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Abstract
Quantummachine learning has the potential to overcome problems that current classi-
cal machine learning algorithms face, such as large data requirements or long learning
times. Sampling is one of the aspects of classical machine learning that might benefit
from quantum machine learning, as quantum computers intrinsically excel at sam-
pling. Current hybrid quantum-classical implementations provide ways to already use
near-term quantum computers for practical applications. By expanding the horizon on
hybrid quantum-classical approaches, this work proposes the first implementation of
a gated quantum-classical hybrid Helmholtz machine, a gate-based quantum circuit
approximation of a neural network for unsupervised tasks. Our approach focuses on
parameterized shallow quantum circuits and effectively implements an approximate
Bayesian network, overcoming the exponential complexity of exact networks. In addi-
tion, a new balanced cost function is introduced, preventing the need of millions of
training samples. Using a bars and stripes data set, the model, implemented on the
Quantum Inspire platform, is shown to outperform classical Helmholtz machines in
terms of the Kullback–Leibler divergence.
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1 Introduction

Machine learning is a widespread concept with many applications in a wide range of
domains. Machine learning is especially well suited for tasks as image recognition
[13] and pattern identification [6], tasks that are easy for us humans. Furthermore,
it is used for tasks as spam filtering [7] and evaluating customer behavior [2,5]. In
short, machine learning algorithms try to make predictions by extracting (meaningful)
information from data. Machine learning algorithms giving exact answers are hard to
develop, as, even for the simplest problems, they quickly become complex. Therefore,
most algorithms focus on approximating model parameters by means of learning.
This learning is done by training the algorithm based on the given data. The more data
used, the better the model will approximate the real situation. However, using more
data also implies an increase in computational complexity. Therefore, the efficiency
of machine learning algorithms is critical for them to remain feasible.

Quantum computing has the potential to overcome some of these efficiency hur-
dles. Even though the current state of the art does not yet allow solving complex
real-world problems, first implementations of toy problems are already available and
show promising results [8,29–31]. Furthermore, for small toy problems, requiring
only limited resources, the algorithms can also be simulated on classical computers to
understand its workings.

Learning efficiency improvements are not the only benefit quantum machine
learningoffers.Also running timeandcapacity improvements in associative or content-
addressable memories are expected [4,17,21,25].

While completely new quantum machine algorithms are possible and work is done
ondeveloping them, the resources required to run these quantumalgorithmson real-life
data are far from what is available today. Even for quantum versions of classical algo-
rithms [28], implementations require just too many resources to be feasible. However,
significant improvements over classical algorithms can already be obtained without
full quantum algorithms. In fact, often there is only a single (sub)routine that takes
up most of the computational resources. By changing these complex routines to more
efficient quantum analogs, significant improvements can be obtained [4]. Such algo-
rithms, consisting of both classical and quantum parts, are called hybrid algorithms.

One special type of hybrid algorithms is a variational quantum eigensolver (VQE),
where the quantum operations are tweaked using classical routines [22]. In general,
a VQE approximates the ground-state energy of a quantum system. As quantum
resources are used together with classical resources, even on small near-term devices,
so-calledNISQdevices [23], quantumcomputing can be useful. Improvements on both
the classical and the quantum parts of the original work are given in [16]. Variational
quantum eigensolvers have already been used to solve different problems. Aside from
(quantum) chemistry-related problems [20,26], VQEs have also been used to factor
integers [1].

We focus on another application of VQEs: generative modeling. Generative mod-
els are used to learn probability distributions over (high-dimensional) data sets. By
increasing the depth of a generative model, the generalization capability grows and
more abstract representations of the data can be found, however, at the cost of
intractable inference and training. Both inference and training rely on variational
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approximations and Markov chain Monte Carlo sampling, both being computation-
ally expensive. As quantum computers allow for efficient sampling, the expensive
sampling subroutine can be run on a quantum computer, thus reducing the computa-
tional complexity of generative models significantly.

This paper gives an implementation of a Helmholtz machine, a special type of
generative model, on a gate-based quantum computer. A Helmholtz machine is an
artificial neural network consisting of a bottom-up recognition network and a top-
downgenerative network. The recognition network takes data and produces probability
distributions over it, while the generative network generates representations of the data
and the hidden variables. In our approach, the generative sampling is implemented on
a gate-based quantum computer.

Some other work that considered the Helmholtz machine focused on implementing
the Helmholtz machine on quantum annealing devices [4], a different way of quantum
computing [10]. Furthermore, work is done on a quantum circuit learning algorithm
used to train shallow circuits [3] and a qubit neuron model [19], where the learning is
performed by a quantum-modified backpropagation algorithm.

In this paper, we first explain the Helmholtz machine and the related learning
algorithm in Sect. 2. The main result of this work is given in Sect. 3, as it presents the
shallow circuit implementation of the hybrid Helmholtz machine and introduces the
data set used in the experiments. The training of this circuit is considered in Sect. 4.
In Sect. 5, we will compare the performance of a hybrid Helmholtz machine with a
classicalHelmholtzmachine. Finally, Sect. 6 gives the conclusions aswell as directions
of future work.

2 The Helmholtz machine

A Helmholtz machine is a special artificial neural network used to learn hidden struc-
tures in data. The Helmholtz machine sees the world as patterns of bits, in which each
bit pattern d (i.e., a binary string) appears with certain probability p(d).

2.1 Structure

Specifying p(d) exactly requires a lot of information, and even approximating the
probability might be exponentially hard [27], as the number of possible patterns d is
exponential in the number of bits. In a completely random world, this indeed poses
a challenge; however, in practice often less information is required to still obtain a
good approximation of the probability p(d), as reality often is not purely random.
The Helmholtz machine aims at taking advantage of this [11]. A Helmholtz machine
consists of two artificial neural networks: the first, a bottom-up recognition network
R that approximates inference on the hidden units with information extracted from
real data, and the second, a top-down generative network G that generates artificial
data. These networks together aim on learning probability distributions of a data set
by finding hidden structures.
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Fig. 1 Illustration of a classical Helmholtz machine (CHM) 4–2–1 containing a visible layer with four
nodes and two hidden layers with two and one nodes, respectively

The generative network G performs top-down sampling, starting from the deepest
hidden layer. In each layer, it tries to reconstruct the data obtained from the previous
layer [9]. To perform this, it assumes a generative distribution pG(d) that produces
pattern d in a probabilistic way from a casual chain, given by

1 → x1 → · · · → xn−1 → d,

where each xi is a hidden layer, with x1 the deepest hidden layer. The probability for
a pattern d is given by

pG(x1, . . . , xn−1,d)

= pG(d | xn−1) · pG(xn−2 | xn−1) · . . . ·
pG(x2 | x1) · pG(x1). (1)

A Helmholtz machine also has a recognition network R that is used to learn the
weights of the generative network and hence the generative probability distribution.
The causal chain for a recognition network is given by

d → xn−1 → · · · → x1.

Note the link with the generative network. The recognition network approximates the
true intractable distribution p(d) using a bottom-up pass. Here, sampling is performed
on the available data set and then passed through the network R to approximate the
posterior distribution.

In Fig. 1, an example of a three-layered Helmholtz machine is shown, with the
blue arrow indicating the recognition networking and the orange arrows indicating the
generative network. The causal chain of the generative network is given by 1 → x →
y → d, while that of the recognition network is given by d → y → x.
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For this example, the generative probability of a bit pattern is given by

pG(x, y,d)

= pG(d | y) · pG(y | x) · pG(x).

AHelmholtzmachine tries tomatch the generative distribution pG(d)with the real-
world distribution p(d) and has learned perfectly if the two match. Often, it is enough
for the generative distribution to approximate the real-world distribution sufficiently
well. Parameter settings are obtained through a process of learning.

2.2 Learning the Helmholtz machine

Training the Helmholtz machine is done in an iterative manner, where each iteration
consists of two phases. In the first phase, the recognition network R is fixed, while the
generative networkG learns the posterior probability distribution. In the second phase,
G is fixed and R learns the prior probability distribution. The Wake–Sleep algorithm
[9] is a well-suited example of such an iterative learning algorithm.

This algorithm is an unsupervised learning algorithm, used to learn probability
distributions with which data cannot only be efficiently recognized, but also accurately
generated. A Helmholtz machine learns the structure of the world by minimizing the
variational free energy

FR
G (d) = FG(d) + KL[pR(hidden|d)||pG(hidden|d)], (2)

with KL theKullback–Leibler divergence [12], used to quantify the similarity between
probability distributions. In this case, the probability distributions of the hidden lay-
ers found by the recognition and generative networks R and G, pR(hidden|d) and
pG(hidden|d), respectively.

By minimizing FR
G (d), simultaneously the Kullback–Leibler divergence

KL[pR(hidden|d)||pG(hidden|d)]

and the free energy FG(d) are also minimized as both quantities are positive. Each
iteration of theWake–Sleep algorithm involves two phases: theWake phase, adjusting
the weights of the generative network θG , and the Sleep phase, adjusting the weights
of the recognition network θR . Hence, during training, alternately small changes to
the weights of both networks are made.

In the Wake phases during training, small changes to θG are made to decrease the
variational free energy FR

G (d), where d is a random sample (data point) from the real
world p(d). Note that d is not taken from the generative network G. In this phase, the
data point is given to the recognition causal chain,which then generates the explanation
x1 · · · xn−1. Afterward, the weights are updated based on a delta rule.

In the second phase, the Sleep phase, a random sample is taken from the generative
distribution and given to the causal chain. This will eventually produce the pattern d.
The recognition weights θR are updated to decrease

123



174 Page 6 of 14 T. J. van Dam et al.

˜FR
G (d) = FG(d) + KL[pG(hidden|d)||pR(hidden|d)]. (3)

Note the difference between the order of the arguments in Eqs. (2) and (3). Due to
the asymmetry of the Kullback–Leibler divergence, see also Eq. (5), the two results
differ.

At the beginning of training, all weights are set to zero. Hence, every neuron, ini-
tially, has an equal change of firing and not firing, i.e., be activated or not. Afterward,
in each iteration first a Wake phase is performed to update θG and then a Sleep phase
to update θR , as explained before. By means of updating the weights, the difference
between the generative probability distribution pG(d) and the real probability distri-
bution p(d) is reduced.

In the next section, we will give a detailed explanation of our implementation of the
hybrid quantum-classical Helmholtz machine, as well as the data set and cost function
used in our experiment.

3 Parameterized shallow quantum circuit

Implementing a hybrid quantum-classical Helmholtz machine on a quantum computer
faces us with some challenges, one of which is the available resources. At least on the
near term, coherence times of qubits (T1 times) are not yet sufficient for long quantum
circuits with many gates. The resource demands of a hybrid Helmholtz machine are
high, while the available resources are limited, at least on the short term. Therefore, it
is difficult to implement a quantum circuit able to perform uniform sampling from the
data [3]. The main source of computational complexity comes from the intractability
of performing Bayesian inference over probability distributions. The complexity of
an exact representation of a Bayesian network in the form of a quantum circuit is
exponential in the number of qubits; hence, an exact representative quantum circuit
exists with complexity O(2n) [14]. Because of this, we propose an approximation of
such quantum circuit: a parameterized shallow quantum circuit (PSQC), which is of
reduced complexity, compared to an exact quantum circuit, but still capable enough
to characterize an arbitrary joint probability distribution. We focus on N -dimensional
binary vectors x ∈ {0, 1}N ; however, extensions to other data formats are easily made.
Examples of such binary vectors are black and white images, as there exists a one-
to-one mapping between input vectors and the computational basis of an N -qubit
quantum system: x = (x1, . . . , xN ) ↔ |x1x2 . . . xN 〉.

3.1 From network topologies to quantum circuits

Following [14, Theorem 1], we know that arbitrary probability distributions can be
prepared using an exponential number of gates. However, implementations with an
exponential number of gates are impractical and inefficient when training the circuit.
Instead, we use an approximated circuit using fewer quantum gates, thus allowing for
more efficient training. Therefore, our PSQC is implemented by using an approxima-
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Fig. 2 Recognition and generative network of a PSQC, with four visible nodes and three hidden nodes
each. The visible nodes for the recognition network are the input nodes. The output nodes are the visible
nodes of the generative network

tion of the quantum circuit representation of the generative and recognition networks
G and R of the hybrid Helmholtz machine.

To map a classical Helmholtz machine to a gate-based quantum circuit, a qubit is
assigned for every pixel in the input data. This allows us to represent the input vectors
by the first qubits of the quantum circuit. Furthermore, a qubit is assigned to every
node in each subsequent layer. Now, each node of the classical Helmholtz machine is
represented by a qubit. Different nodes in consecutive layers are connected by CNOT
operations, and the corresponding weights are applied by parameterized single-qubit
rotations on the qubits of the former layer. These parameters, or angles, are in the
range [−π, π ].

An example of a recognition circuit with four visible and three hidden nodes is
shown in Fig. 2a. Here, S_P stands for state preparation, applying an X operation
on qubits, depending on the corresponding pixel value. This gives the qubit the same
initial value as that of the pixel. Now, single-qubit rotation gates are applied to each
qubit in the visible layer, following the Z–Y decomposition [18], such that U =
eiαRz(β)Ry(γ )Rz(δ), where α, β, γ and δ are real-valued. This decomposition allows
a qubit to be mapped to every possible single-qubit quantum state, given the correct
parameters.

An optimal set of parameters allows us to discover the hidden probability distri-
bution present in the input data (i.e., p(d)). The visible layer is then connected with
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Fig. 3 Illustration of the BAS22 data set. All patterns in the BAS22 class have probability 1/6, while all
other patterns have probability 0

the first hidden layer using CNOT operations, analogous to the bipartite structure of
a Helmholtz machine. Again, single-qubit operations are applied, this time on the
qubits in the first hidden layer. For each additional hidden layer, extra CNOT opera-
tions are used, again with single-qubit operations on the corresponding qubits. Finally,
the qubits of the last hidden layer are measured.

The corresponding example of a generative circuit is shown in Fig. 2b, again with
four visible and three hidden nodes. The visible layer of the generative circuit is the
last layer, in accordance with the classical networks shown in Fig. 1. State preparation
is performed similarly as for the recognition circuit, by means of X gates, based on the
corresponding pixel values. Afterward, single-qubit rotations are applied and CNOT
gates are used between different layers, corresponding to the bipartite structure of the
generative network. Again, the qubits of the last layer are measured, which are, for
the generative network, those in the visible layer.

For this 4–3 topology of the Helmholtz machine, there are 42 parameters to be
optimized through learning, 21 in the generative network and 21 in the recognition
network.

3.2 Data set

Our implemented hybrid Helmholtz machine focuses on the bars and stripes (BASnm)
data set [15, p. 526], consisting of n × m pixel patterns. Each pattern in this data set
contains either only bars or only stripes. The BASnm data set has 2n + 2m − 2 valid
patterns, out of the 2nm possible patterns. Each valid pattern is equally likely. All other
patterns have zero probability of occurring. We use the BAS22 data set, see Fig. 3,
requiring four visible input and output nodes.

3.3 Cost function

In optimization problems, and hence also in training machine learning models, a cost
function is used to express the quality of a solution or a specific set of parameters. We
use a cost function to estimate the fit of the probability distribution pG . To prevent
us from having to take millions of samples to get a good estimate of the probability
distribution, we propose the following cost function Cθ (R,G):
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Learning of the Quantum Circuit

θR = {uniform.random[−π , π ]} 21

θG = {uniform.random[−π , π ]} 21

For i in range(nCycles):
While maxFuncEval ≤ 1,000:
Wake Phase to update θG

While maxFuncEval ≤ 1,000:
Sleep Phase to update θR

Algorithm 1: Learning algorithm for our PSQC model

W AK E-PHASE - QUANTUM CIRCUIT
#Set initial angles at random
anglesR = θR
anglesG = θG

#Experience Reality
visibleR = SampleFromWorld(BAS22)

#Bottom-Up pass through Recognition Network
hiddenR = Recognition(visibleR, anglesR)

# Top-down pass through Generator Network
hiddenG = hiddenR
visibleG = Generative(hiddenG, anglesG)

#Calculate value of cost function
Cθ (R,G) = f (visibleR, hiddenR, hiddenG, visibleG)

#Update generator parameters by gradient-free optimizer
anglesG = Optimizer.minimize(Cθ (R,G))

Algorithm 2:Wake-phase in the training of the PSQC. The passes through Recognition and Generative are
evaluated using a quantum computer

Cθ (R,G) =
∑

i

∑

j

(〈Vi · Hj 〉R − 〈Vi · Hj 〉G)2

+
∑

i

(〈Vi 〉R − 〈Vi 〉G)2

+
∑

j

(〈Hj 〉R − 〈Hj 〉G)2.

(4)

This, together with the transformation s �→ 2s − 1, gives a balanced cost function
as 1 �→ 1 and 0 �→ −1. Our cost function uses the first and second moments of visible
(Vi ) and hidden (Hj ) variables of both networks (indicated by a subscript) without
the need of estimating probabilities. The estimated cost is used to update the model
parameters to further lower the cost.
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SLEEP-PHASE QUANTUM CIRCUIT
#Set initial angles at random
anglesR = θR used in Wake phase
anglesG = θG coming from the previous Wake phase

#Initiate dream
hiddenG = SampleFromHidden(Hidden)

#Top-down pass through Generative Network
visibleG = Generative(hiddenG, anglesG)

#Bottom-Up pass through Recognition Network
visibleR = visibleG
hiddenR = Recognition(visibleR, anglesR)

#Calculate value of cost function
Cθ (R,G) = f (visibleR, hiddenR, hiddenG, visibleG)

#Update recognition parameters by gradient-free optimizer
anglesR = Optimizer.minimize(Cθ (R,G))

Algorithm 3 : Sleep-phase in the training of the PSQC. The passes through Generative and Recognition are
evaluated using a quantum computer

4 Training the PSQC

The learning process in our PSQC is performed by implementing a Wake–Sleep algo-
rithm; see also Sect. 2.2. In this implementation, the Powell method is used as a
black-box gradient-free optimizer to train the circuit. Per iteration the Powell method
evaluates the cost function up to 1,000 times, to find optimal parameters for the recog-
nition and generative networks R and G. The pseudo-code of the learning algorithm is
given inAlgorithm 1, where theWake and Sleep phases are described inAlgorithms 2
and 3, respectively.

To measure the performance of the PSQC, the learned probability distribution of
the Helmholtz machine is compared with the real probability distribution using the
Kullback–Leibler divergence [12] defined by

KL[P||Pθ ] =
∑

d

p(d) log
p(d)

pθ (d)
, (5)

with P the real probability distribution and Pθ the generated probability distribution
for parameters θ . Note, KL[P||Pθ ] = 0 holds if and only if both distributions are
equal.

5 Results: classical versus hybrid Helmholtz machine

We compared the performance of a classical Helmholtz machine with that of a hybrid
Helmholtz machine in terms of the KL divergence. Both the classical and the hybrid
Helmholtz machines are trained using 1,000 training iterations and in each iteration
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Table 1 KL divergence
averaged over 10 runs for both
the parameterized shallow
quantum circuit PSQC and
classical Helmholtz machine
CHM for the topology 4–3

PG (d)

Patterns P(d) PSQC 4–3 CHM 4–3

WORLD 10 10 0.167 0.051 0.080

01 01 0.167 0.059 0.070

11 00 0.167 0.082 0.070

00 11 0.167 0.108 0.070

11 11 0.167 0.079 0.080

00 00 0.167 0.121 0.090

OTHERS 10 00 0.000 0.066 0.050

10 01 0.000 0.036 0.040

10 11 0.000 0.060 0.060

11 01 0.000 0.032 0.040

11 10 0.000 0.025 0.060

00 01 0.000 0.046 0.070

00 10 0.000 0.055 0.040

01 00 0.000 0.067 0.080

01 10 0.000 0.047 0.060

01 11 0.000 0.068 0.050

KL divergence (p(d), pG (d)) 0.793 0.945

100 samples are drawn from the real world containing the BAS22 patterns. In each
iteration, theWake and Sleep phase use the Powellmethod to optimize the parameters,
based on the corresponding evaluations of the cost function of Eq. (4). The number of
learning cycles in theWake–Sleep algorithm is fixed to 10 for both the classical and the
hybrid Helmholtzmachines. The performance is consequently evaluated using Eq. (5).

For both the classical and the hybrid Helmholtz machines, we used a 4–3 topology,
with four visible nodes and three hidden ones. The PSQC is implemented in a hybrid
fashion on the Quantum Inspire simulator [24] and trained using theWake–Sleep algo-
rithm as given in Algorithms 2 and 3, respectively. The classical Helmholtz machine
is implemented in Python and trained with a standard and unmodified Wake–Sleep
algorithm.

The resulting probability distributions learnedwith both the classical and the hybrid
Helmholtz machines are shown in Table 1. Furthermore, the two are compared based
on the Kullback–Leibler convergence. In the table, we see that the PSQC 4–3 has a
smaller divergence than its classical analog. This means that our proposed model of a
quantum circuit of reduced complexity is capable of performing generative tasks and
scoring at least as good as its classical equivalent. In Fig. 4, we show the evolution of
the KL divergence over the number of iterations of both models.

6 Conclusions and future work

In this work, a parameterized shallow quantum circuit implementation of a hybrid
Helmholtz machine was given. This PSQC captures aspects of Bayesian networks and
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Fig. 4 KL divergence of the PSQC and the CHM for topology 4–3

Helmholtz machines and was trained by a gradient-free optimizer under an adaptation
of the Wake–Sleep algorithm. The implementation of this circuit was done on the
Quantum Inspire simulator and has the potential to be run on a few qubit quantum
device.

We tested the proposed hybrid Helmholtz machine for a small toy problem on the
BAS22 data set, consisting of two by two pixel images, of which the valid patterns
are those that contain only bars or only stripes. For both the hybrid and the classical
Helmholtz machines, we used four visible nodes and three hidden ones. The used
Powell optimization method gave a promising set of parameters, for which the hybrid
Helmholtz machine slightly outperformed its classical counterpart. Using the cost
function, the probability distribution p(x) can be approximated efficiently, without
the need for an exponential number of circuit evaluations.

The proposed hybrid Helmholtz machine can be improved upon further by a more
refined training, possibly based on the specific data set. The used symmetric cost
function might be replaced by other cost function, possibly forfeiting the symmetry
of the cost function if the data set asks for it. Finally, the sampling power of quantum
computers can be exploited even further, as a Helmholtz machine depends heavily on
sampling.
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