3

11 × −c1c2x2x4y2y4 12 c1c2x
2
3 y

2
4

13 × −c1c2x3x4y3y4 14 × −c1x
2
1 x4y1y4σ1σ2

15 × −c1x1x2x4y1y4σ2τ1 16 × −c1x1x2x4y2y4σ1σ2

17 × −c1x1x3x4y3y4σ1σ2 18 × c1x1x
2
4 y

2
1σ1σ2

19 × c1x1x
2
4 y

2
2σ1σ2 20 × c1x1x

2
4 y

2
3σ1σ2

21 × −c1x
2
2 x4y2y4σ2τ1 22 × −c1x2x3x4y3y4σ2τ1

23 × c1x2x
2
4 y

2
1σ2τ1 24 × c1x2x

2
4 y

2
2σ2τ1

25 × c1x2x
2
4 y

2
3σ2τ1 26 × −c1x

2
3 x4y1y4σ1σ2

27 × −c1x
2
3 x4y2y4σ2τ1 28 × −c1x

2
3 x4y3y4τ2

29 × c1x3x
2
4 y1y3σ1σ2 30 × c1x3x

2
4 y2y3σ2τ1

31 × c1x3x
2
4 y

2
3τ2 32 × −c2x

2
1 x3y1y3σ1

33 × −c2x1x2x3y1y3τ1 34 × −c2x1x2x3y2y3σ1

35 × c2x1x
2
3 y

2
1σ1 36 × c2x1x

2
3 y

2
2σ1

37 × −c2x
2
2 x3y2y3τ1 38 × c2x2x

2
3 y

2
1τ1

39 × c2x2x
2
3 y

2
2τ1 40 × −x21 x3x4y1y4σ1τ2

41 × −x1x2x3x4y1y4τ1τ2 42 × −x1x2x3x4y2y4σ1τ2

43 × x1x
2
3 x4y1y4σ

2
1 σ2 44 × x1x

2
3 x4y2y4σ1σ2τ1

45 × x1x3x
2
4 y

2
1σ1τ2 46 × −x1x3x

2
4 y1y3σ

2
1 σ2

47 × x1x3x
2
4 y

2
2σ1τ2 48 × −x1x3x

2
4 y2y3σ1σ2τ1

49 × −x22 x3x4y2y4τ1τ2 50 × x2x
2
3 x4y1y4σ1σ2τ1

51 × x2x
2
3 x4y2y4σ2τ

2
1 52 × x2x3x

2
4 y

2
1τ1τ2

53 × −x2x3x
2
4 y1y3σ1σ2τ1 54 × x2x3x

2
4 y

2
2τ1τ2

55 × −x2x3x
2
4 y2y3σ2τ

2
1

where all the parameters appear in Table 1.
Throughout the proof, we will replace expressions by applying equalities from

Table 1.
Substituting the underlined expressions by c1 and d1, respectively, all occurrences

of d1 are canceled. Similarly, substituting c1y′
2, c2y

′
3 and cy′

4 for the expressions

x1y2 − x2y1,
c1y3 − x3(σ1y1 + τ1y2) and
c2y4 − x4(σ2σ1y1 + σ2τ1y2 + τ2y3),

respectively, the parameter c disappears from the second equality member.

123



   34 Page 16 of 20 J. Lacalle, L. N. Gatti

Table 3 Monomials resulting from operations

14 × 15 −c21x1x4y1y4σ2 16 × 21 −c21x2x4y2y4σ2

17 × 22 −c21x3x4y3y4σ2 18 × 23 c21x
2
4 y

2
1σ2

19 × 24 c21x
2
4 y

2
2σ2 20 × 25 c21x

2
4 y

2
3σ2

32 × 33 −c1c2x1x3y1y3 34 × 37 −c1c2x2x3y2y3

35 38 c1c2x
2
3 y

2
1 36 39 c1c2x

2
3 y

2
2

40 × 41 −c1x1x3x4y1y4τ2 42 × 49 −c1x2x3x4y2y4τ2

43 × 50 c1x
2
3 x4y1y4σ1σ2 44 × 51 c1x

2
3 x4y2y4σ2τ1

45 × 52 c1x3x
2
4 y

2
1τ2 46 × 53 −c1x3x

2
4 y1y3σ1σ2

47 × 54 c1x3x
2
4 y

2
2τ2 48 × 55 −c1x3x

2
4 y2y3σ2τ1

14 × 40 −c1c2x1x4y1y4 16 × 42 −c1c2x2x4y2y4

17 × 28 −c1c2x3x4y3y4 18 45 c1c2x
2
4 y

2
1

19 47 c1c2x
2
4 y

2
2 20 31 c1c2x

2
4 y

2
3

26 × 43 0 27 × 44 0

29 × 46 0 30 × 48 0

5 32 −2c1c2x1x3y1y3 6 14 −2c1c2x1x4y1y4
10 34 −2c1c2x2x3y2y3 11 16 −2c1c2x2x4y2y4
13 17 −2c1c2x3x4y3y4

The expression det(V )c1c2cd is a homogeneous polynomial of total degree 6 in
the variables c1, c2, x1, x2, x3, x4, y1, y2, y3 and y4, in which only the parameters σ1,
τ1, σ2 and τ2 appear. The monomials of the aforementioned polynomial are included
in Table 2 and are identified by indexes placed in the first cells of the corresponding
rows.

In order to eliminate the parameters σ1, τ1, σ2 and τ2, we group the monomials of
Table 2 in pairs to apply the following operations:

(1) Substitute x1σ1 + x2τ1 by c1.
(2) Substitute c1σ2 + x3τ2 by c2.
(3) Cancel opposite monomials.
(4) Add equal monomials.

Applied operations are detailed in Table 3, where the resulting monomials are
identified by the indexes of the first monomials that are operated on. Each time an
operation is applied, the monomials involved are marked with a × to the right of the
index that identifies the monomial, so as not to use them again. The operations are
done iteratively onmonomials of Tables 2 and 3 that are not marked, until no operation
can be further applied.

All the resulting monomials have the factor c1c2. Therefore, by simplifying this
factor the next equality is obtained:
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Table 4 Monomials of N (w1)c
2
1c

2
2d

2
1 and resulting from operations

1 c21x
2
1 y

2
2 6 −2c1x

2
1 x3y1y3σ1

2 c21x
2
1 y

2
3 7 −2c1x1x2x3y1y3τ1 −2c21x1x3y1y3

3 −2c21x1x2y1y2 8 −2c1x1x2x3y2y3σ1

4 c21x
2
2 y

2
1 9 −2c1x

2
2 x3y2y3τ1 −2c21x2x3y2y3

5 c21x
2
2 y

2
3

10 x21 x
2
3 y

2
1σ 2

1 c21x
2
3 y

2
1 11 x21 x

2
3 y

2
2σ 2

1 c21x
2
3 y

2
2

12 2x1x2x
2
3 y

2
1σ1τ1 13 2x1x2x

2
3 y

2
2σ1τ1

14 x22 x
2
3 y

2
1τ21 15 x22 x

2
3 y

2
2τ21

det(V )cd = x21 y
2
2 + x21 y

2
3 + x21 y

2
4 − 2x1x2y1y2 − 2x1x3y1y3 − 2x1x4y1y4

x22 y
2
1 + x22 y

2
3 + x22 y

2
4 − 2x2x3y2y3 − 2x2x4y2y4 + x23 y

2
4−2x3x4y3y4 + x24 y

2
1 + x24 y

2
2 + x24 y

2
3 + x23 y

2
1 + x23 y

2
2 .

By polynomial checking, it is easy to verify the next equality:

det(V )cd = (
x21 + x22 + x23 + x24

) (
y21 + y22 + y23 + y24

) − (x1y1 + x2y2 + x3y3 + x4y4)
2.

Byhypothesis, the secondmember of the previous equality is equal to p2. Therefore,
by applying Remark 1, we conclude that:

det(Λ⊥) = p

cd
.

��

Lemma 3 Given a number p ≥ 1, a p-orthonormal system S = { v1, v2 } and
w1 the first vector of the basis B⊥ of the orthogonal lattice Λ⊥, then N (w1) =
p(p − x24 − y24 )

c22 d
2
1

, where c2 and d1 are the parameters in Table 1.

Proof The proof is similar to that of Proposition 4. Considering the vectorw1 obtained
in Lemma 2 and calculating N (w1), the following equality is obtained:

N (w1)c
2
1c

2
2d

2
1 = c41 y

′ 2
2 + c21x

2
3 y

′ 2
2

(
σ 2
1 + τ 21

) + 2c1c2x3y
′
2y

′
3(x1τ1 − x2σ1) + c22 y

′ 2
3

(
x21 + x22

)
.

Substituting in the second member of equality c1y′
2 by −x2y1 + x1y2 and c2y′

3 by−x3σ1y1− x3τ1y2+c1y3, a homogeneous polynomial of total grade 6 in the variables
c1, x1, x2, x3, y1, y2 and y3 is obtained, in which only the parameters σ1 and τ1 appear.

The monomials of the aforementioned polynomial are listed in Table 4. The results
of the following substitution are also included in the table: Replace x1σ1 + x2τ1 by c1.
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All the remainingmonomials aremultiplied by the factor c21. Therefore, simplifying
this factor, we obtain:

N (w1)c22d
2
1 = x21 y

2
2 + x21 y

2
3 − 2x1x2y1y2 + x22 y

2
1 + x22 y

2
3−2x1x3y1y3 − 2x2x3y2y3 + x23 y

2
1 + x23 y

2
2 .

By polynomial checking, it is easy to verify the next equality:

N (w1)c22d
2
1 = (

x21 + x22 + x23 + x24
) (

y21 + y22 + y23 + y24
)

−(x1y1 + x2y2 + x3y3 + x4y4)2 − x24
(
y21 + y22 + y23 + y24

)
−y24

(
x21 + x22 + x23 + x24

) + 2x4y4(x1y1 + x2y2 + x3y3 + x4y4).

By hypothesis, the second member of the previous equality is equal to p2 − px24 −
py24 . Therefore, we conclude that:

N (w1) = p
(
p − x24 − y24

)
c22d

2
1

.

��
Lemma 4 Given a prime number p and a p-orthonormal system S = { v1, v2 } with
|supp(S)| > 2, associated with the lattice Λ, then c = d = 1, where c and d are the
parameters that appear in Table 1.

Proof According to Table 1, it holds that c = gcd(x1, x2, x3, x4), and by Proposition 3,
we conclude that c = 1. This result implies that the Smith quasi-normal formdescribed
in Table 1 is actually a normal form, because in this case L ∈ GLk(Z), and conse-
quently, d is the second invariant factor of V . Considering once more Proposition 3,
we conclude that d = 1. ��
Proposition 5 Given a prime number p, a p-orthonormal system S = { v1, v2 } with
|supp(S)| > 2 and the Gram matrix G of the basis B⊥ = { w1, w2 } of the orthogonal
lattice Λ⊥, then it holds that p |G.

Proof Suppose that the Gram matrix G =
(

μ λ

λ ν

)
.

Let us consider the value of μ = N (w1) obtained in Lemma 3. The prime fac-
torization of p(p − x24 − y24 ) contains only one factor p, because p is prime and
−p < p − x24 − y24 < p. (Remember that we are assuming that x4 �= 0 or y4 �= 0.)
Then, the prime factorization of c22 d

2
1 does not contain p, because the number of

times it contains each prime factor is even. Consequently, c22 d
2
1 | (p − x24 − y24 ) and

this implies that p | μ, i.e., μ = pμ′. Moreover, |μ′| < p.
Applying Proposition 4, Lemma 4 and the property det2(Λ⊥) = det(G), we get

p2 = pμ′ ν − λ2. This implies p | λ2, and keeping in mind that p is a prime, we have
that p | λ, i.e., λ = p λ′.

Reconsidering the previous equality, and canceling a factor p, we obtain p =
μ′ ν − p λ′ 2. This implies again that p | μ′ ν, and considering that p is prime and
|μ′| < p, we get p | ν, i.e., ν = p ν′.
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We arrive to the final conclusion that G = p

(
μ′ λ′
λ′ ν′

)
, i.e., p |G. ��

Theorem 3 Given a prime number p, a p-orthonormal system S = { v1, v2 } with
|supp(S)| > 2 and associated lattices Λ and Λ⊥, there exists v ∈ Λ⊥ such that it
verifies N (v) = p.

Proof Let G be the Gram matrix of the basis B⊥ of the associated lattice Λ⊥.
Proposition 4, Lemma 4 and property det2(Λ⊥) = det(G) allow us to conclude that

det(G) = p2. Applying now Proposition 5, we obtain that G ′ = G

p
is an unimodular

matrix, i.e., G ′ ∈ GL2(Z), and that, given a vector v ∈ Λ⊥, N (v) = bt G b = p if
and only if bt G ′ b = 1, b being the coordinate vector of v in the basis B⊥.

Let K = { x ∈ R
2 | xt G ′ x ≤ 1 } and {u1, u2} be an orthonormal basis of eigenvec-

tors ofG ′ with eigenvaluesλ1 andλ1, respectively.Note thatλ1 andλ2 are real, sinceG ′
is symmetric, positive, becauseG ′ is definite positive, and verify λ1 λ2 = det(G ′) = 1.
Then K is the ellipseλ1x2+λ2y2 ≤ 1,with respect to the reference systemdetermined
by u1 and u2, and has volume π 1√

λ1

1√
λ2

= π .

Given a 0 < ε < 1, let be Eε the ellipse K scaled by a factor fε = 2√
π

+ ε. The

ellipse Eε has volume π f 2ε > π 22
π

= 22. Then, for Theorem 2, there exists a point
b in the lattice Z

2 (with volume of the fundamental domain 1) such that b �= 0 and
b ∈ Eε . Since the set of points of Z

2 that belong to any of the ellipses Eε is finite, it
is shown that there is a point b in the lattice Z

2 such that b �= 0 and b ∈ K .
The point b defines a vector v ∈ Λ⊥ that verifies 0 < bt G ′ b ≤ 1. Then, it holds

bt G ′ b = 1, since bt G ′ b is integer, and, at last, is the wanted vector of Λ⊥, because
N (v) = bt G b = p. ��
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