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Abstract

In this work, we study quantum error-correcting codes obtained by using Steane-
enlargement. We apply this technique to certain codes defined from Cartesian
products previously considered by Galindo et al. in [8]. We give bounds on the
dimension increase obtained via enlargement, and additionally give an algorithm
to compute the true increase. A number of examples of codes are provided, and
their parameters are compared to relevant codes in the literature, which shows that
the parameters of the enlarged codes are advantageous. Furthermore, comparison
with the Gilbert-Varshamov bound for stabilizer quantum codes shows that several
of the enlarged codes match or exceed the parameters promised by the bound.
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1 Introduction

Quantum computers promise to deliver computational power far exceeding
what can be achieved by classical computers, see for instance [26, 28]. Natur-
ally, this has led to much interest in the construction of large scale quantum
computers. The quantum bits used in such a system would, however, be prone
to errors caused by interaction with the environment. Therefore, methods
for correcting such errors are essential, and quantum error correcting codes
provide a possible solution.

As in classical coding theory, the performance of a quantum code is as-
sessed based on parameters such as the size of the underlying field, the length
of the code and its dimension, and the number of errors that the code can
correct. Some of the earliest quantum codes such as [2, 3, 27] were binary,
but just as in classical coding theory it is also possible to study codes over
arbitrary finite fields [14, 24]. When working over Fq – i.e. the finite field of q
elements – a quantum code of length n and dimension k is a qk-dimensional
subspace of Cqn .

One important difference between classical and quantum error correction
lies in the types of errors that can happen. Whereas classical bits are suscept-
ible only to bit flip errors, quantum bits are also affected by phase shift errors.
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Thus, we can consider two measures of minimal distance for quantum codes:
dx for bit flips, and dz for phase shifts. Some authors treat the two types of
errors equally, and in this case only a single minimal distance d = min{dx, dz}
is associated to the quantum code. The code is then called symmetric. Al-
ternatively, the two types of errors can be treated separately – e.g. to account
for the two types of errors happening with different probabilities [12]. In this
case both of the distances are of interest, and the codes are called asymmetric.
Clearly, the parameters in the asymmetric setting can be translated into the
symmetric setting by ignoring the highest distance.

Traditionally, quantum codes were only studied in the symmetric case,
but by now the literature contains a great number of works studying either
of the two types of codes. In this work, we only consider symmetric codes,
and some recent developments in this field are [7, 18, 19, 21, 22, 25, 31]. In
this setting, the code parameters are commonly written in the form [[n, k, d]]q,
and we will follow this convention.

In [8], Galindo et al. gave two constructions of asymmetric quantum error-
correcting codes constructed by applying the CSS-construction to nested
classical codes based on Cartesian product point sets. The resulting codes
have good parameters compared to existing constructions when investigating
which combinations of n, k, dx, and dz are possible for various values of q. In
addition, these codes compare favourably to the Gilbert-Varshamov bound
for asymmetric quantum codes. As mentioned above, someone interested
in symmetric codes could use the results from [8] by discarding the highest
distance, but this essentially wastes coding space which could instead be
used to increase the dimensions of the codes. In this work, we take an
alternative approach and apply Steane-enlargement to that family of codes
in order to produce symmetric codes directly. We thereby produce quantum
error-correcting codes with good – sometimes even optimal – parameters.

The classical codes considered in this work are special cases of what
is called monomial Cartesian codes in a recent work [21]. In that paper,
the authors derived a way to determine if a monomial Cartesian code is
dual-containing, and used this to construct quantum codes via the CSS-
construction. The classical codes used in their construction are, however,
different from the ones used in the current paper. In particular, the improved
codes considered in this work have the best possible dimension given any
designed distance.

This work is structured as follows: Section 2 recalls the definitions and
results needed in subsequent sections. This includes the CSS-construction
and Steane-enlargement as well as results from the theory of classical algeb-
raic geometry codes. Afterwards, Section 3 describes a new construction
of quantum codes, including bounds on and exact values of the dimension
increase. The section ends by comparing the resulting parameters to other
known constructions. Finally, Section 4 contains the conclusion and outlines
open problems for future work.
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2 Preliminaries

In this section, we recall two results on the CSS-construction and Steane-
enlargement that allow construction of quantum codes from classical codes.
Then we give a description of a family of codes and the corresponding improved
codes, both of which were previously considered in [8]. In our analysis, we
will rely on the notion of relative distances of nested pairs of classical linear
codes. Thus, recall that for codes C2 ⊊ C1 their relative distance is defined as

d(C1, C2) = min{wH(c) | c ∈ C1 \ C2},

where wH denotes the usual Hamming weight. In general, however, the
relative distance is difficult to determine, and the bound d(C1, C2) ≥ d(C1) is
commonly used instead.

2.1 The CSS-construction and Steane-enlargement

One way to construct quantum error-correcting codes is by using the so-called
CSS-construction [3, 29] named after Calderbank, Shor, and Steane. The
original construction uses a dual-containing classical linear code to construct
a symmetric quantum error-correcting code.

Theorem 1. If the [n, k, d] linear code C ⊆ Fn
q contains its Euclidean dual,

then an
[[n, 2k − n, d]]q

symmetric quantum code exists.

Steane [30] proposed a variation on this procedure, which in some cases allows
an increase in dimension compared to the corresponding CSS-code but without
reducing the minimal distance. Below, we state the q-ary generalization of
this procedure, which may be found in [11, 20].

Theorem 2. Consider a linear [n, k] code C ⊆ Fn
q that contains its Euclidean

dual C⊥. If C ′ is an [n, k′] code such that C ⊊ C ′ and k′ ≥ k + 2, then an[︂[︂
n, k + k′ − n,≥ min

{︁
d,
⌈︁
(1 + 1

q
)d′

⌉︁}︁]︂]︂
q

quantum code exists with d = d(C, C ′⊥) and d′ = d(C ′, C ′⊥).

Remark 3. Here we note that if C and C ′ are codes that satisfy the conditions
of Theorem 2, then the inclusions C ′⊥ ⊊ C⊥ ⊆ C ⊊ C ′ hold, which implies
d(C ′⊥) ≥ d(C). In particular, this means that whenever d(C ′) < d(C), it
must be the case that d′ = d(C ′, C ′⊥) = d(C ′). For the specific enlargements
considered in Section 3, it turns out that this observation allows us to use the
usual minimal distances rather than the relative distances while still obtaining
the same parameters of the quantum codes.
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2.2 Codes from Cartesian product point sets

Let q = pr where p is a prime number, and let r1, r2, . . . , rm be positive
integers such that ri | r. Then we have the inclusions Fpri ⊆ Fq, and it is
possible to consider the Cartesian product S = Fpr1 ×Fpr2 × · · · ×Fprm ⊆ Fm

q .
Now, define the polynomials

Fi(Xi) =
∏︂

α∈Fpri

(Xi − α) = Xpri
i −Xi,

and consider the ring R = Fq[X1, X2, . . . , Xm]/I where

I = ⟨F1(X1), F2(X2), . . . , Fm(Xm)⟩

is the vanishing ideal of the Fi’s. Letting n = |S| =
∏︁m

i=1 p
ri and S =

{α1,α2, . . . ,αn}, we obtain a vector space homomorphism ev : R → Fn
q given

by
ev(F + I) = (F (α1), F (α2), . . . , F (αn))

as described in [8]. Adopting a vectorized version of their notation, we define
for r = (r1, r2, . . . , rm) the set

∆(r) = {Xa | a ∈ Nm, 0 ≤ aj < prj , j = 1, 2, . . . ,m},

where we use the multi-index notation Xa = Xa1
1 Xa2

2 · · ·Xam
m . For a subset

L ⊆ ∆(r), define the code

C(L) = SpanFq
{ev(Xa + I) | Xa ∈ L}, (1)

which clearly has length n. To describe the distance of C(L), we use the map
σ : ∆(r) → N given by

σ(Xa) =
m∏︂
j=1

(prj − aj).

Proposition 4. Let C(L) be defined as in (1). Then dimC(L) = |L|, and

d(C(L)) ≥ min{σ(Xa) | Xa ∈ L} (2)

with equality if Xa ∈ L implies Xb ∈ L for all choices of b1 ≤ a1, b2 ≤
a2, . . . , bm ≤ am.

Proof. The claim about the dimension is for instance shown in the proof of
[8; Thm. 16]. The inequality (2) can be proved by using the footprint bound
as done in [10; Prop. 1].

To see the equality, write Fpri = {v(i)1 , v
(i)
2 , . . . , v

(i)
pri}, let Xa ∈ L, and

observe that the expansion of the polynomial

f =
m∏︂
j=1

aj∏︂
i=1

(Xj − v
(j)
i )

contains only monomials Xb with b as described in the proposition. This
means that ev(f +I) ∈ C(L). Moreover, f possesses exactly

∏︁m
j=1(p

ri −aj) =
σ(Xa) non-zeros.
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This proposition not only allows us to determine the exact minimal distance
of the codes considered in the following section, but more importantly it also
enables us to determine certain relative distances when combined with the
observations in Remark 3.

2.3 Improved codes

The information on the minimal distance provided by σ leads to improved
code constructions in a straightforward manner. By defining

L(δ) = {Xa ∈ ∆(r) | σ(Xa) ≥ δ}, (3)

the code C(L(δ)) has designed distance δ by Proposition 4. In addition, this is
the true minimal distance since σ(Xb) ≥ σ(Xa) if b1 ≤ a1, b2 ≤ a2, . . . , bm ≤
am. The dual of C(L(δ)) can be described by studying the map µ : ∆(r) → N
defined as

µ(Xa) =
m∏︂
j=1

(aj + 1).

In particular, by letting L⊥(δ) = {Xa ∈ ∆(r) | µ(Xa) < δ} we obtain the
following result.

Proposition 5. Let L(δ) be defined as in (3). Then C(L(δ))⊥ = C(L⊥(δ)).

Proof. First, note that σ(Xa) = µ(Xb) for bi = pri − aj − 1. This implies
that the number of monomials with a given σ-value δ is exactly the number
of monomials with µ-value δ. As a consequence,

dimC(L⊥(δ)) = |{Xa ∈ ∆(r) | σ(Xa) < δ}|
= n− dimC(L(δ))

= dimC(L(δ))⊥.

Hence, it suffices to show that C(L⊥(δ)) ⊆ C(L(δ))⊥, and we do so by proving
that the evaluation of any Xb with µ(Xb) < δ must be in C(L(δ))⊥.

Using contraposition, assume that Xb /∈ C(L(δ))⊥. Then some ev(Xa) ∈
C(L(δ)) satisfies ev(Xa)·ev(Xb) ̸= 0. As shown in [9; Prop. 1], this happens if
and only if1 ai+ bi > 0 and ai+ bi ≡ 0 (mod pri −1) holds true for each index
i ∈ {1, 2, . . . ,m}. In other words, we have ai+bi = pri−1 or ai+bi = 2(pri−1).
In each case, this implies pri − ai ≤ bi + 1. In combination with the fact that
σ(Xa) ≥ δ since ev(Xa) ∈ C(L(δ)), we obtain the inequalities

δ ≤ σ(Xa) =
m∏︂
i=1

(pri − ai) ≤
m∏︂
i=1

(bi + 1) = µ(Xb).

In conclusion, if µ(Xb) < δ, we have ev(Xb) ∈ C(L(δ))⊥, which proves the
proposition by the observations in the beginning of the proof.

1In their notation, the situation in consideration has J = ∅ and p | Nj for each j
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3 Steane-enlargement of improved codes

We are now ready to apply Steane-enlargement to the codes defined in Sec-
tion 2.3. Our results rely on a simple, but crucial, observation: for each
index i = 1, 2, . . . ,m, σ(∆(r)) contains an ‘edge’ with values 1, 2, . . . , pri .
This is illustrated in Figures 1 and 2. This means that we can easily give a
lower bound on the dimension increase when enlarging the code C(L(δ)). To
ease the notation in the following, we will order the exponents ri such that
r1 ≥ r2 ≥ · · · ≥ rm.

Proposition 6. Let q = pr, and let r ∈ Zm
+ be a vector such that ri | r for

each i and r1 ≥ r2 ≥ · · · ≥ rm. Additionally, let 2 < δ ≤ pr2 +1, and let K be
the largest index such that δ − 1 ≤ prK . Then if C(L(δ)) is a dual-containing
[n, k] code, there exists a quantum error-correcting code with parameters

[[n,≥ 2k − n+K,≥ δ]]q. (4)

Proof. Write C = C(L(δ)), and let C ′ = C(L(δ − 1)). Since 1 < δ − 1 ≤ prK ,
the observation at the start of this section implies that there are at least K ≥ 2
monomials Xa ∈ ∆(r) such that σ(Xa) = δ − 1. Thus, C ′ has dimension
k′ ≥ k + K. As described in Section 2.3, C and C ′ have minimal distances
δ and δ − 1, respectively. Thus the observation in Remark 3 ensures that
d(C ′, C ′⊥) = d(C ′) = δ − 1, and we obtain⌈︁

(1 + 1
q
)d(C ′)

⌉︁
=

⌈︁
(1 + 1

q
)(δ − 1)

⌉︁
= δ,

where the last equality stems from the assumption that δ − 1 ≤ pr2 ≤ q. The
claim now follows by applying Theorem 2 to C and C ′, and by using the bound
d(C, C ′⊥) ≥ d(C) = δ.

A few additional remarks can be made about the Steane-enlargement described
in Proposition 4.
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Figure 1. The values of σ(∆(r)) for p = 3 and r = (2, 1). The shaded region shows the
edges with values 1, 2, . . . , 9 = pr1 and 1, 2, 3 = pr2 , respectively.

pr1
pr3

pr2

Figure 2. A sketch of ∆(r) in the case m = 3. As in the 2-dimensional case in Figure 1,
the shaded region shows the edges where the σ-values are 1, 2, . . . , pri for each i.
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Remark 7. The observation that leads to Proposition 4 does not help in the
case δ > q + 1 since we require δ ≤ pr2 + 1 ≤ q + 1. This does not mean that
Steane-enlargement is impossible for δ > q + 1, but merely that we cannot
guarantee that it is possible.

Remark 8. The increase in dimension when applying Steane-enlargement to
the code C(L(δ)) may be greater than the K specified in Proposition 6 since this
K is determined by considering monomials along the ‘edges’ as in Figure 2.
There may be several other monomials that have σ-value δ − 1, yielding a
quantum error-correcting code with even better parameters. In Section 3.1,
we characterize the situations where this may happen, and give an improved
bound in such cases.

Before studying the dimension increase more thoroughly, we illustrate Pro-
position 6 through an example.

Example 1. Let q = 32 = 9 and r = (2, 2, 1). The classical code C(L(4))
has parameters [243, 236, 4]9, whence the CSS-construction, Theorem 1, gives
a [[243, 229, 4]]9 quantum code. Since δ − 1 = 3 = pr3, Proposition 6 ensures
that Steane-enlargement will instead provide a code with parameters [[243,≥
232,≥ 4]]9. In this case, the true dimension is in fact 232.

Using the same q and r, the code C(L(7)) is a [243, 221, 7]9 classical code,
yielding a [[243, 199, 7]]9 quantum code via the CSS-construction. This time,
Proposition 6 only guarantees a dimension increase of 2 when applying Steane-
enlargement, but the actual parameters of the enlarged code are [[243, 207,≥
7]]9, meaning that the dimension has been increased by 8.

3.1 Determining the exact dimension increase

As mentioned in Remark 8, the dimension of an enlarged code may be greater
than predicted in (4). In this section, we will generalize the map τ (q) from
[4] to provide an algorithm for computing the exact dimension increase when
applying Steane-enlargement to the code C(L(δ)). This generalization will
also aid in characterizing those values of δ where Proposition 6 underestimates
the dimension.

Definition 9. For s ∈ Z+ and r ∈ Zm
+ , we let τ (r)(s) denote the number

of tuples (d1, d2, . . . , dm) such that 1 ≤ di ≤ pri for every i, and such that
s =

∏︁m
i=1 di.

Proposition 10. Let s and r be as in Definition 9, and assume that r1 ≥
r2 ≥ · · · ≥ rm. Let K be the largest index such that s ≤ prK . Then if s is. . .

• . . . prime, we have τ (r)(s) = K.
• . . . square, we have τ (r)(s) ≥ K +

(︁
K
2

)︁
.

• . . . non-prime and non-square, we have τ (r)(s) ≥ K2.

Proof. Assume first that s is prime. Then any tuple (d1, d2, . . . , dm) ∈ Z+

with s =
∏︁m

i=1 di must have di = s for some i and dj = 1 for j ̸= i. Hence, in
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this case τ (r)(s) is the number of indices i such that di ≤ pri , which is exactly
K.

If s is non-prime, there are still K tuples with a single entry greater than 1
as in the prime case. But we may also split s in two factors s = f1f2 such that
f1, f2 < s ≤ prK . Now, for any distinct indices i1, i2 ∈ {1, 2, . . . , K}, the tuple
(d1, d2, . . . , dm) with di1 = f1, di2 = f2, and di = 1 for i /∈ {i1, i2} is one of the
tuples counted by τ (r)(s). The number of ways to choose the indices i1, i2 is
K(K− 1). If s is not a square number, f1 and f2 are distinct, and each of the
K(K − 1) choices of i1, i2 leads to a distinct tuple. Is s is a square, we may
have f1 = f2, and the number of distinct tuples is instead K(K − 1)/2 =

(︁
K
2

)︁
.

In both cases, we obtain the claimed inequality by adding K.

Proposition 11. Let s ∈ Z+. Then the number of monomials Xa ∈ ∆(r)
that have σ(Xa) = s is τ (r)(s).

Proof. We have σ(Xa) = s if and only if
∏︁m

i=1(p
ri−ai) = s. Since 0 ≤ ai < pri ,

this is equivalent to
∏︁m

i=1 di = s for 1 ≤ di ≤ pri , proving the proposition.

Combining Propositions 10 and 11, we obtain the following immediate corol-
lary.

Corollary 12. Let q, r, and δ be as in Proposition 6. Then (4) gives the true
dimension if and only if δ− 1 is a prime number. If δ− 1 is not a prime, the
bound on the dimension may be increased by

(︁
K
2

)︁
if δ − 1 is a square number

and by K(K − 1) otherwise.

Example 2. We now return to the codes in Example 1. In the case of C(L(4)),
we saw that Proposition 6 gave the true minimal distance. Having established
Corollary 12, we now know that this is no coincidence since δ − 1 = 3 is a
prime number.

For the code C(L(7)), δ−1 = 6 is neither prime nor square. Consequently,
Corollary 12 tells us that the dimension must increase by at least K2 = 22 = 4,
which is 2 more than the bound from Proposition 6. Both bounds are, however,
still smaller than the true value of 8.

Since it may not be obvious how to compute τ (r), we give the following
recursive algorithm. Its correctness can be shown by a simple inductive
argument.

Algorithm 1. On input r = (r1, r2, . . . , rm) and s ∈ Z+, this algorithm
computes τ (r)(s):

1. Check if r is a single value r1. If this is the case, return 1 if s ≤ r1,
and 0 otherwise.

2. Initialize a counter variable c := 0.
3. For each integer d ∈ {1, 2, . . . , pr1} with d | s, do the following:

• Let r′ = (r2, r3, . . . , rm), and compute τ (r
′)(s/d).

• Update c to be c := c+ τ (r
′)(s/d).

4. Return c.
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Since the number of d’s considered in Algorithm 1 is at most
∏︁m−1

i=1 pri =
n/prm , the total number of operations is O(n/prm). This is a factor prm better
than considering all Xa ∈ ∆(r) and counting the ones with σ(Xa) = s. We
collect these observations on Algorithm 1 and its relation to Proposition 6 in
the following proposition.

Proposition 13. Let q, r, and δ be as in Proposition 6. Then the true
dimension of the quantum code in (4) is 2k − n + τ (r)(δ). Furthermore,
Algorithm 1 correctly computes τ (r)(δ) in O(n/prm) operations, where n =∏︁m

i=1 p
ri.

3.2 Examples of parameters

To conclude our exposition, we give concrete parameters of Steane-enlarged
codes in several examples. We then compare the parameters of these codes
to those of other known constructions and bounds. For each code presented
here, we will compare it to the Gilbert-Varshamov bound from [6].

Theorem 14. Let n > k ≥ 2 with n ≡ k (mod 2), and let d ≥ 2. Then there
exists a pure stabilizer quantum code [[n, k, d]]q if the inequality

d−1∑︂
i=1

(q2 − 1)i
(︃
n

i

)︃
< qn−k+2 − 1 (5)

is satisfied.

In the same way as [23], we will use the notation [[n, k, d]]‡q in the following to
indicate that the parameters (n, k, d) exceed the Gilbert-Varshamov bound –
i.e. that (5) is not satisfied – and we will write [[n, k, d]]†q if (n, k, d) satisfies
(5), but (n, k, d+1) does not. This is only possible for n ≡ k (mod 2), which is
always the case for CSS-codes from dual-containing codes, but not necessarily
for Steane-enlarged codes. Thus, for code parameters (n, k, d) with n ̸≡ k
(mod 2), we will use the same notation, albeit with the bound applied to the
parameters (n, k − 1, d).

Remark 15. There is another bound, [13; Cor. 4.3], which covers all values
of n and k. For the parameters presented in the current work, however, that
bound is weaker than (5), and several of the codes in the examples below exceed
[13; Cor. 4.3] but not Theorem 14. For this reason, we shall use Theorem 14
throughout.

In addition to the Gilbert-Varshamov bound, we will refer to the quantum
Singleton bound in some cases. This bound is

2d ≤ n− k + 2, (6)

and its proof can be found in [15, 24].
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Example 3. This is a continuation of Examples 1 and 2. When compared
with the Gilbert-Varshamov bound, Theorem 14, the CSS-code with parameters
[[243, 229, 4]]†9 and the Steane-enlarged code with parameters [[243, 232, 4]]†9
meet the bound, whereas the two codes of minimal distance 7 neither meet nor
exceed the bound.

Example 4. Consider q = 32 = 9 and r = (2, 1) as in Figure 1. Here,
Proposition 6 guarantees that we can enlarge the CSS-codes [[27, 21, 3]]†9 and
[[27, 17, 4]]†9 to codes of parameters [[27, 23,≥ 3]]‡9 and [[27, 19,≥ 4]]†9, respect-
ively. Furthermore, Corollary 12 ensures that these are the true dimensions.
In fact, the code [[27, 23, 3]]‡9 is optimal since it meets the Singleton-bound (6).

There are two additional Steane-enlarged codes that are not captured
by Proposition 6. These are [[27, 13, 5]]9 enlarged to [[27, 15,≥ 5]]†9, and
[[27, 5, 7]]9 enlarged to [[27, 8,≥ 7]]9, where the increases in dimension have
been computed using Algorithm 1. In both cases, the technique in Proposition 6
fails because δ > 4 = pr2 + 1.

Initially, we compare the parameters that can be achieved by using the CSS-
construction, Theorem 1, and those from Steane-enlargement, Theorem 2. At
the same time, the difference in dimension between these two constructions is
compared with the bounds that were given in Propositions 6 and Corollary 12.

Example 5. In Tables 1–4, we list parameters of quantum codes in various
cases where Proposition 6 guarantees that enlargement is possible. The tables
contain both the original CSS-code and its Steane-enlarged code along with the
predicted dimension increases from Proposition 6 and Corollary 12.

In these tables, the first column shows the parameters of quantum codes
obtained by applying Theorem 1 to dual-containing codes of the form C =
C(L(δ)). The second column shows the results of enlarging the codes in the
first column using C ′ = C(L(δ − 1)) in Theorem 2. Both of these columns
contain the true dimensions of the codes, and the three final columns highlight
the bounds on the dimension increase provided in Proposition 6, Corollary 12,
and Proposition 13. More precisely, the third column gives the dimension
increase guaranteed by Proposition 6, and the fourth shows the bound provided
by Corollary 12. Any number marked with an asterisk is known to be the true
value since δ − 1 is a prime. The final column shows the actual increase as
computed by Algorithm 1.

Studying the tables, it is evident that Corollary 12 provides a better bound
for the dimension than Proposition 6, but that the actual increase in dimension
may be significantly higher. In any case, however, Proposition 13 ensures that
the true increase can be computed using Algorithm 1.

Having compared the two methods considered in this work, we now turn
our attention to other constructions of quantum codes. Thus, Examples 6–9
illustrate how the parameters given in Tables 1–4 compare against existing
parameters in the literature. First, we consider the codes obtained from cyclic
codes in [16, 17].
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Construction Dimension increase

Th.m 1 Thm. 2 Prop. 6 Cor. 12 Prop. 13

[[729, 721, 3]]†9 [[729, 724, 3]]‡9 3 3∗ 3

[[729, 715, 4]]†9 [[729, 718, 4]]‡9 3 3∗ 3

[[729, 703, 5]]9 [[729, 709, 5]]†9 3 6 6
[[729, 697, 6]]9 [[729, 700, 6]]9 3 3∗ 3
[[729, 679, 7]]9 [[729, 688, 7]]9 3 9 9
[[729, 673, 8]]9 [[729, 676, 8]]9 3 3∗ 3
[[729, 653, 9]]9 [[729, 663, 9]]9 3 9 10
[[729, 641, 10]]9 [[729, 647, 10]]9 3 6 6

Table 1. Code parameters from the Cartesian product with q = 32 = 9 and r = (2, 2, 2).
The first and second columns contain CSS-codes and Steane-enlarged codes, respectively.
The third and fourth columns contain lower bounds on the dimension increase with ∗
denoting a value that is known to be the true value. The final column contains the true
value as computed from Proposition 13.

Construction Dimension increase

Thm. 1 Thm. 2 Prop. 6 Cor. 12 Prop. 13

[[64, 58, 3]]†8 [[64, 60, 3]]‡8 2 2∗ 2

[[64, 54, 4]]†8 [[64, 56, 4]]‡8 2 2∗ 2

[[64, 48, 5]]8 [[64, 51, 5]]†8 2 3 3

[[64, 44, 6]]8 [[64, 46, 6]]†8 2 2∗ 2
[[64, 36, 7]]8 [[64, 40, 7]]8 2 4 4
[[64, 32, 8]]8 [[64, 34, 8]]8 2 2∗ 2

Table 2. Code parameters from the Cartesian product with q = 23 = 8 and r = (3, 3). The
first and second columns contain CSS-codes and Steane-enlarged codes, respectively. The
third and fourth columns contain lower bounds on the dimension increase with ∗ denoting
a value that is known to be the true value. The final column contains the true value as
computed from Proposition 13.

Example 6. For δ < 8 the parameters of the codes in Table 1 surpass those
presented in [17; Tables 1 and 3]. There, codes with parameters [[728, 714,≥
3]]9, [[728, 704,≥ 4]]9, [[728, 690,≥ 6]]9, [[728, 679,≥ 7]]9, and [[728, 678,≥
8]]9 are given. Apart from the one with δ = 8, the Steane-enlarged codes
in Table 1 are one symbol longer, but have a dimension that is at least 9
higher than the corresponding code in [17]. Likewise, the codes in Table 2
have better parameters than those in [16; Tables 1 and 2] whenever δ ≤ 6.
More concretely, [16] lists quantum codes with parameters [[63, 57,≥ 3]]†8,
[[63, 53,≥ 4]]†8, [[63, 49,≥ 5]]†8, and [[63, 45,≥ 6]]†8. For larger values of δ,
however, [16] outperforms the codes in Table 2.

All the codes in Tables 1 and 2 have q = pr and ri = r, which are in
fact hyperbolic codes. It seems to be a general pattern for such codes, that
the Steane-enlargements with small distances outperform the codes in [16, 17],
but that this relation is reversed for larger distances.

The codes in Tables 3 and 4 have parameters that cannot be achieved using
the method from [16, 17] since those codes all have lengths qm − 1 for some
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m ≥ 2, where q is the field size.

As a second comparison, we consider the parameters of quantum twisted codes
that have been compiled in [5].

Example 7. Based on [1], the webpage [5] contains lists of quantum code para-
meters derived from twisted codes. For instance, the list for q = 9 contains the
codes [[730, 718, 3]]†9, [[730, 712, 4]]9, [[730, 706, 5]]9, and [[730, 700, 6]]9. The
comparable codes in Table 1 are both one symbol shorter and have higher
dimension. It may also be noted that two of the codes in Table 1 exceed the
Gilbert-Varshamov bound, while this is not the case for any of the codes listed
in this example.

The codes [[730, 694, 7]]9, [[730, 688, 8]]9, and [[730, 682, 9]]9 from [5] have
better parameters than those in Table 1, but they are included in the table for
completeness.

A previous version of this paper contained an example of quantum codes
over F5 of length 625. As pointed out by a reviewer, however, the parameters
of those codes did not exceed the parameters of the codes listed in [5].

Next, we compare the quantum codes derived from the Suzuki curve in [23]
to the Steane-enlarged codes presented in Table 2.

Example 8. The codes in Table 2 have favourable parameters compared to
those given in [23; Ex. 5], which are defined from the Suzuki curve. Specific-
ally, the codes in [23] have parameters [[64, 54, 3]]8, [[64, 52, 4]]†8, [[64, 42, 5]]8,
[[64, 40, 6]]8, [[64, 38, 7]]8, and [[64, 36, 8]]8, which are all worse than those in
Table 2 except the one with distance 8. As a final remark, the code with
parameters [[64, 60, 3]]‡8 meets the quantum Singleton bound (6).

As a final example, we consider the monomial Cartesian codes from [21] that
are guaranteed to be MDS.

Example 9. Among the codes presented in this Tables 1–4, two were MDS-
codes: [[27, 23, 3]]‡9 and [[64, 60, 3]]‡8. From recent work [21; Cor. 3.10] the same
lengths, dimensions, and minimal distances can be achieved, but the field size
is much larger. In particular, they require q > n so the corresponding field
sizes are at least 29 and 67, respectively.

4 Conclusion

In this work, we showed how Steane-enlargement can be applied to codes
defined from Cartesian product point sets. Concretely, Proposition 6 contains
a simple condition that, when satisfied, guarantees that Steane-enlargement
produces a higher dimension when compared to the CSS-construction without
reducing the distance. Furthermore, we gave an improved, but still easily
computable, bound on the dimension increase during this enlargement, and
provided an algorithm to compute the true value.

Comparing the resulting quantum code parameters to existing construc-
tions revealed several cases where the Steane-enlarged codes from Cartesian

12



Construction Dimension increase

Thm. 1 Thm. 2 Prop. 6 Cor. 12 Prop. 13

[[1024, 1016, 3]]†16 [[1024, 1019, 3]]‡16 3 3∗ 3

[[1024, 1010, 4]]†16 [[1024, 1013, 4]]†16 3 3∗ 3
[[1024, 998, 5]]16 [[1024, 1004, 5]]16 3 6 6
[[1024, 994, 6]]16 [[1024, 996, 6]]16 2 2∗ 2
[[1024, 978, 7]]16 [[1024, 986, 7]]16 2 4 8
[[1024, 974, 8]]16 [[1024, 976, 8]]16 2 2∗ 2
[[1024, 956, 9]]16 [[1024, 965, 9]]16 2 4 9
[[1024, 946, 10]]16 [[1024, 951, 10]]16 2 3 5
[[1024, 934, 11]]16 [[1024, 940, 11]]16 2 4 6
[[1024, 930, 12]]16 [[1024, 932, 12]]16 2 2∗ 2
[[1024, 900, 13]]16 [[1024, 915, 13]]16 2 4 15
[[1024, 896, 14]]16 [[1024, 898, 14]]16 2 2∗ 2
[[1024, 884, 15]]16 [[1024, 890, 15]]16 2 4 6
[[1024, 872, 16]]16 [[1024, 878, 16]]16 2 4 6
[[1024, 848, 17]]16 [[1024, 860, 17]]16 2 3 12

Table 3. Code parameters from the Cartesian product with q = 24 = 16 and r = (4, 4, 2).
The first and second columns contain CSS-codes and Steane-enlarged codes, respectively.
The third and fourth columns contain lower bounds on the dimension increase with ∗
denoting a value that is known to be the true value. The final column contains the true
value as computed from Proposition 13.

Construction Dimension increase

Thm. 1 Thm. 2 Prop. 6 Cor. 12 Prop. 13

[[1024, 1014, 3]]†8 [[1024, 1018, 3]]‡8 4 4∗ 4

[[1024, 1008, 4]]†8 [[1024, 1011, 4]]†8 3 3∗ 3
[[1024, 990, 5]]8 [[1024, 999, 5]]8 3 6 9
[[1024, 984, 6]]8 [[1024, 987, 6]]8 3 3∗ 3
[[1024, 960, 7]]8 [[1024, 972, 7]]8 3 9 12
[[1024, 954, 8]]8 [[1024, 957, 8]]8 3 3∗ 3
[[1024, 922, 9]]8 [[1024, 938, 9]]8 3 9 16

Table 4. Code parameters from the Cartesian product with q = 23 = 8 and r = (3, 3, 3, 1).
The first and second columns contain CSS-codes and Steane-enlarged codes, respectively.
The third and fourth columns contain lower bounds on the dimension increase with ∗
denoting a value that is known to be the true value. The final column contains the true
value as computed from Proposition 13.
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product point sets provide better parameters than comparable constructions.
Such improvements were especially common for small designed distances,
where the Steane-enlarged codes also exceed the Gilbert-Varshamov bound
in many cases.

This work and the work [4] shows that Steane-enlargement can provide
quantum codes with good parameters when the underlying classical codes are
defined from relatively simple point sets. Thus, it is natural to ask whether
other, more complicated point sets lead to good parameters in the same way.
We leave this question for future research.
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