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Abstract

We study the norms of the Bloch vectors for arbitrary n-partite quantum states. A
tight upper bound of the norms is derived for n-partite systems with different individual
dimensions. These upper bounds are used to deal with the separability problems. Nec-
essary conditions are presented for m-separable states in n-partite quantum systems.
Based on the upper bounds, classification of multipartite entanglement is illustrated

with detailed examples.

Keywords Bloch vectors - Norm - Upper bounds - Separability

1 Introduction

Quantum entanglement is a remarkable resource in the theory of quantum information,
with numerous applications in quantum information processing, secure communication and
channel protocols [IH3]. A multipartite quantum state that is not separable with respect to
any bipartition is said to be genuinely multipartite entangled [4H6]. Genuinely multipartite
entangled states have significant advantages in quantum tasks compared with biseparable
ones [7].

The notion of genuine multipartite entanglement (GME) was introduced in [7]. Let
H; di j=1,---n, denote d;-dimensional Hilbert spaces. An n-partite state p € HY 4 @ Hj 2 @

--®@H% can be expressed as p = szwl)(lM where sz =1,0<p <1, ¢ € H'@HP®

-® H% are normalized pure states p is blseparable if |¢;) (1 =1,---,n) can be expressed
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as one of the forms: [¢;) = [¢/""7* 1) @ |47 9"} where [¢/"7*') and |¢7*"7") denote pure
states in H' @ --- @ H* ' and H* ® --- @ H/", respectively, j; # --- # jn € {1,---,n},
k=2, ..n—1 Otherwise, p is called genuine multipartite entangled. Correspondingly, we

say that the state p = > p;|1;) (1| is m-separable if all the |¢;) are tensor products of m

vectors in the subspaces of H{' ® HY* @ --- ® H.

Any quantum state has Bloch representation in multipartite high-dimensional quantum
systems. By using the norms of the Bloch vectors, the density operators in lower dimensions
were discussed in [8/[9]. For bipartite and multipartite quantum states, separable conditions
have been presented in [I0HI3]. The norms of the Bloch vectors for any qudit quantum
states with subsystems less than or equal to four have been investigated in [I4]. Then
in [I5], Tanasescu et al. generalized the result of [I4] for four-partite quantum systems,
which provided an upper bound on the entanglement measure given by the Bloch vector
norm and a necessary algebraic condition for separability of a general multi-partite quantum
system under any arbitrary partition function. Two multipartite entanglement measures for
n-qubit and n-qudit pure states are given in [I6,[I7]. In [I8], the sum of relative isotropic
strengths of any three-qudit state over d-dimensional Hilbert space cannot exceed d — 1 have
been discussed, and the trade-off relations and monogamy-like relations of the sum of spin
correlation strengths for pure three- and four-partite systems are derived. Some sufficient
or necessary conditions of GME were presented in [I9-21]. To the detection of GME, the
common criterion is the entanglement witnesses [0,22H24]. In [6], the norms of the Bloch
vectors give rise to a general framework to detect different classes of GME for arbitrary
dimensional quantum systems. Recently, based on the norms of the correlation tensors,
Zhao et al. [25] have been studied the separability criteria by matrix method and necessary
conditions of separability for multipartite systems are given under arbitrary partition.

In this paper, we study the Bloch representations of quantum states with arbitrary
number of subsystems. In Section 2, we present tight upper bounds for the norms of Bloch
vectors in n-qudit quantum states. These upper bounds are then used to derive tight upper
bounds for entanglement measures in [16,17]. The upper bounds of the norms of the Bloch
vectors are useful to study the separability. In Section 3, we investigate different subclasses
of bi-separable states in n-partite systems. Necessary conditions for m-separability and

complete classification of n-partite quantum systems are presented.

2 Upper bounds of the norms of Bloch vectors

Let \;, i = 1,---,d* — 1, denote the generators of the special unitary group SU(d),
which satisfy Al = \;, Tr(\;) = 0, Tr(\:);) = 26;;. The following theorem gives the general

result for n-partite quantum states.

Theorem 1. Let p € H' @HP @---@H (n>3,2<d; <dy < -+ < dp,dy, < dy-dy_y)



be an n-partite quantum state. We have

1<i1 < <ipn—1<n

T2 <ond g — . 1
IF=l < e .
Proof. p has the Bloch representation:
] d2—1
p:d1"'d Id1® @ la, + ( )‘11®[d2 @1y, +
n i1=1
d2—1
s D DU AL ---@Ain)+--- @)
zn—l
n d2-1
Z Ztﬁ ?L>‘21 B iy @ O Ay,
k=1 Zk 1

where [, denotes the d; x d; identity matrix ,i = 1,--- ,n, t(l) =Tr(ph;, @ Iy, ® -+ ®
Iy,), -+ A = Tr(phy, @ @ Ny, @Iy, | @ @1y, ).+t = Tr(ph, ® A, @

C® N )Zjand T ... T(Jl"‘jk) = JEI‘(1 ")Jk;re the vectors (tensz(;rsl)L with the elements
tz(ll)a"' >t§j11 z]jk) >t£1 zn) 1<p<---<jpp<njig=1---,d—1,s=1,--- n), respec-
tively.

Set o
o) =5 ()
i1=1

)

HT(jl"]k H Z Z ((11 Jk )2’

IR
s=j1 is=1

2
wa%zz@mf

n= g IO+ = T
w2 = gt [T i 1T
-
For a pure state p = [1) (5], one has Tr(p?) = 1, namely,
ﬂ@%:%}¢ﬁém+%@+ +%%:L (3)

In the following we denote pj,, pj,...;, the reduced density matrix for the subsystem H ]{111'1 and
ij Q- H; f”, J1# - # gn €41,2,--+,n}. One computes that,
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d2—1
_ (4
P __.d11+ Ztl iy
J1 .

1
Pia--jn Zm[dn ® - @ gy, +
dZz —1
1 1 & Lo
73 In ij3:1
d2 -1
Zt’" ...@A%)+...
.] ' ]n 1 i _1

n 43 -1
Z (]2 jn ‘®._.®>\‘

2" 1 ’Jz “Cjp 72 Yjn
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For a pure state p = |¢) (1|, we have

Tr(p?l) = Tr(pin_jn),

which holds for any j; # - -+ # j, € {1,2,--- ,n}. We obtain

Zd_]lTr le Zd_]lTT pJ2 Jn

Jj1=1 J1=1

Hence we get

Then

i=1 !
1 "1 2
2(n — 2) <;@.HT“H —(”—Uffl)
1
— = g



Substituting (6]) into ([B]), we get

1 1 "1 2
i (Saata) -
1 "1 112 n—3

1<i1 < <ip—1<n =1
<1- E

(n — 2)d1 s dn_1d2

where the inequality holds for

n diy -+ d;,_, — > di+ (n—2)d,

Z 1 _ 2 S 1<i1 <+ <in_1<n i=1 (7)
i=1 d_l2 dldn N dl"'dn—ld%

"1 2 /1 1 a2

S O e =32 (G g T
i=1 i i=1 1 11— (3 n

the inequation (8) holds for d; < dy---d;_1d;y1 -+ dyp,i

=1,---,n. And z3,--- , 2,1 > 0.
In fact, the inequation ([7l) holds if and only if

—d)( 5~ ) 2 0. (9)
i=1 oI d:
Since d,, > d;, and d? < [[d;,;i = 1,---,n — 1, so the inequation (@) holds, which is
i=1
equivalent to hold for inequation (7). Hence we get

> diy -+ di,_, — > di + (n —2)d,
=1

1<i1<-+<ip—1<n 7
2, <241 — "

> 3.
= (n—2)dy - dp_1 &2 , 23

Then we consider a mixed state p with ensemble representation p = > p;|1;) (], where

> pi = 1,0 < p; < 1, by the convexity of the Frobenius norm one derives

2
ol |

S BT ) ()
<3 w [T |

i=1

1<iy <--<ip_1<n
§2n 1 i n

>3
(n—2)d; - dy_1d2 =

which ends the proof.



Remark 1: Theorem 1 is a generalization of Proposition 1 and Proposition 2 given in [25].
When n = 3,2 < d; < dy < ds,ds < dyds, we obtain that

(123) (|2 _ didy + dids + dods — di — dy
e <s 1 e

which coincide with the upper bound in [25]. When n = 4,2 < d; < dy < d3 < dy,dy <
didods, we obtain that

|2 H2 <16 (1 _ dydady + didady + didsydy + dodsdy — dy — dy — ds + d4)

dydydsd?

which also coincide with the upper bound in [25].

As a special case, consider d; = --- = d,, = d in Theorem 1. We have

Corollary 1. Let p€ Hl @ H{ ® --- @ H? (n > 3,d > 2) be an n-qudit quantum state. We

have

H2 < 2" [(n — 2)d™ — nd"2 + 2]

e A

(10)
Remark 2: The upper bound of Corollary 1 is the same as in [15] and [25]. And Corollary
1 is the generalization of the results of [I4]. When n = 3,4, the results of Corollary 1 reduce
to the ones in [14] and [I5]. And when n = 3, the upper bound of Corollary 1 is %{i(dﬂ)’
which tighter than the upper bound of Corollary 2.2 given in [18].
The Bloch vectors are used to define a valid entanglement measure in [16,[17] as follows.

For an n-qudit pure state, the entanglement measure is defined as:

Ex(|y)) = (g) T | (d(d; 1))’57 )

where T is defined as a vector with elements 7" = Tr(ph;, ® \i, ® -+ ® A ). Our

i1+in

results can give rise to an upper bound of the entanglement:

Corollary 2. For any n-qudit pure state p € H'@ HS @ --- ® H? (n > 3,d > 2), the

entanglement measure has the upper bounds:
d

Bl < () ch T 1>’2’] , (12)

which coincide with the upper bound in [15].

[NIB]

3 The Necessary conditions for m-separable states

Now we study separability problems of n-partite quantum systems based on the upper
bounds of the norms of Bloch vectors. Let p € Hfh ® H;lz R ® Hg”, n>32<d <dy <



- < d,. If p can be written as p = > p;|t;) (1], where > p; =1, 0 < p; < 1, [¢);) is one

)
of the following sets: {[¢;,) ® |¢j,.j)}, {[d1) @ @ |dn)} {|D)1j2) ® [Djeru) } o
where j; # -+ # j, € {1,---n}. Then p is called (1,n — 1) separable, --- (1,--- ,1)
———

separable, (2,n — 2) separable, - - -, respectively.

Lemma 1. Let p; € Hjj (j=1,---,n,d; > 2) be the reduced density operator of p. We

have o o(d— 1)
roff < 2620 (13
Proof. p; has the Bloch representation:
d2 1
Pj __Id + 5 Zt i (14)
3_1

O =1, n iy =1, -1

J

Since Tr(p3) <1, ie - +3 HTU)H2 < 1, one obtains ([I3). |
J

where tEj ) = Tr(pjA;;), TW is a vector with entries ¢

Lemma 2. Let pj; € Hjj ® H,f’“ (1 <j<k<n2<d; <dg) be the reduced density

operator of p. We have
22(d§ —1)

N
oo < 2%

(15)

Proof. pj; has the Bloch representation:

d2—1

Iy, ® Iy, + Qdet N, ® Iy +

1;=1

1
pjk —d d
(16)

d2-1 d2 1d2—1

2 Zt(f)ldj ® N, + - Z thjka ® A,

ip=1 23—1 ip=1

where tl(-j) = Tr(pjphi; ® Ia, ), t Zk = Tr(pjpls, ® Niy), t;) Zk) = Tr(pjphi; ® N;,). TW, TH®
and TUR are vectors with entries tgj), tgk and tfﬁfk) (I<j<k<mniz=1,--,d} =14 =
1,---,d? —1). Set

HWW:§<Y
- & ()"

TR = Zl Z (M> .

1;=1 1=1

Q ||
K‘N)—‘

For a pure state pjx = [¢)(¢], one has T'r(p3,) = 1, namely,

T?"<ﬂ?k>——+—H |+ o HT(’“H+ JToP)" =1 (17)



Let p; and py, be the reduced density matrices with respect to the subsystems 1<)i<k<n.

Since for a pure state p;i, Tr(p5) = Tr(p}), ie. + L] H +1||T® H Therefore,
we get
2( 72
Gon2 205 =1 2(d; 4+ di) iy 2
HT H - d? djdk HT H 8
2%(dz — 1) (18)
<Y

Now we consider a mixed state p;, with ensemble representation p;, = > pilvi) (il
5

where > p; =1, 0 < p; < 1, by the convexity of the Frobenius norm one derives

%

2
TR ()| = D o9 (| (i)
; 2
Szpi HT(]k)(|¢i><¢i|)H
<22(d§ -1)
> 2 )
dj
which ends the proof. [ |
For the n-partite quantum state p € H{h ® H;lz Q- @HMn>32<d <---<d,,
consider the m-partition of n-qudit quantum state p, we denote m = (kq, -, k), where
Zk —n1<k1_-~-§km<n—1andnj—st,1<9<m1<n]§n By

=1
Theoreml dn; < dp; 41 Ay 2 dpy—1 i 3 <k <n—1 ,1 < j < m. Moreover, denote

the following:
_ 2(di—1)
= 24,

)

2(dny,—1)

an, = d ?

np

22(d?2 _,—1
CLnb = (d%l; 11 )7

_ (B ) (19)

anb+(q—1) - dib+(q71)71

T
t—1
. Zdinc,(tfl)".dincfl_;)d7lc+i +(n—2)dnc
ne = 2 1- (t—=2)dy o —(t—1) " dnc—1d3,

)
t—1
a —9otd1_ dinc+(sfl)7(t*1)mdinc+(sfl)71_i;0 dnet(s=n+it(=Ddng (s
Net(s— - - Z
+(s—1) (t=2dn,, (, 4)-6-1) Ingy(omry=19n,, ()




where p+q+---+s=m, p+2¢+---+ts=n,1<p,b,q,---,c,s <m.
Then from Lemmas 1, 2 and Theorem 1, we have
ITO) < a,
e < a,,
T =1m)|* < a,,

T(nb+(q71)_1vnb+(q—1)> 2 <
= Gnyy g1y

| Tme= =1 me) 2

< ap,,
Ty

2
Net(s—1 _(t_l)f" Mot (s—1
HT( (-1 " <ap,. . t>3

where T is a vector with the entries tl(.:) (u=1,-++,np, iy =1, ,d*—1). T is a vector
with entries tl(:;yy) (x=np =1, Npyg-1) — Ly =np, -+, Npy(g1),bp = 1, -+ ,d2 — 1,4, =
1,--- ,di—l). oo, T g g vector with entries t( v ) (X1 =nc—(t—=1), -+ Nejrs—1) —
(t_l)a y Tt = Ny = v+ 7nc+(s—1)71$1:1 7d§1 1 ) t_lv 7d:2(;t 1)

The following theorem gives the necessary conditions of m-separability.

Theorem 2. Let p € Hfl ®H§2 @ @HM™ (n>3,2<d; <dy <---<d,) be an n-partite

quantum state. If p is m-separable we have

T4 (g—1) My (s—1)
|72 < Haf T - I] o (20)
g=np h=nc
m J
where m = (ky,- -+, ky), Z =n1<k < -+ <k,<n—-1andn; = > k1<
s=1
] < m, I < nj < n, dnj S dn371+1 dnj,1+2"'dnj—1 Zf3 < kj < ’I’L—l,]. < ] < m.
ag,ag,ap (f =1, 0y, g =N, , Ny (g—1)s . = Ny - -+, Neq(s—1)) are given in (13).

Proof. If p = [¢)(¢| is an m-separable pure state, where |¢)) € H" @ H? @ --- @ H.

Without lose of generality, assume that

[¥) =[61) ® - @ [6n,) ® |Pny-1,0,) @+ &

® }¢nc (t—1), nc>®

¢"b+(qfl)_1’”b+(q*1)> -

¢nc+(571)_(t_1)7'“ Met(s—1) > .




We have

21 2 =T (‘w><¢‘)‘ll ®)‘Zn)
=Tr (I¢1)(¢1 i) - T (|6m,) (b, | Ais, )
Tr |¢nb lnb (bnb lnb|)\znb 1 ®>\znb>

o

. s o
"1 (q—1) T4 (g—1) ® "1 (q—1) T4 (g—1)

A (T ——

¢"b+<q—1>—17"b+<q—1>> <¢"b+(q—1)—17"b+<q—1>

(21)
)\inc*(tfl) " ® )\7'”(,)
TT( ¢nc+(sfl)_(t_1)7“' 7nc+(sfl)> <¢nc+(sfl)_(t_1)7"' Met(s—1)
)\i”cﬂsfl)*(t*l) - ® >\inc+(sl))
0 ym) gt (meraen=Lmen) |
1 tnp Iny—1tny 7'7Lb+(q 1)71an+(q71)
flne=(t=1), )-~-t( et (s—1)— (=1, Moy (o 1>)
tne—(t=1)" ch et (s—1) (t-1)" 2n6+(.5 1)
Thus
s = T e
| Tt H2 - | T ) H2 .
HT(nc—(t—n,--- ne) || .. | T(ncHH)—(t—l)vm7nc+<371)>H2 (22)
Np4(qg—1) Net(s—1)
<Haf H ag - H ap,.
g=nyp h=n,

Then for any mixed state p = 3" ppltp) (U] € H' @ HP? @ --- @ H, where S pj, = 1,
k %
0 < pr < 1,by the convexity of the Frobenius norm one derives

2

> T () ()

k

< Zpk T2 (e ()| (23)

MNp4(g—1) Net(s—1)

<Haf H g - H -

g=nyp h=n.

[T ()| = ‘
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Remark 3: The upper bounds of Theorem 2 is a generalization of Theorem 2 given
in [15] and Theorem 7 given in [25], respectively. Set d; =--- =d, = d, and a; =

= Qp,,,
Apy =" = Qpy (g y) = A2y "y An, =+ + =, ) = . Then [20)) gives rise to
2
12--n P_q S
HT( )H < ajad---aj. (24)

which coincide with Theorem 2 in [I5] and Theorem 7 in [25].
Remark 4: Let p € H" @ H{* ® HE® ® H* be a four-partite quantum state. One has

(
24(1211—1) {1 _ d2d3+d2dciil:-;i§,d4—2d4}’ if pis (1,3) separable:
af 2 2_
%7 if pis(2,2) separable;
173
(1234) ||2
HT H < 24 (dy —1)(dz—1) (3 1) S (25)
d1d>d2 ; if pis(1,1,2) separable;
3
4
2 T1(di-1)
= : if pis (1,1,1,1) separable.
[T di
\ =1

The following two examples show that the upper bounds in Theorem 2 are nontrivial
and are tight.

Ezample 1: Consider the quantum state p € H? ® H2 ® H2 @ H; @ H2,

— 2z
32

where [1)) = <=(|00000) + [11111)), |¢) = $(|00001) + [00010) + [00100) + |01000)). Since

= ([} (] + [o)(el) + I3, (26)

3 2
HT(12345) H2 = > (tglfff§)> where 7% = =Tr(phi, @---®@ N\, ) are the entries of T12349)

i1--i5 i1-e+i5
i1, ,25

we have HT(12345)H 20z2. Thus for % <z < ‘ﬁ , pis not (1,4) or (1,2,2) separable.

For @ <z <1, pisnot (2,3) separable. For i <z < 3\f , pis not (1,1, 3) separable.
For % <z < %, p is not (1,1,1,2) separable. For i <z < \{0_, pismnot (1,1,1,1,1)
separable.

Ezample 2: Consider the quantum state p € H @ H3 ® Hy ® HY,

p = z[) (Y| + ~ I1s0, (27)

120

where |¢) = %(l0)1\0>2\0>3l4)4+ [1)1/0)2[0)5]0)4), [0)1 = [1,007, [1)1 := [0,1]7, |0)2
[1,0,0]%, |0)3 := [1,0,0 O] 0)4 :=[1,0,0,0,0]%, |4)4 := [0,0,0,0,1]T (T is the transpose).

Since || T2 H Z Z (tfll i) , where tglf,f) = Tr(p\; @ ---® \;,) are the entries of
=1 =1
T(24 we can compute that ||T123%) H = 622. Thus for @ <z < \/_ , p is not (1,3)

11



separable. For @ < x <1, pisnot (2,2) separable. For @ <z < @, pis not (1,1,2)

2+/30 V30
separable. For == <r <

From the above results, we are able to classify the entanglement of n-partite quantum
12-+n) H2

, pisnot (1,1,1,1) separable.

states by using the norms of the Bloch vector HT(12“'") H2 The upper bounds of HT(
can be used to identify the m-separable n-partite quantum states, which include the fully

separable states and the genuine multipartite entangled states as special classes.

4 Conclusion

Classification and detection of quantum entanglement are basic and fundamental prob-
lems in theory of quantum entanglement. We have investigated the norms of the Bloch
vectors for arbitrary n-partite quantum systems. Tight upper bounds of the norms have
been derived, and used to derive tight upper bounds for entanglement measure defined by
the norms of Bloch vectors. The upper bounds have a close relationship to the separabil-
ity. Necessary conditions have been presented for m-separable quantum states. With these
upper bounds a complete classification of n-partite quantum states has been obtained. Our

results may highlight further studies on the quantum entanglement.
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