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Genuine steering is still not well understood enough in contrast to genuine entanglement and
nonlocality. Here we provide a protocol which can reveal genuine steering under some restricted
operations compared to the existing witnesses of genuine multipartite steering. Our method has an
impression of some sort of ‘hidden’ protocol in the same spirit of hidden nonlocality, which is well
understood in bipartite scenario. We also introduce a genuine steering measure which indicates the
enhancement of genuine steering in the final state of our protocol compared to the initial states.
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I. I. INTRODUCTION

Einstein-Podolsky-Rosen steering, the phenomenon
that was first discussed by Schrodinger and afterwards
considered as a notion of quantum nonlocality, has
gained significant attention in recent days[1–3]. This
quantum phenomenon, which has no classical analogue,
is observed if one of two distant observers, sharing an
entangled state, can remotely steer the particle of the
other distant observer by performing measurements
on his/her particle only. The experimental criteria
for analyzing the presence of bipartite steering, first
investigated in [4], was formalized in ref where the
authors generalized this concept for arbitrary systems[5].
Till date there has been a lot of analysis regarding
various features of steering nonlocality such as methods
of detection[6] and quantification of steering[7, 8],
steering of continuous variable systems[9], loop-hole
free demonstration of steering[10], applications as a
resource of nonlocal correlations in the field of quantum
information protocols, exploiting the relation of steering
with incompatibility of quantum measurements[11, 12]
and its ability to detect bound entanglement[13], etc.
Apart from its foundational richness, EPR steering do
have multi-faceted applications in practical tasks such
as semi-device independent scenario [14] where only
one party can trust his or her apparatus but the other
party’s apparatus is not trusted. In that situation the
presence of steerable state provides a better chance to
allow secure key distribution[15]. Even for some other
tasks such as randomness certification[16], entanglement
assisted sub-channel discrimination[17], and secure
teleportation through continuous-variables steerable
states[18] are found to be useful.
Being a notion of nonlocality there exists a hierarchy
according to which steering is defined as a form of
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quantum inseparability, intermediate in between entan-
glement and Bell nonlocality. Considering pure quantum
states these three notions are equivalent whereas in
general they are inequivalent in case of mixed states
[19]. However in the context of comparison of steering
nonlocality with that of Bell-nonlocality, it is interesting
to mention that analogous to hidden nonlocality[20, 21],
existence of hidden steering has been proved in [19] for
bi-partite scenario. Just as in the case of exploiting
nonlocality beyond Bell scenarios via the notion of
hidden nonlocality[20, 21], hidden steering refers to rev-
elation of steering nonlocality under suitable sequential
measurements. In this context an obvious interest grows
regarding analysis of the same for multipartite scenario.
Due to increase in complexity as one shifts from bipartite
to multipartite system, till date there has been limited
attempts to understand the feature of multipartite
steering phenomenon. Analogous to both entanglement
and Bell-nonlocality the concept of genuine steering
has been established in recent days. In this context
it may be mentioned that unlike Bell-nonlocality and
entanglement, due to asymmetric nature of steering
nonlocality the notion of genuine steering nonlocality
lacks uniqueness. However genuine steering was first
introduced in [22] where the authors provided the criteria
for detecting genuineness in steering scenario for both
continuous as well as discrete variable systems. Later
two other notions of genuine steering were introduced
in [23] mainly for tripartite framework where two
parties measurements are fully specified i.e one party
can control remaining. In this context, the author has
also designed genuine steering inequalities to detect
genuine tripartite steering. Now speaking of genuine
steering nonlocality, it may be interesting to explore
the possibility of exploiting the same via some suitable
sequential measurement protocol.
To be precise, our present topic of discussion will
continue in the direction of analyzing hidden genuine tri-
partite steering nonlocality in the framework introduced
in [23]. For present topic of discussion we will follow
terms and terminologies used in [23]. We will design
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a protocol involving a sequence of measurements such
that initially starting from tripartite states which may
not be genuinely steerable, the protocol may generate a
genuinely steerable state. Interestingly the initial states
which will be used in the protocol do have a bilocal
model [24].

The paper has organized as follows. In section[II] we
have introduced the notion of steering both in bi partite
as well as genuine multipartite scenario. Then in sec-
tion[III] we have presented suitable sequential operations
to achieve the final state. Section[IV] contains our main
results then discussion.

II. BACKGROUND

In this section we are basically going to include a brief
detailing of the mathematical tools that will be used in
our work.

A. Genuine tripartite steering

Firstly we discuss the criteria of detecting genuine
steering[23]. Correlations P (a, b, c|x, y, z) shared be-
tween three parties, say Alice, Bob and Charlie are said
to be genuinely steerable[23] from one party, say Char-
lie to remaining two parties Alice and Bob, if those are
inexplicable in the following form:

P (a, b, c|x, y, z) =
∑
λ

qλ[P (a, b|x, y, ρAB(λ))]P (c|z, λ)

+
∑
λ

pλP (a|x, ρλa)P (b|y, ρλb )P (c|z, λ). (1)

where P (a, b|x, y, ρAB(λ)) denotes the nonlocal proba-
bility distribution arising from two-qubit state ρλAB , and
P (a|x, ρλA) and P (b|y, ρλB) are the distributions arising
from qubit states ρλA and ρλB .

Here Charlie performs uncharacterized measurement
whereas both Alice and Bob have access to qubit mea-
surements. The tripartite correlation will be called gen-
uinely unsteerable if it is explained by 1 where ρAB(λ)
is called hidden state for Alice and Bob side. In [23],
the author designed a detection criteria of tripartite gen-
uine steering(Svetlichny steering), based on Svetlichny
inequality[25]. The detection criterion is given in the
form of a Bell-type inequality:

〈CHSHABz1 + CHSH
′

ABz0〉NLHS2×2×? ≤ 2
√

2. (2)

where CHSHAB and CHSH
′

AB stand for two inequiv-
alent facets defining Bell-CHSH polytope for Alice and
Bob and {z0, z1} are measurements on Charlie’s part.
Here NLHS stands for nonlocal hidden state whereas
2×2×? implies that only two parties(Alice and Bob) have
access to qubit measurements but Charlie does not trust

his measurement devices and hence are uncharacterized.
Alice and bob should have orthonormal measurement set-
tings. If correlations arising due to measurements on any
given quantum state(ρ) violate this inequality(Eq.(2)),
then that guarantees genuinely steerable of ρ from Char-
lie to Alice and Bob. Analogously genuine steerability
of ρ from Bob to Charlie and Alice and that from Alice
to Charlie and Bob can be guaranteed respectively by
violation of the following criteria:

〈CHSHBCx1 + CHSH
′

BCx0〉NLHS2×2×? ≤ 2
√

2. (3)

〈CHSHACy1 + CHSH
′

ACy0〉NLHS2×2×? ≤ 2
√

2. (4)

Terms CHSHBC , CHSH
′

BC , CHSHAC , CHSH
′

AC
have analogous definitions. Hence a state is genuinely
steerable from one party to the remaining two parties if
it can violate atleast one of these three criteria(Eqs.2,3,4).
We now discuss about some relevant tools for measuring
genuine multipartite entanglement and genuine steering.

B. Genuine multipartite concurrence

We briefly now describe CGM , a measure of gen-
uine multipartite entanglement. For pure n-partite
states(|ψ〉), this measure is defined as [26] : CGM (|ψ〉) :=

minj
√

2(1−Πj(|ψ〉)) where Πj(|ψ〉) is the purity of jth

bipartition of |ψ〉. The expression of CGM for X states
is given in [27]. For tripartite X states,

CGM = 2 maxi{0, |γi| − wi} (5)

with wi =
∑
j 6=i

√
ajbj where aj , bj and γj(j = 1, 2, 3, 4)

are the elements of the density matrix of tripartite X
state:



a1 0 0 0 0 0 0 γ1
0 a2 0 0 0 0 γ2 0
0 0 a3 0 0 γ3 0 0
0 0 0 a4 γ4 0 0 0
0 0 0 γ4

∗ b4 0 0 0
0 0 γ3

∗ 0 b3 0 0
0 γ2

∗ 0 0 0 0 b2 0
γ1
∗ 0 0 0 0 0 0 b1



C. Genuine steering measure

First we define genuine steering measure which is anal-
ogous to the bi-partite steering measure first described in
[28]. This measure is given by the following quantity:

Sgen(ρ) = max{0, Sn(ρ)− 1

Smaxn − 1
} (6)

whereSmaxn = maxρ Sn(ρ) and Sn(ρ) = maxη Sn(ρ, η)
with the maximization taken over all measurement set-
tings η and 0 ≤ Sgen(ρ) ≤ 1.
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After giving a brief detailing of our mathematical tools,
we now proceed with our results. To start with, we de-
sign the sequential measurement protocol based on which
we observe the enhanced revelation of genuine steering.

III. REVEALING MULTIPARTITE GENUINE
STEERING

The protocol that we propose here is a
SLOCC(Stochastic Local Operation and Classical
Communication) protocol which consists of two stages:
Preparation Stage and Measurement Stage. We name
this protocol as Sequential Measurement Protocol. A
detailed sketch of the protocol is given below:
Sequential Measurement Protocol : Three spatially
separated parties(say, Ai; i = 1, 2, 3) are involved in this
protocol. n number of tripartite quantum states can be
distributed among them. None of these states violate
genuine steering inequality[23]. As each party holds one
particle from each of the n tripartite states hence each
of the parties holds n number of particles.

A. Preparation Stage

• In the preparation stage, every party can perform
some joint measurement on their respective n − 1
particles and then broadcast the results to others.

• At the end of measurements by all the three par-
ties, a tripartite quantum state shared among A1,
A2 and A3 is generated. Clearly this final state is
always prepared depending upon the measurement
results obtained by the parties in the previous step.

FIG. 1: Schematic diagram for preparation and mesurement
stage.

B. Measurement Stage

• In the measurement stage, all the three parties can
perform any projective measurement in arbitrary
directions. But in this stage they are not allowed
to communicate among themselves.

• After measurements they can generate a tripartite
correlation so that they can verify that this corre-
lation can violate the genuine steering inequality.

We refer to this protocol of sequential measurements by
the three parties sharing n states as a sequential mea-
surement protocol (SMP).

Having sketched the protocol we now give examples of
some families of tripartite states which when used in this
network, reveal genuine steering for some members of
these families. Such an observation is supported with an
increase in the amount of genuine steering, guaranteed
by the measure of steering Sgen(ρ)(Eq.(6)).

Let the three initial states be given by:

ρ1 = p1|ψf 〉〈ψf |+ (1− p1)|001〉〈001| (7)

with |ψf 〉 = cos θ1|000〉 + sin θ1|111〉, 0 ≤ θ1 ≤ π
4 and

0 ≤ p1 ≤ 1;

ρ2 = p2|ψm〉〈ψm|+ (1− p2)|010〉〈010| (8)

with |ψm〉 = |000〉+|111〉√
2

and 0 ≤ p2 ≤ 1;

ρ3 = p3|ψl〉〈ψl|+ (1− p3)|100〉〈100| (9)

with |ψl〉 = sin θ3|000〉 + cos θ3|111〉,0 ≤ θ1 ≤ π
4 and

0 ≤ p1 ≤ 1. In this context it may be noted that the
three initial states have Svetlichny bi-local model under
projective measurement for the following restricted range
of state parameters:

• For first state(ρ1) : p1 ≤ 1
(1+sin[2θ1])

;

• Second state(ρ2) : p2 ≤ 1
2 ;

• Third state(ρ3) : p3 ≤ 1
(1+sin[2θ3])

.

Each of the three parties A1, A2 and A3 performs Bell ba-
sis measurements on their respective particles. Depend-
ing on a particular output of all the measurements(here

|ψ±〉 = |01〉±|10〉√
2

), a resultant state ρ±4 is obtained which

after correcting the phase term is given by:

ρ4 =
p3|φ〉〈φ|+ (1− p3) sin2 θ1|100〉〈100|

sin2 θ1 + p3 cos 2θ1 sin2 θ3
(10)

where |φ〉 = cos θ1 sin θ3|000〉+ sin θ1 cos θ3|111〉.
Clearly ρ4 is independent of p1 and p2. Interestingly,

ρ4 can also be generated for some other combination of
sequential operations on some different arrangement of
particles between the parties Ai(1, 2, 3) and for different
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output of Bell measurement. For the initial states ρi
(i = 1, 2, 3), the amount of genuine entanglement are
given by

Cρ1GM = p1 sin 2θ1,

Cρ2GM = p2

and

Cρ3GM = p3 sin 2θ3 (11)

whereas that of ρ4 is given by

Cρ4GM =
p3 sin 2θ1 sin 2θ3

2(sin2 θ1 + p3 cos 2θ1 sin2 θ3)
. (12)

Eq.(11) indicates that the initial states ρi(i = 1, 2, 3) are
genuinely entangled for any nonzero value of the state
parameters .

The maximum value of the genuine steering
operators(Si)(Eq.2) under projective measurements,
for state ρi(i = 1, 2, 3) is given by:

S1 = max[2 p1 sin 2θ1,
1√
2

√
((1− p1 − p1Cos[2θ1])2 + (p1Sin[2θ1])2],

S2 = max[2 p2,
1√
2

√
((1− p2)2 + (p2)2)]

and

S3 = max[2 p3 sin 2θ3,
1√
2

√
((1− p3 + p3Cos[2θ3])2 + (p3Sin[2θ3])2)|]

(13)

respectively whereas that for the final state ρ4, it is given
by

S4 = max[
p3 sin 2θ1 sin 2θ3

sin2 θ1 + p3 cos 2θ1 sin2 θ3
,

√
2
√

(1− p3 + p3Cos[2θ3]− Cos[2θ1])2 + (p3Sin[2θ1]Sin[2θ3])2

2− 2(1− p3)Cos[2θ1]− p3Cos[2(θ1 − θ3)]− p3Cos[2(θ1 + θ3)]
. (14)

It is clear from the maximum value of genuine steer-
ing operator(Eqs.(13), (14)) and the measure of entan-
glement (Eqs.(11), (12)) of both initial states and final
state, that each of them does not violate genuine steering
inequalities(Eqs.2,3,4) for CρiGM ≤

1
2 (i = 1, 2, 3, 4).

Thus to observe genuine steering revelation there
should exist some fixed values of the parameters of the
three initial Sveltlichny bi-local states with CρiGM ≤ 1

2

such that the final state can have Cρ4GM > 1
2 . Interest-

ingly we get such states from the families of the initial
states ρ1(Eq.(7)), ρ2(Eq.(8)) and ρ3(Eq.(9)).

For example, let θ1 = 0.1, p1 ≤ 0.509 , p2 ≤ 1
2 ,

θ3 = 0.1 and p3 ∈ [0, 0.83426]. Then each of the
initial states have Svetlichny bi-local model (moreover
one can show that these models are NS2 local[24]) and
CρiGM ≤

1
2 . Thus they do not violate genuine steering

inequalities(Eqs.2,3,4).

But when used in our protocol(Sec.III), they can gen-
erate a state ρ4 (with Cρ4GM > 1

2 ) which exhibits gen-
uine steering by violating genuine steering inequalities
for p3 ≥ 0.33557. This guarantees revelation of genuine
steering for p3 ∈ [0.33557, 0.83426]. So initially each of
these three states are unable to exhibit genuine steer-
ing but after the sequential measurements are taken into
account they can violate that genuine steering inequal-
ity. Now a pertinent question would be whether one can
quantify this revelation of genuine steering as observed
in our protocol. We deal with this question in the next
sub-section.
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C. Enhancement of the Genuine Steering measure

In this part we show that the prescribed protocol in-
deed enhances a measure of genuine steering in the re-
sulting state. The amount of genuine steering for the
three initial states are:

Sgen(ρ1) = max{0, 2 p1 sin 2θ1 − 1},

Sgen(ρ2) = max{0, 2 p2 − 1},

Sgen(ρ3) = max{0, 2 p3 sin 2θ3 − 1} (15)

whereas for the final states the genuine steerable quantity
takes the form:

Sgen(ρ4) = max{0, p3 sin 2θ1 sin 2θ3

sin2 θ1 + p3 cos 2θ1 sin2 θ3
− 1} (16)

If we take p1 = p3 and θ1 = θ3 then for any values of
p1 and θ1 the final state is more genuinely steerable than
the initial ones.

IV. CONCLUSION

Genuine steering nonlocality, being a weaker notion of
genuine nonlocality is considered to be a resource in var-

ious practical tasks. So apart from its theoretical impor-
tance, revelation of such a resource under any protocol
that allows only classical communication and shared ran-
domness is of immense practical importance. Motivated
by that we have attempted to design a SLOCC protocol
which demonstrates revelation of ‘hidden’ genuine steer-
ing. Our discussion in a restricted sense guarantees the
fact that under suitable measurements by the parties in-
volved in the network, our protocol is sufficient to show
genuine steering even from some quantum states which
have bi-local models. However under our protocol each of
the parties having two particles perform Bell basis mea-
surements and the remaining parties perform projective
measurements. In brief, this protocol enables one to go
beyond the scope of existing witnesses of genuine steering
and thus demonstrate genuine steering for a larger class
of multipartite states. In this context, it will be interest-
ing to consider more generalized measurement settings
by the parties which may be yielding better results.
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