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Abstract

Due to the powerful computing capability of quantum computers, crypto-
graphic researchers have applied quantum algorithms to cryptanalysis and
obtained many interesting results in recent years. In this paper, we study
related-key attack in the quantum setting, and proposed a specific related-
key attack which can recover the key of block ciphers efficiently, as long as the
attacked block ciphers satisfy certain conditions. The attack algorithm em-
ploys Bernstein-Vazirani algorithm as a subroutine and requires the attacker
to query the encryption oracle with quantum superpositions. Afterwards, we
rigorously demonstrate the validity of the attack and analyze its complex-
ity. Our work shows that related-key attack is quite powerful when combined
with quantum algorithms, and provides some guidance for the design of block
ciphers that are secure against quantum adversaries.

Keywords: post-quantum cryptography, quantum related-key attack,
quantum cryptanalysis, block cipher

1. Introduction

Shor’ algorithm [1] indicates that once scalable quantum computers are
available, many widely used asymmetric cryptosystems, such as RSA, will
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be broken. This has sparked a upsurge of research on post-quantum cryp-
tography, which studies classical systems that are secure against quantum
adversaries. In response to the threat of quantum computing, NIST has
initiated the process of standardizing post-quantum public-key algorithms
[2].

On the other hand, although less attention is paid than public-key cryp-
tography, symmetric cryptosystems are also suffering the threat from quan-
tum attacks. For example, due to Grover’s algorithm [3] general exhaustive
search attacks can obtain a quadratic speedup. More strikingly, some sym-
metric systems that have been proved to be secure against classical adver-
saries have been broken by polynomial-time quantum algorithms. Kuwakado
and Morii made use of Simon’s algorithm [4] to distinguish the three-round
Feistel construction [5] and recover the key in Even-Mansour cipher [6]. San-
toli et al. [7] and Kaplan et al. [8] subsequently extended their results
independently and applied Simon’s algorithm to other symmetric primitives.
All these attacks are executed in the model of quantum chosen-plaintext at-
tack [9, 10, 11], where the attacker can query the encryption oracle with
superpositions.

When quantum chosen-plaintext attack has been widely studied, quan-
tum related-key attack has also started to draw attention. Classical related-
key attacks were first introduced by Biham [12], and has been applied to
Rijndael [13], KASUMI [14] and other schemes. In such attacks, the at-
tacker can query the encryptions or decryptions of messages under the keys
that have some known mathematical relation with the target key. Roet-
teler and Steinwandt first study related-key model in the quantum setting
[15]. They showed that, under the assumption that the key of the block ci-
pher can be uniquely determined by a small amount of accessible plaintext-
ciphertext pairs, a quantum attacker can efficiently extract the key by using
a quantum related-key attack. Afterwards, Hosoyamada and Aoki proposed
a polynomial-time quantum algorithm that recovers the key of two-round it-
erated Even-Mansour scheme with only two queries to the related-key oracle
[16]. These two results show that related-key attack is powerful for quantum
attackers.

In this paper, we further study the applications of quantum related-key
attack to block ciphers. Based on Bernstein-Vazirani (BV) algorithm [17], we
propose a quantum attack for recovering the key of general block ciphers. We
prove that, if not requiring the time complexity to be polynomial, our attack
can find out the key of an arbitrary unrestricted block cipher. Afterwards,
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we give two specific conditions, and demonstrate that, as long as the block
cipher satisfies one of them, then our attack can effectively extract the secret
key in polynomial time. Like the attack model of [15], we allow the attacker
to query the encryption oracle with superpositions of keys. This makes the
attack less practical because the ability to query with superpositions of keys
is a strong requirement even for quantum adversaries. However, from the
perspective of constructing ciphers, our results helps to establish criterions
that a secure block cipher should meet in the post-quantum world.

2. Preliminary

Throughout this paper, we let F2 = {0, 1}, representing the finite field
with characteristic 2. E denotes an arbitrary block cipher with blocksize n
and key length k. When fix a secret key s ∈ Fk2, Es is a permutation from
Fn2 to Fn2 . We assume that E can be efficiently implemented by a quantum
circuit. That is, there exists a polynomial-time quantum circuit that takes
as input a secret key along with a plaintext and output the corresponding
ciphertext. The quantum circuit implements the following unitary operator:

UE :
∑
m,x,y

|x〉|m〉|y〉 −→
∑
m,x,y

|x〉|m〉|y ⊕ Ex(m)〉.

For the block ciphers used in practice, this assumption holds undoubtedly.
Since the quantum circuit of UE does not involve the secret key s, the attacker
can perform the unitary operator UE by himself.

Because the unitary quantum gates {H,CNOT, Phase, π
8
} form a uni-

versal gate set [18], we can assume that the quantum circuit implementing
UE is composed of gates in this set. Here, H is the Hadamard gate, CNOT
is the controlled-NOT gate, Phase is the phase gate and π

8
is the π

8
gate

(Fig.1). Let |E|Q be the number of universal gates in the quantum circuit
implementing E. |E|Q is a polynomial of k and n. The attacker can integrate
UE into his circuits as in Fig.2

2.1. Related-key attack

We first recall the related-key attack model proposed in [19], where the
key relation is restricted to bit-flips. In this model, after a secret key s ∈ Fk2
is determined, the attacker can query following two oracles:
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Figure 1: Universal gate set

Figure 2: Quantum gate UE

E : On input a plaintext m ∈ Fn2 and a bitmask x ∈ Fk2, E returns the
encryption Es⊕x(m).

D: On input a ciphertext c ∈ Fn2 and a bitmask x ∈ Fk2, D returns the
decryption E−1s⊕x(c).

After querying these oracles, the attacker needs to output a vector s′ ∈ Fk2
as a guess of s. He succeeds if and only if s′ = s.

The attacks presented in this paper do not require the access to the
decryption oracle D, but the attacker is allowed to query the encryption
oracle E with superpositions of keys. That is, the attacker can query the
quantum oracle OE which operates as follows:

OE :
∑
x,m,y

|x〉|m〉|y〉 −→
∑
x,m,y

|x〉|m〉|y ⊕ Es⊕x(m)〉.

The attacker can integrate the oracle OE into his circuits as in Fig.3. Fur-
thermore, we allow the attacker to query the oracle that returns solely a
bit of the cipher with superpositions of keys. That is, supposing Es⊕x =
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(Es⊕x,1, Es⊕x,2, · · · , Es⊕x,n), for each j = 1, 2, · · · , n, the attacker can query
the quantum oracle

OEj :
∑
x,m,y

|x〉|m〉|y〉 −→
∑
x,m,y

|x〉|m〉|y ⊕ Es⊕x,j(m)〉.

Figure 3: Quantum gate OE

The scenario where quantum attackers can query cryptographic primitives
with quantum superpositions has been considered in a significant amount
research [9, 10, 11, 20, 21, 22, 23]. The access to the oracle OE implies that
the attacker can query the encryption oracle equipped the target key s. That
is, the attacker can query the following oracle:

OEs :
∑
m,y

|m〉|y〉 −→
∑
m,y

|m〉|y ⊕ Es(m)〉.

To do this, he only needs to query OE with the state
∑

m,y |0〉|m〉|y〉 and
discard the first register. Therefore, quantum related-key attack model can
be viewed as an extension of the quantum chosen-plaintext attack model.

2.2. Linear structure

Let Ck,n denote the set of maps from Fk2 to Fn2 . The notion of linear
structure is defined as following:

Definition 1 ([24]). F ∈ Ck,n. A vector a ∈ Fk2 is said to be a linear
structure of F if there exist α ∈ Fn2 such that

F (x)⊕ F (x⊕ a) = α, ∀x ∈ Fk2.

Let UF denote the set of all linear structures of F , and Uα
F := {a ∈

Fk2|F (x)⊕ F (x⊕ a) = α, ∀x ∈ Fk2}, then UF =
⋃
α U

α
F .
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Definition 2. F ∈ Ck,n. A vector a ∈ Fk2 is said to be a σ-close linear
structure of F if there exist α ∈ Fn2 such that

|{x ∈ Fk2|F (x)⊕ F (x⊕ a) = α}|
2k

> 1− σ.

Suppose F = (F1, F2, · · · , Fn), then obviously, a is a linear structure of F
if and only if it is a linear structure of Fj for each j = 1, 2, · · · , n. To find a
linear structure of F , we only need to find linear structures of every Fj first,
and then select a common linear structure. Therefore, in order to find linear
structures of functions in Ck,n for a general parameter n, we only need to
focus on the case of n = 1.

Linear structures of the functions in Ck,1 are determined by their Walsh
spectrum, which is defined as following:

Definition 3. Suppose f : Fk2 → F2 is a function in Ck,1. The Walsh spec-
trum of f is defined as

Sf : Fk2 −→ F2

ω −→ Sf (ω) =
1

2k

∑
x∈Fk

2

(−1)f(x)+ω·x.

which is also a function in Ck,1.

Let Uf be the set of the linear structures of f , and U i
f := {a ∈ Fk2|f(x)⊕

f(x⊕a) = i, ∀x ∈ Fk2} for i = 0, 1. We have Uf = U0
f ∪U1

f . Following lemma
shows how to determine the linear structures by Walsh spectrum:

Lemma 1 ([25]). For any f ∈ Ck,1, let Nf := {ω ∈ Fk2|Sf (ω) 6= 0}. Then
for ∀i ∈ {0, 1}, it holds that

U i
f = {a ∈ Fk2|a · ω = i, ∀ω ∈ Nf}.

According to the above lemma, if one has a large enough subset W of
Nf , he can solve the linear equation group {x · ω = i|ω ∈ W} to obtain the
linear structures of f . As discussed previously, by applying this method to
find each Fj’s linear structures, one is expected to get the linear structures of
F . (Here solving the linear equation group {x ·ω = i|ω ∈ W} means seeking
vectors x such that x · ω = i for ∀ω ∈ W .)
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2.3. Bernstein-Vazirani algorithm

Given the quantum oracle access of a function f(x) = a · x, where a ∈ Fk2
is a secret string, BV algorithm’s [17] original goal is to find a. However, Li
and Yang observed that, when BV algorithm is applied to a general Boolean
function f : Fk2 → F2 in Ck,1, it will always return a vector in Nf [26]. BV
algorithm is executed as following:

1. Perform Hadamard operator H(k+1) on the initial state |ψ0〉 = |0〉⊗k|1〉
to get

|ψ1〉 =
∑
x∈Fk

2

|x〉√
2k
· |0〉 − |1〉√

2
.

2. Query the oracle of f , obtaining

|ψ2〉 =
∑
x∈Fk

2

(−1)f(x)|x〉√
2k

|0〉 − |1〉√
2

.

3. Perform the Hadamard operator H(k) to the first k qubits and discard
the (k + 1)-th qubit, producing

|ψ3〉 =
∑
y∈Fk

2

(
1

2k

∑
x∈Fk

2

(−1)f(x)+y·x)|y〉

=
∑
y∈Fk

2

Sf (y)|y〉.

By measuring |ψ3〉 in the computational basis, one will obtain a vector
y ∈ Fk2 with a probability of Sf (y)2.

When applying BV algorithm to a function f ∈ Ck,1, it always returns a
vector in Nf . In light of this fact and Lemma 1, one can use BV algorithm
to find linear structures of an arbitrary function in Ck,1. Executing BV
algorithm needs a total of 2k + 1 Hadamard gates and one quantum query.
The number of qubits required is k+1. The quantum circuit of BV algorithm
is presented in Fig.4.
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Figure 4: Quantum circuit of Bernstein-Vazirani algorithm

3. Quantum algorithm for finding linear structures

A quantum algorithm for finding nonzero linear structures of functions
in Ck,n was proposed by Xie and Yang [27]. Suppose F = (F1, F2, · · · , Fn) ∈
Ck,n. For each j = 1, 2, · · · , n, their algorithm first calls BV algorithm to
get a subset of NFj

, then uses the subset to compute linear structures of
Fj according to Lemma 1. Afterwards, the algorithm selects an nonzero
common linear structure of F1, F2, · · · , Fn and outputs it. The output vector
has a high probability of being a linear structure of F . We make a minor
modification to the algorithm in [27] so that it outputs a set containing
all linear structures of F , instead of only a random linear structure. The
modified algorithm is as following:

Algorithm FindStruct

Initialization: p(n) is a polynomial of n chosen by the attacker. F =
(F1, F2, · · · , Fn) ∈ Ck,n. The quantum oracle access of each Fj (1 ≤ j ≤
n) is given.

1. For each j = 1, 2, · · · , n, apply BV algorithm to Fj for p(n) times to
obtain a subset Wj of NFj

. The size of Wj is p(n).
2. For each j = 1, 2, · · · , n, solve the linear equation group {x · ω =

ij|ω ∈ Wj} to obtain the solution A
ij
j for ij = 0, 1, respectively. Let

Aj = A0
j ∪ A1

j .
3. Find the intersection Ā = A1 ∩A2 ∩ · · · ∩An. For each a ∈ Ā, let ã =

(i1, i2, · · · , in), where i1, i2, · · · , in are the corresponding superscripts
such that a ∈ Ai11 ∩Ai22 ∩· · ·∩Ainn . Let A = {(a, ã)|a ∈ Ā} and output
A.

In the above algorithm, when the attacker computes Aj = A0
j ∪ A1

j in
Step 2, he actually needs to attach a tag to each vector in Aj. Specifically,
if a ∈ A0

j , then a tag ij = 0 is attached to a when it is put into the set
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Aj; if a ∈ A1
j , then a tag ij = 1 is attached to a when it is put into the set

Aj. Subsequently, when the attacker computes the intersection Ā, for each
a ∈ A1∩A2∩· · ·∩An, he attaches the corresponding n tags i1, i2, · · · , in to a
when puts it into Ā. Therefore, when calculating the set A, the attacker can
easily obtain corresponding ã of each a ∈ Ā by tracking these tags. Using
these tags is for avoiding the attacker needing to compute the intersection
of n sets for exponential times. With these tags, the attacker only need to
compute the intersection Ā = A1 ∩ A2 ∩ · · · ∩ An once to obtain the set A.
If without these tags, then the attacker needs to compute the intersections
Ai11 ∩ Ai22 ∩ · · · ∩ Ainn to obtain the linear structures in U

(i1,··· ,in)
F for each

i1, i2, · · · , in ∈ {0, 1}, so he needs to compute intersection for 2n times.
The following three theorems demonstrate the feasibility of the algorithm

FindStruct. Theorems 2 and 3 have been proved in [27] and we therefore
omit the proofs.

Theorem 1. Suppose F = (F1, F2, · · · , Fn) ∈ Ck,n and a is an arbitrary
linear structure of F . Let α be the vector such that a ∈ Uα

F . If running the
algorithm FindStruct on F returns a set A, then (a, α) must be in the set
A.

Proof. Suppose α = (α1, α2, · · · , αn). Since a ∈ Uα
F , we have that

a ∈ U
αj

Fj
for each j = 1, 2, · · · , n. According to Lemma 1, for any vector

ω ∈ NFj
, it holds that a · ω = αj. By the properties of BV algorithm, we

know that the set Wj ⊆ NFj
, so a is a solution of the linear equation group

{x · ω = αj|ω ∈ Wj} for each j = 1, 2, · · · , n. Therefore, we have that a ∈ Ā
and α1, α2, · · · , αn are the superscripts such that a ∈ Aα1

1 ∩Aα2
2 ∩ · · · ∩Aαn

n ,
which means (a, α) ∈ A.

�

Theorem 2 ([27]). If running the algorithm FindStruct on F = (F1, F2, · · · , Fn) ∈
Ck,n returns a set A, then for any (a, i1, i2, · · · , in) ∈ A, any 0 < ε < 1, it
holds that

Pr

[
|{x ∈ Fk2|F (x⊕ a)⊕ F (x) = i1 · · · in}|

2k
> 1− nε

]
>
(
1− e−2p(n)ε2

)n
.

Moreover, for any j ∈ {1, 2, · · · , n}, any ij ∈ {0, 1} and any vector a ∈ Aijj ,
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it holds that

Pr

[
|{x ∈ Fk2|Fj(x⊕ a)⊕ Fj(x) = ij}|

2k
> 1− ε

]
> 1− e−2p(n)ε2 .

Before stating Theorem 3, we need to define a parameter. For any func-
tion f ∈ Ck,1, let

δf =
1

2k
max
a∈Fk

2
a/∈Uf

max
i∈F2

|{x ∈ Fk2|f(x⊕ a) + f(x) = i}|. (1)

For any function F = (F1, F2, · · · , Fn) ∈ Ck,n, we define δF = maxj δFj
,

where δFj
is defined as Eq.(1). Obviously δF < 1. The larger δF is, the more

difficult for excluding the vectors that are not linear structure of F when
applying the algorithm FindStruct on F .

Theorem 3 ([27]). Suppose F ∈ Ck,n and δF ≤ p0 < 1 for some constant
p0. If running the algorithm FindStruct on F returns a set A, then for any
(a, i1, i2, · · · , in) ∈ A, it holds that

Pr
[
a ∈ U (i1,··· ,in)

F

]
≥ 1− pp(n)0 .

That is, except for a probability of p
p(n)
0 , the vectors in A must be the linear

structures of F .

Theorem 1 indicates that all linear structures of F must be in the output
set A. Noting that the vector 0 is a trivial linear structure of F , the set
A is always nonempty. Theorem 2 states that every vector in A has a high
probability of being an approximate linear structure of F . Theorem 3 shows
that, except for a negligible probability, the vectors in the set A output by
the algoithm FindStruct with p(n) = O(n) must be linear structures of F ,
under the condition that δF ≤ p0 < 1 for some constant p0.

By regarding each Fj itself as a vector function that has only one com-
ponent and applying Theorem 3 to Fj, we have following corollary:

Corollary 1. Suppose F = (F1, F2, · · · , Fn) ∈ Ck,n and δF ≤ p0 < 1 for
some constant p0. The sets Aj (j = 1, 2, · · · , n), generated during running
the algorithm FindStruct on F , satisfy that for any a ∈ Aj,

Pr
[
a ∈ UFj

]
≥ 1− pp(n)0 .
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That is, except for a probability of p
p(n)
0 , the vectors in Aj must be the linear

structures of Fj.

4. Attack strategy

In this section, we present a strategy for attacking general block ciphers
using BV algorithm in the context of quantum related-key attack. We first
describe the attack, then analyze under what conditions the attack will work
and corresponding complexity of it.

4.1. Description of the attack

A general way to attack a symmetric cryptosystem E using BV algorithm
includes the following two steps:

1. Construct a new function F based on the cipher E so that F satisfies two
conditions: (I) the attacker has quantum oracle access to F ; (II) F has a
nontrivial linear structure that reveals the information of the secret key.
Sometimes the linear structure itself is just the secret key.

2. Apply the algorithm FindStruct to obtain the linear structure of F , and
use it to recover the secret key.

We now confine to the Electronic Codebook mode and give a specific
attack strategy for block ciphers. Suppose Es : Fn2 → Fn2 is a block cipher
with a secret key s ∈ Fk2. Let m be an arbitrary plaintext in the plaintext
space. Define the function

Fm
s : Fk2 −→ Fn2 (2)

x −→ Ex(m)⊕ Es⊕x(m).

Then for any x ∈ Fk2, we have Fm
s (x⊕ s)⊕ Fm

s (x) = 0. Therefore, the key s
is a nonzero linear structure of Fm

s . More precisely, s ∈ U0
Fm
s

. Thus, we can
find s by applying the algorithm FindStruct to Fm

s . Since we have already
know that s is in U0

Fm
s

, when running FindStruct, we only need to solve the
linear equation group {x · ω = ij|ω ∈ Wj} for ij = 0 in Step 2. The attack
algorithm based on the simplified FindStruct algorithm is as follows:
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Algorithm RecoverKey

1. Choose a polynomial p(n) and an arbitrary plaintext m. Define the
function Fm

s as Eq.(2). Denote Fm
s = (Fm

s,1, F
m
s,2, · · · , Fm

s,n).
2. For j = 1, 2, · · · , n, run BV algorithm on Fm

s,j for p(n) times to obtain
a subset Wj of NFm

s,j
. The size of Wj is p(n).

3. For j = 1, 2, · · · , n, solve the linear equation group {x ·ω = 0|ω ∈ Wj}
to get the solution A0

j .
4. Find the intersection A = A0

1 ∩A0
2 ∩ · · · ∩A0

n. Verify the vectors in A
to determine the correct key.

The algorithm RecoverKey requires the quantum oracle access of Fm
s .

The attacker can obtain this oracle by first querying the oracleOE to compute
|x,m, y〉 → |x,m, y⊕Es⊕x(m)〉, then implementing the unitary operator UE :
|x,m, y〉 → |x,m, y⊕Ex(m)〉 by himself. The quantum circuit to implement
Fm
s is presented in Fig.5. Note that RecoverKey actually requires the

quantum oracle access of Fm
s,j for each j ∈ {1, 2, · · · , n}. Since we have

assumed the attacker can query OEj that returns solely j-th bit of OE , this
requirement can be satisfied.

Figure 5: Quantum circuit to implement Fm
s

4.2. Analysis of the attack

We now analyze the performance of the algorithm RecoverKey, includ-
ing the conditions under which the attack will work and the complexity. We
first consider the case where RecoverKey is applied to a general block ci-
pher E without any restrictions. According to Theorem 1, the secret key s,
as a linear structure of Fm

s , must be in the set A = A0
1∩A0

2∩· · ·∩A0
n. There-

fore, by verifying all vectors in the set A, the attacker must be able to find
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the target key s. However, since there is no restriction on the block cipher
E, the complexity of the algorithm RecoverKey may exceed the attacker’s
computational power.

To accurately compute the complexity of the algorithm RecoverKey,
we separate it into three parts:

(1) executing BV algorithm for np(n) times;
(2) solving n linear equation groups;
(3) finding the intersection of A0

1, A
0
2 · · · and A0

n.
For the first part, running BV algorithm once needs to execute 2k + 1

Hadamard gates, one unitary operator UE and one quantum query on OE .
Thus, a total of (2k + 1 + |E|Q)np(n) universal gates and np(n) quantum
queries are needed. We assume a query requires one unit of time, then the
complexity of this part is O

(
(2k+ 2 + |E|Q)np(n)

)
. For the second part, the

attacker needs to solve n linear equation groups, and each one has k variables
and p(n) equations. Solving a linear equation group with k variables and p(n)
equations via Gaussian elimination method needs O(p(n)k2) calculations.
Thus, the complexity of this part is O(p(n)nk2), which is a polynomial of k
and n. For the third part, the attacker needs to compute the intersection
A0

1 ∩ A0
2 ∩ · · · ∩ A0

n. Let t = maxj |A0
j |. Finding the intersection of these n

sets using sort method requires O(nt log t) calculations. The value of t relies
on the properties of Fm

s and the value of p(n). Since A0
j is the solution of a

linear system with p(n) equations, the size of A0
j should decrease rapidly as

p(n) increases. The larger p(n) the attacker chooses, the smaller t will be,
so the attacker can choose a larger p(n) to reduce t. (Even though this will
increase the amount of unitary gates and queries required in the other two
parts, the complexity of these two parts is still polynomial as long as p(n) is
still a polynomial.)

To sum up, the complexity of RecoverKey isO
(
(k2+2k+2+|E|Q)np(n)+

nt log t
)
. It may be possible to choose a large p(n) so that the parameter t

is a polynomial, but in the most general case we cannot guarantee that the
algorithm RecoverKey can be efficiently executed.

Since we cannot bound the computational complexity of the algorithm
RecoverKey when it is applied to a general block cipher, we consider the
block ciphers with some restrictions. Specifically, we give two conditions. As
long as Fm

s satisfies one of them, then the algorithm RecoverKey can be
executed efficiently with a high probability.

• Condition 1: δFm
s
≤ p0 < 1 for some constant p0.

13



Suppose δFm
s
≤ p0 < 1 for some constant p0. By Corollary 1, if running

the algorithm RecoverKey on Fm
s with p(n) = O(n), the set A0

j , except
for a negligible probability, will only contain the linear structures of Fm

s,j. In

this situation, the complexity of RecoverKey is O
(
(k2 + 2k+ 2 + |E|Q)n2 +

nt log t
)

and the value of t = maxj |A0
j | is small. So as long as Condition 1

holds, the attack is valid and efficient with a high probability.
Condition 1 is a little abstract. To understand its cryptographic meaning,

we compute the parameter δFm
s

.

δFm
s

=
1

2k
max
j

max
a∈Fk

2
a/∈UFm

s,j

max
i∈F2

|{x ∈ Fk2|Fm
s,j(x)⊕ Fm

s,j(x⊕ a) = i}|.

Thus, Condition 1 means that there exist a constant p0 such that, for any
j ∈ {1, 2, · · · , n}, any a /∈ UFm

s,j
and any i ∈ {0, 1}, it holds that

|{x ∈ Fk2|Fm
s,j(x)⊕ Fm

s,j(x⊕ a) = i}|
2k

≤ p0. (3)

Since Fm
s (x) = Ex(m)⊕ Ex⊕s(m), Eq.(3) is equivalent to

|{x ∈ Fk2|Ex,j(m)⊕ Ex⊕s,j(m)⊕ Ex⊕a,j(m)⊕ Ex⊕s⊕a(m) = i}|
2k

≤ p0, (4)

where Ex,j is the j-th component of Ex. Because a /∈ UFm
s,j

, we have that a 6= 0

and a 6= s, so x, x⊕s, x⊕a and x⊕s⊕a are always four different keys. Eq.(4)
means that when averaging over all possible values of x, the exclusive value
of the ciphertexts of m under these four keys is not too biased. Generally
speaking, a well constructed block cipher will not have obvious linearity, so
Condition 1 is likely to be satisfied.

• Condition 2: For each j ∈ {1,2, · · ·, n}, Fm
s,j does not have many

approximate linear structures.

More formally, Condition 2 requires that: there exists a sufficiently large
polynomial l(n) such that the amount of 1

l(n)
-close linear structures of each

Fm
s,j is small (at least smaller than some polynomial of n). Suppose Condition

2 holds. There exists such a polynomial l(n). According to Theorem 2, any
vector a in the set A0

j , which is generated during the execution of algorithm

14



RecoverKey, satisfies that

Pr

[
|{x ∈ Fk2|Fm

s,j(x⊕ a)⊕ Fm
s,j(x) = 0}|

2k
> 1− ε

]
> 1− e−2p(n)ε2 .

Let ε = 1
l(n)

, p(n) = nl(n)2, we have

Pr

[
|{x ∈ Fk2|Fm

s,j(x⊕ a)⊕ Fm
s,j(x) = 0}|

2k
> 1− 1

l(n)

]
> 1− e−2n.

That is, except for a negligible probability, a is a 1
l(n)

-close linear structure

of Fm
s,j. Therefore, if we run the algorithm RecoverKey with p(n) = nl(n)2,

then except for a negligible probability, the size of the set A0
j will not be

greater than the amount of 1
l(n)

-close linear structures of Fm
s,j. According to

Condition 2, this amount is small, so the value of the parameter t = maxj |A0
j |

is small. Therefore, if Condition 2 holds, the complexity of RecoverKey
with p(n) = nl(n)2 is O

(
(k2 + 2k + 2 + |E|Q)n2l(n)2 + nt log t

)
, where the

parameter t is a small number. This demonstrates that the algorithm Re-
coverKey is valid and efficient under Condition 2.

In fact, we can also analyze Condition 2 from the perspective of differ-
ential. If a vector a is a 1

l(n)
-close linear structure of Fm

s,j, then (a, 0) is a

differential of Fm
s,j whose differential probability is greater than 1 − 1

l(n)
. If

Condition 2 does not hold, it means Fm
s,j has many high-probability differ-

entials. Fm
s,j(x) = Ex⊕s,j(m) ⊕ Ex,j(m). We can treat Fm

s,j as a new cipher,
and make chosen-plaintext query to Fm

s,j by making related-key query to the
original block cipher E. Thus, one can attack the original cipher E by using
(a, 0) to attack Fm

s,j. Based on above analysis, for a general well-constructed
block cipher E, the amount of 1

l(n)
-close linear structures of each Fm

s,j should
be small, so Condition 2 is a reasonable requirement.

The above two conditions are mild and should be satisfied by an well
constructed block cipher. As long as the block cipher satisfies one of them, the
algorithm RecoverKey can efficiently recover its key with a high probability.

5. Discussion

There remains many directions worth further studying. For example,
there may exist other ways to construct a function that has a linear structure

15



associated with the key based on the block cipher E. For the function Fm
s

constructed in this paper, the key s is actually a special linear structure,
i.e. a period. It may be possible to construct other functions that have
a more general linear structure. For instance, consider the case k = n,
namely, the case where the key length is equal to the blocksize. We can
define the function Gm

s (x) = Ex⊕s(m) ⊕ Ex(m) ⊕ x. Then for each x ∈ Fn2 ,
we have Gm

s (x ⊕ s) ⊕ Gm
s (x) = s. Therefore, s is a linear structure of Gm

s

and s ∈ U s
Gm

s
. Follow the usual attack strategy, the attacker can run the

algorithm FindStruct on Gm
s . The vector (s, s) must be in the output set

A. Moreover, when the attacker compute the set Aj = A0
j ∪ A1

j in the step

2 of FindStruct, for any a ∈ Aijj , if the j-th bit of a is not equal to ij, the
attacker can discard it directly. This helps determine the target key s faster.
Whether there exists a construction of the function that can be proved to
be optimal is also an interesting question. In addition, how to apply the
algorithms proposed in this paper to specific practical block cipher worth
investigating, too.

6. Conclusion

We apply Bernstein-Vazirani algorithm to related-key attack and propose
a quantum attack for recovering the key of general block ciphers. We ana-
lyze under what conditions the attack will work, and rigorously compute its
computational complexity. Our works show the power of relate-key attack
in the quantum setting, and provides guidance for designing quantum-secure
block ciphers.
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