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Current implementations of quantum logic gates can be highly faulty and introduce errors. In
order to correct these errors, it is necessary to first identify the faulty gates. We demonstrate a
procedure to diagnose where gate faults occur in a circuit by using a hybridized quantum-and-
classical K-Nearest-Neighbors (KNN) machine-learning technique. We accomplish this task using
a diagnostic circuit and selected input qubits to obtain the fidelity between a set of output states
and reference states. The outcomes of the circuit can then be stored to be used for a classical KNN
algorithm. We numerically demonstrate an ability to locate a faulty gate in circuits with over 30
gates and up to nine qubits with over 90% accuracy.

I. INTRODUCTION

Quantum computers are becoming more realizable
as we approach the noisy intermediate-scale quantum
(NISQ) era [1]. Tools like the IBM Q-Experience al-
low researchers to program and simulate quantum algo-
rithms on a real quantum computer with a small number
of qubits. These quantum computers are programmed
using quantum logic gates, which act on the qubits to
perform different operations; however, current implemen-
tations of these gates are prone to physical faults such
as extraneous phase shifts or rotations, which introduce
systematic errors into the system [2, 3]. Before error cor-
rection protocols can be implemented, it is necessary to
identify the gate producing the error. Here, we propose
a preprocessing step to diagnose gate faults—without al-
tering the circuit itself—by utilizing machine learning.

Machine-learning techniques are powerful tools for
classification and pattern recognition, and much work
has been done to determine the potential advantages of
quantum machine-learning algorithms [4–6]. We consider
a hybrid quantum-classical machine learning technique
that utilizes both quantum and classical algorithms. Sim-
ilar hybrid schemes have been used to achieve machine-
learning capabilities for NISQ devices [7, 8]. Using a
hybrid technique, we harness the computational advan-
tage of quantum systems while utilizing more freely avail-
able classical resources such as memory. Here, we con-
sider a machine-learning algorithm known as K-Nearest-
Neighbors.

K-Nearest-Neighbors (KNN) is a comparatively simple
classification algorithm. KNN takes a training set of d-
dimensional vectors that are all labeled with their respec-
tive classifications. Given a new unclassified vector, KNN
determines the class of the vector from the most common
class of the k-nearest training vectors. Typically, the
Euclidean distance determines the distance measure be-
tween vectors. In quantum states, the overlap or fidelity

between two states acts as a similarity measure that is
analogous to the Euclidean distance [9], and this fidelity
is found through a simple circuit known as a swap test,
as shown in Fig. 1 [10]. This swap-test circuit can use
carefully prepared state vectors to evaluate distances be-
tween classical vectors in KNN-style algorithms [11, 12].

We utilize a modified version of the swap-test circuit
that acts on multi-qubit states. With this circuit, we
define a hybrid quantum-classical machine-learning tech-
nique that compares the output state of a quantum cir-
cuit to a series of reference states. We then determine,
from the output of KNN classification, where in the test
circuit a gate fault occurs. We show that with relatively
simple reference states and carefully chosen inputs, we
are able to achieve simulated accuracies over 90%, even
for relatively large quantum circuits.

II. GATE-FAULT CLASSIFICATION

We assume that the circuit under test (the test cir-
cuit) is of known composition and has only one physical
gate fault. Furthermore, we assume that this gate fault
can be modelled by a physical fault, such as an uninten-
tional rotation or additional phase factor. In the case
of controlled-NOT (CNOT) gates, we also consider the
possibility of a misplaced target or control qubits, such
that the intended operation is implemented incorrectly
on a certain qubit rather than another.

We simulate circuits by generating combinations of
random unitary gates, Hadamard gates, and CNOT
gates. We model random unitaries using the property
that any unitary gate can be decomposed into elemen-
tary quantum gates, as shown in Ref.[13]. Any unitary
operation on n qubits can be decomposed into combina-
tions of one-qubit unitaries of the form:

A = Φ(δ)Rz(α)Ry(θ)Rz(β) , (1)
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FIG. 1. Swap-test circuit as used in Ref. [10]. The probabil-
ity of measuring the ancillary bit to be in the |0〉 state directly
relates to the fidelity between states |q0〉 and |q1〉. This fidelity
provides the Euclidean distance between two quantum states.

where Rz and Ry are rotations on the Bloch sphere
around their respective axes, and Φ is a phase-shifting
gate. The angles δ, α, θ, and β are the specific param-
eters that determine the gate A. We include Hadamard
gates, CNOT gates, and phase-shifting gates along with
this combination, which allows us to simulate a general
quantum circuit, since they form a set of universal two-
qubit gates [14]. Hadamard gates can be decomposed ei-
ther in a manner similar to the unitary gates, or through
the Reck decomposition [15]. We simulate physical de-
fects by altering the arguments of the decomposition from
0 to 2π or by considering permutations of the CNOT gate
(that is, a CNOT gate operating on various combinations
of target and control qubits other than the intended tar-
get and control combination).

Once a test circuit is generated, the KNN training data
is populated. We receive this training data from the out-
put of a diagnostics circuit, which is a modified form of
the swap-test circuit. The diagnostics circuit assumes
control of the input to the test circuit, which can be con-
trolled by sending a string of qubits |q0〉|q1〉...|qn〉, all of
which are in either the |0〉 or |1〉 state. The output of U
is the input to the circuit. Then the output of the circuit
on this state is related to a reference state through many
successive controlled-SWAP, or Fredkin, gates. A single
ancillary qubit controls these Fredkins gates. The refer-
ence state is manipulated by sending the same string of
input qubits into a unitary V . (See Fig 2.)

When comparing two single qubits, if the output state
of the test circuit |Ψ〉 is exactly the same as the reference
state |Φ〉, then the probability of measuring the ancillary
bit to be in the |0〉 state is one; however, if the states are
slightly different, the probability of measuring the ancilla
in the zero state is determined by:

P (|0〉anc) =
1

2
+

1

2
|〈Ψ|Φ〉|2 , (2)

We can generalize this for comparisons of multi-qubit
states. If the two states are not identical, the probability

FIG. 2. Diagnostic circuit for the hybrid KNN technique. A
string of n qubits in either the |0〉 or |1〉 states are fed into
unitaries U and V . U is controlled to specify the input state,
and V is controlled to specify the reference state. The input
state is then fed into the test circuit. Afterwards, a series of
Fredkin gates perform a controlled SWAP operation between
the corresponding qubits of the circuit and the qubits of the
reference state. Each SWAP gate is controlled by an ancilliary
qubit |0〉anc, which gives a measure of distance between the
output of the circuit and the reference state. For input tests,
V is set to be the Quantum Fourier Transform (QFT).

is given by:

P (|0〉anc) =
1

2n
+

1

2n

n∑
i=1

|〈Ψi|Φi〉|2 +O(ε), (3)

where this sum of the respective ith qubits of the two
states and n is the number of qubits inputted to the
test circuit. This probability is approximately the fidelity
between the two states when cross-terms between any ith

and jth qubits become vanishingly small.
These probabilities are stored classically. Using d dif-

ferent input and reference state pairs, we construct a d-
dimensional classical vector S that contains the measured
probability for each set of states such that:

S = [P1, P2, .., Pd] . (4)

Here, Pi is the probability, as described in Eq. 2, associ-
ated with the ith pair of comparison states. This vector
is then stored and retrieved classically, allowing for its
use in a classical KNN algorithm. This algorithm comes
equipped with a set of training vectors that are already
classified. We then provide new vectors for the algo-
rithm to classify. The algorithm obtains the Euclidean
distance between the new vector and each vector in the
set of training data. We specify a parameter, k, and the
k-nearest-neighbors are queried for their assigned class.
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FIG. 3. This quantum repeater circuit [16] is used as a test for the KNN algorithm. Since it is entirely composed of Hadamard
and CNOT gates, it should be more difficult to classify than a less repetitive circuit. With unitary-controlled input states,
the four-dimensional KNN algorithm achieves accuracies of approximately 95%. By restricting ourselves to only inputting |0〉
states, as pictured above, the accuracy drops down to 78% for the same classification algorithm, or to 80% with more reference
states.

The input vector obtains the class of the majority of its
neighbors. In this case, the classes of the algorithm are
the identities of the various gates in the circuit. This pro-
cedure can be weighted so that more emphasis is placed
on the classes of vectors closer to the input vector, and
k can be adjusted to increase accuracy. The diagnostic
circuit provides the new input vector, which, in turn, is
classified using KNN. Thus the output of the machine-
learning algorithm is the identity of the faulty gate.

III. RESULTS

We simulated results of the diagnostics algorithm for
both randomly generated circuits as well as a known test
circuit. For each circuit generated, 200 different random
errors were created for each gate. Eighty percent of this
data was used to train the classical KNN algorithm. The
remaining twenty percent was employed as a test. Each
circuit was queried using four comparison states, which
means the vectors used for the KNN protocol were four-
dimensional.

A. Quantum Repeater Circuit

As a preliminary test run, we simulate the results on a
known circuit as a proof-of-concept. We use the circuit
given in Ref. [16], also shown in Fig. 3. This protocol
was chosen since it uses only four qubits and has ap-
proximately thirty gates which are all either CNOT or
Hadamard gates. Since this circuit is highly repetitive,
the algorithm struggles more to accurately classify which
gate is faulty, since it can be easily confused by identical
gates at different portions of the circuit. Therefore, this
circuit is a rather extreme example.

This circuit also requires a specific input state (namely
all |0〉) to function as designed. As such, we consider
both the case where we control the input, as before, and
the case where we do not. For this circuit, the average

simulated accuracy with input control was around 95%
for both the cases when V was a multi-qubit Hadamard
or the QFT. Enforcing the restriction to the all-zero input
case, the average accuracy dropped to 78% when using
the same comparison states. By altering the number of
reference states or the k parameter, it is possible to raise
this value slightly to 80%.

B. Randomized Circuits
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FIG. 4. A comparison of different input states to the test
circuit when scaling the number of qubits. The All Zeros
Input data refer to an input of only |0〉 states, the Basis States
data refers to an input of a series of |0〉 and |1〉 states, and
that same series of |0〉 and |1〉 is fed either into a multi-qubit
Hadamard or a QFT for the final two sets of data. Both the
Hadamard and the QFT consistently give accuracies above
90% for all simulated data.

We use the results from randomly generated circuits to
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FIG. 5. A comparison of different input states to the test
circuit when scaling the total number of gates. The All Zeros
Input data refer to an input of only |0〉 states, the Basis States
data refers to an input of a mix of |0〉 and |1〉 states and
that same mix of |0〉 and |1〉 is fed either into a multi-qubit
Hadamard or a QFT for the final two sets of data. Both the
multi-qubit Hadamard and the QFT produce high accuracy
even for large circuits.

determine appropriate choices for the unitaries U and V
(Fig. 2). Theoretically, the ideal reference state would be
the output of the test circuit when no fault has occurred
[10, 11]; however, in practice these outputs could be com-
plicated to produce and may require a working duplicate
of the test circuit. We therefore look for comparatively
simple unitaries that can be reliably implemented and
are stable — this choice provides a high degree of accu-
racy for a variety of circuits. Choices for the input and
reference states included the following: only using all |0〉
states in the input (denoted All Zeros Input in the fig-
ures), a mix of |0〉 and |1〉 states (denoted Basis States),
the same mix of |0〉 and |1〉 states operated on by a multi-
qubit Hadamard gate (Hadamard), and the same mix of
zero and one states acted on by a quantum Fourier trans-
form (QFT). The all zeros, basis, and Hadamard options
were chosen due to their simplicity and repeatability. The
QFT was chosen due to its property of being a maximally
mixing unitary.

Upon simulating the various choices for reference
states, the QFT was shown to be the most stable and
accurate reference, and thus it is used as the reference

unitary V for all input tests. In Fig 4, we compare the
various choices for U as the number of qubits in the test
circuit increases. Although matching the reference state
to the input with a QFT performs optimally, at a steady
rate of 99% accurate, the relative complications in imple-
menting the QFT make that combination less practical.
In comparison, using a QFT reference state and letting
U be a multi-qubit Hadamard achieves simulated accu-
racies of greater than 90% for up to nine qubits–while
being simpler to implement.

The combination of the Hadamard and QFT unitaries
performs similarly well when considering six qubit cir-
cuits of various lengths. (See Fig. 5) Compared to the
input states which are not modified by a unitary transfor-
mation, the Hadamard and QFT show little dependence
on the length of the circuit itself or in the number of
qubits. The latter is likely due to the scaling of the di-
agnostics circuit with respect to the number of qubits,
and the former arises from the companion fact that the
classical KNN algorithm used to classify faulty gates is
kept to a relatively small dimension. These two proper-
ties circumvent the loss of accuracy seen in typical KNN
schemes when the dimensionality of the training space is
allowed to grow.

IV. DISCUSSIONS AND CONCLUSIONS

We propose a hybrid quantum and classical machine
learning algorithm capable of identifying the faulty gate
in a given circuit. Using a set of unitary gates to control
the input and reference states, we show simulated accu-
racies of greater than 90% for up to nine qubits and 30
gates in a circuit. In all general cases, we have considered
only a four dimensional KNN algorithm. The number of
dimensions can be altered for specific implementations
when necessary to improve accuracy. In the example re-
peater circuit, where the input cannot be meaningfully
manipulated, using more reference states–and thus in-
creasing the dimensionality of the classical algorithm–has
shown increased accuracy to around 80%.
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