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Abstract Resource theories play an important role in quantum information theory, as
they identify resourceful states and channels that are potentially useful for the accom-
plishment of tasks that would be otherwise unreachable. The elementary structure of
such theories, which is based on the definition of free states and free operations, suc-
cessfully accommodates different nonclassical aspects, such as quantum coherence
and entanglement, but it is still not clear whether and how far such formal frame-
work can be extended. In this work, by taking information as the most primitive
quantum resource and defining resource-destroying operations, we develop a unify-
ing approach that proves able to encompass several nonclassical aspects, including
the newly developed concepts of quantum irreality and realism-based nonlocality.

Keywords Resource theory · Quantum nonlocality

1 Introduction

Resource theory is a formal framework developed to investigate and analyse the prop-
erties of physical systems that can be viewed as resources for certain tasks under
restrictive operations [1]. The most common example of a quantum resource is en-
tanglement [2], which is the basic element of many quantum information process-
ing tasks and formally emerges as a distinctive operational advantage when one is
restricted to local operations and classical communication. The basic structure of
a resource theory relies on the definition of the following elements: (i) free states,
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(ii) resource states, and (iii) free operations arising from natural restrictions on phys-
ical systems. In addition, within this formal structure, it is naturally required that no
resource state can be created from any free state via free operations.

The resource theory framework has been applied to various concepts of quantum
information science, such as entanglement [2], purity [3], coherence [4,5], informa-
tional equilibrium in quantum thermodynamics [6,7], and quantum discord [11]. The
search for a unifying framework of resource theories has attracted much interest in
the last few years [8,9,10,11,12,13]. In particular, in Ref. [11], the authors devel-
oped a general scheme based on resource-destroying maps for the analysis of re-
source theories. These maps have the property of maintaining free states unchanged
and suppressing all the resource from resourceful states.

Recently, new quantifiers of nonclassicality were introduced with basis on an op-
erational scheme to assess elements of reality [14]. In a protocol involving prepa-
ration, unrevealed measurements, and quantum state tomography, a quantifier for
the degree of irreality of an observable for a given state preparation was introduced.
Then, as a measure of alterations in the irreality of an observable A induced by un-
revealed measurements of observable B conducted in a remote site, the notion of
realism-based nonlocality was introduced and their main characteristics studied [15,
16]. Whether these concepts admit a formalization as quantum resources remains an
important open question.

This work aims at constructing a unifying framework that can apply to several
well-established nonclassical aspects and is sufficiently elastic to accommodate fu-
ture concepts. To this end, we first review the formal aspects underlying the resource
theory of information and introduce the destroying monitoring—a map that inter-
polates between the regime in which no resource is generated and the one where
absolutely all information is suppressed. Then, we show by explicit construction that
quantum coherence, entanglement, one-way and symmetric quantum discord, quan-
tum irreality, and realism-based nonlocality can all be framed in terms of a picture
in which an external agent extracts information about some observable of the sys-
tem. Interestingly, our approach implies that the suppression of all these quantum
resources can be viewed as a process that establishes realism.

2 Preliminaries

2.1 Resource theory

A given nonclassical feature R is termed a resource whenever the following formal
structure can be maintained. Let R(ρ) be a reasonable nonnegative quantifier of the
amount of such resource encoded in the state ρ ∈ B(H), where B(H) is the set of
bounded operators acting on the Hilbert space H . Let F ⊂ B(H) be the set of free
states ρ̃. This means that for all ρ̃ ∈ F one has R(ρ̃) = 0. States ρmax such that
R(ρmax) = Rmax are called maximum-resource states. Hence, ρ is a resource state if
0 < R(ρ) 6 Rmax. Now, let the completely positive trace-preserving (CPTP) map Θ
(Φ) be a quantum operation that suppresses none of (all) the resource R available in
ρ. That is, R(Θ(ρ)) = R(ρ) and R(Φ(ρ)) = 0. Accordingly, Θ is said a nongenerating
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operation, whereas Φ is a maximally destroying one. For the sake of simplicity and
generality, here we set Θ = 1, which thus plays the role of a universal nongenerating
operation. We now introduced an operation Λε , which will throughout be referred to
as monitoring. Mathematically, it is represented by the CPTP map

Λε(ρ) = (1 − ε) ρ + ε Φ(ρ), (1)

where the parameter ε ∈ [0, 1] is introduced to characterize the capability of the
monitoring in destroying resource. In effect, one has R(Λ0(ρ)) = R(ρ) and R(Λ1(ρ)) =

0. If R is a convex measure, that is, R
(∑

i piρi
)
6

∑
i piR(ρi), then we find

R(Λε(ρ)) 6 R(ρ), (2)

equality holding only for ε = 0. Therefore, we see that, being able to implement a
smooth interpolation between the extreme regimes of no resource destruction whatso-
ever (ε = 0) and total destruction (ε = 1), the monitoring Λε turns out to formally be
a generic description of a free operation. In particular, via convexity, it is guaranteed
that R(Λε(ρ̃)) = 0.

Altogether the above statements set a basic formal structure of a resource theory
for a general resource R. Upon specialization of the resource of interest, one may
proceed to define the monitoring Λε , the convex quantifier, and the particular quan-
tum information tasks for which resourceful states yield operational advantage with
respect to free states.

2.2 Information as a resource

Here, we review the well-established structure that renders information the status of
a resource. This is opportune because, as shown later, information can be adopted
as a primitive resource from which many others derive. Being dual to the ignorance
measured via the von Neumann entropy S (ρ), information is quantified as [3]

I(ρ) B ln d − S (ρ), (3)

where ρ ∈ B(H) and d = dimH . Besides being connected with work extraction [17]
and playing a distinctive role in the resource theory of purity, it proves to be the
unique measure of information in the context of reversible transformations from pure
to mixed states [3]. Furthermore, it is related to the maximal quantum coherence [18].

Information directly fits in the above delineated formal structure. The demon-
stration goes as follows. It is clear that ρ̃ = 1/d and ρmax = |ψ〉 〈ψ| are the free
state and the maximum-resource state, respectively. The maximally destroying op-
eration is constructed as follows. Let us henceforth consider the composite space
H = HA ⊗HB with A =

∑
a aAa ∈ B(HA) being a discrete-spectrum observable

with projectors Aa = |a〉 〈a|. Also, we consider the so-called unrevealed measurement
map,

ΦA(ρ) B
∑

a

(Aa ⊗ 1B) ρ (Aa ⊗ 1B) , (4)
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which is associated with nonselective projective measurements of the observable
A [14]. Since, in general, the von Neumann entropy is increasing under CPTP maps,
it follows that I(ΦA(ρ)) 6 I(ρ), so that ΦA is a free operation, although not the max-
imally destroying one. Similar considerations apply for ΦB, which refers to unre-
vealed measurements of B ∈ B(HB). If {A, A′} ∈ B(HA) are maximally incompatible
observables, then Tr(AaA′a′ ) = 1/dA and it is not difficult to show that ΦAA′ (ρ) ≡
ΦAΦA′ (ρ) =

1A

dA
⊗ ρB, where ρB = TrA(ρ). Note that ΦAA′ is not the maximally de-

stroying operation yet, since I(ΦAA′ (ρ)) = I(ρB). The searched operation isΦAA′ΦBB′ ,
for maximally incompatible observables {B, B′} ∈ B(HB), since in this case we find
ΦAA′ΦBB′ (ρ) = 1/d (with d = dAdB), which has no residual information whatsoever.
Therefore, as far as information is concerned, the resource-destroying monitoring
specializes as

Λε(ρ) = (1 − ε) ρ + ε Φinc(ρ), (5)

where Φinc ≡ ΦAA′ΦBB′ is the pairwise map involving incompatible observables.
Via monotonicity of the von Neumann entropy, S (Λε(ρ)) > S (ρ), one proves that
I(Λε(ρ)) 6 I(ρ), which shows that the above map correctly describes a general free
operation. Moreover, we have I(Λ0(ρ)) = I(ρ) and I(Λ1(ρ)) = 0.

2.3 Conservation of the total resource

The informational resource suppressed due to the action of a resource-destroying
monitoring is not banished from the universe; it is just encoded in another sector of
the Hilbert space. In fact, the resource is extracted by an external agent (an auxiliary
system henceforth denoted X) that gets information about some observable of the
system. By use of the Stinespring dilation theorem [19], one shows that any quantum
operation Λε on ρ ∈ B(H), withH = HA ⊗HB, can be viewed as a reduced unitary
evolution of the system S ≡ AB coupled to X, that is,

Λε(ρ) = TrX
[
U %(0) U†

]
= %S(t), (6)

where %(0) = ρ ⊗ |x0〉 〈x0| and U is a unitary operation acting onH ⊗HX. Rewriting
the mutual information, IX:S(%(t)) = S (%S(t))+S (%X(t))−S (%(t)) between the parts S
andX, with %(t) = U %(0) U† and %X(t) = TrS[%(t)], in terms of information, produces
I(%(t)) = I(%S(t)) + I(%X(t)) + IX:S(%(t)). With Eq. (6), this expression reduces to

I(%(t)) = I(Λε(ρ)) + I(%X(t)) + IX:S(%(t)). (7)

Given that the state of X is initially pure and there is no correlation between X and
S, at t = 0, we have

I(%(0)) = I(ρ) + ln dX, (8)

Now, consider the information that X encodes about S,

IX|S(%(t)) = ln dX − SX|S(%(t)), (9)
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where SX|S(%(t)) = S (%(t)) − S (%S(t)) is the conditional entropy of X. Note that
IX|S(%(0)) = ln dX. Using the unitary invariance of the von Neumann entropy, which
implies that I(%(t)) = I(%(0)), we combine the above relations to arrive at

I(ρ) = I(Λε(ρ)) + ∆IX|S, (10)

where the term ∆IX|S = IX|S(%(t)) − IX|S(%(0)) can be read as the increment of in-
formation storage about S in X. In fact, this factor can be rewritten in the form
∆IX|S = ∆IX(t) + ∆IX:S(t), with ∆IX(t) = I(%X(t)) − ln dX and ∆IX:S(t) = IX:S(t). This
shows that the decreasing of informational resource induced in the process ρ 7→ Λε(ρ)
is accompanied by a flow of conditional information to another part of the (dilated)
system. Figure 1 depicts such resource conservation. Also noteworthy in this discus-
sion, for instance from the decomposition (7), is the idea that mutual information
itself is a mode in which information is codified, being therefore informational re-
source as well. The difference, though, is that it is spread over two parts.

  

(a) (b)

Fig. 1 Schematic diagrams for the information flow. Depictions are given in (a) the informational space
and in (b) the state space. The transition ρ 7→ Λε (ρ) occurs after the system gets correlated, via a unitary
operation U, with a (discarded) system X. The amount ∆IX|S = I(ρ) − I(Λ1(ρ)) of resource suppressed
from the system is delivered to the external agent X.

In what follows, we show that several well-known resources can be cast as a flow
∆IX|S = I(ρ) − I(Λ1(ρ)) induced by some maximally destroying monitoring Λ1. The
description of each particular resource is shown to emerge from the specification of
Λ1, which is intrinsically associated, via particularly chosen unitary transformations
U [see Eq. (6)], with the observable about which the external agent X extracts infor-
mation.

As a side remark, we note that, in more general contexts, the strength ε of the
monitoring Λε , when equipped with (4), can be linked with weak measurements (see
Ref. [35] for an explicit construction). In addition, the monitoring can be framed in
the operator-sum representation [19] as Λε(ρ) =

∑
a KaρK†a , with K†0 K0 +

∑
a K†a Ka =

1, K0 =
√

1 − ε 1, and Ka =
√
ε (Aa ⊗ 1B). Also note that the maps Λε employed

in the previous sections are particular forms of the one defined in Eq. (6) and used
throughout this section.
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3 Unifying perspective

Now we are ready to introduce our unifying approach to quantum resources. Ba-
sically, here we show that quantum resources can be interpreted as the amount of
information that flows off due to monitorings conducted by an external agent, where
the maximally destroying map Φ has to be specified in each case.

3.1 Quantum coherence

We start with quantum coherence [20]. For a given fixed basis {|a〉}, associated with
an observable A =

∑
a aAa ∈ B(HA), with projectors Aa = |a〉 〈a|, we have

ρ̃ =

dA∑
a

pa |a〉 〈a| and ρmax =
1

dA

dA∑
a,a′
|a〉 〈a′| (11)

for the free states (the so-called incoherent states) and the maximum-resource states,
respectively. The distillable coherence [4,5], given by the relative entropy of coher-
ence, CA(ρ) of ρ ∈ B(HA), has the following closed expression

CA(ρ) = I(ρ) − I(ΦA(ρ)). (12)

Note that if ρ is an incoherent state (with respect to the fixed basis), then ρ = ΦA(ρ) B∑
a AaρAa and CA(ρ) = 0, as is desirable. Inspired by the framework discussed in

the previous section, we see via definition (12) that the coherence CA of a state ρ
is nothing else than the amount of informational resource that would flow off upon
the monitoring Λ1 = ΦA. In this sense, information emerges as a primitive resource
underlying coherence.

Of course, quantum coherence has shown to be a resource according to the formal
structure defined by the states (11), the quantifier (12), and the known free operations
(incoherent operations) [4], which turn out to be equivalent to a coherence destroying
monitoring ΛCA

ε (ρ) = (1 − ε) ρ + ε ΦA(ρ). In effect, from the concavity of von Neu-
mann’s entropy and the fact that ΦA(ΛCA

ε (ρ)) = ΦAΦA(ρ) = ΦA(ρ), one can straight-
forwardly check that CA(ΛCA

ε (ρ)) 6 CA(ρ), with equality holding only for ε = 0 or
ρ = ΦA(ρ).

Summarizing, for coherence we have an explicit structure equipped with free
states, maximum-resource states, a nonnegative quantifier, and a mimic in terms of
information flow. So far, we have been dealing with single-partite states. In what
follows, our discussion extends to bipartite cases, where quantum correlations emerge
as the fundamental resources.

3.2 Entanglement

Now, let us move our focus to entanglement, which is widely recognized as an im-
portant resource [2] for tasks such as quantum cryptography [21], randomness gen-
eration [22], and quantum metrology [23]. Within the resource theory, entanglement
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stands out whenever the framework is restricted to local operations and classical com-
munication.

Let E(ψ) denote the entanglement of a pure bipartite state |ψ〉. Consider the
Schmidt operator ΓA =

∑
i γi |γi〉 〈γi| acting on HA, such that |ψ〉 =

∑
i
√
λi |γi〉 |γi〉.

As is well known, the natural quantifier of entanglement, in this case, is the von Neu-
mann entropy of the reduced state, that is, E(ψ) = S (TrB |ψ〉 〈ψ|) = H({λi}), where
H({λi}) is the Shannon entropy of the Schmidt probability distribution λi. It can be
straightforwardly checked that this measure can be expressed in the form

E(ψ) = I(ψ) − I
(
ΦΓA (ψ)

)
, (13)

where I(ψ) ≡ I(|ψ〉 〈ψ|), I ∈ {I, IA:B}, and ΦΓA (ψ) ≡ ΦΓA (|ψ〉 〈ψ|). This relation
makes it explicit that pure-state entanglement can be primarily viewed, in accordance
with Eq. (10), as an informational resource (actually, either information or mutual
information) that is subtracted via destroying monitoring of a Schmidt observable. By
use of the entanglement of formation [24,25], the extension of this idea to a mixed
state ρ =

∑
i pi |ψi〉 〈ψi| is straightforward:

E(ρ) = min
E

∑
i

pi

[
I(ψi) − I(ΦΓi

A
(ψi))

]
, (14)

where the minimization runs over all ensembles E = {pi, |ψi〉} through which ρ can be
decomposed. The above formula allows us to interpret entanglement as the average
amount of informational resource that is removed from an optimal ensemble (which
allows the minimization) via unrevealed measurements of the local Schmidt operator
Γi
A

.
For pure-state entanglement, the resource-destroying map can be written as a

monitoring of the form (1). The resulting map reads ΛE
ε (ψ) = (1−ε) |ψ〉 〈ψ|+ε ΦΓA (ψ).

Using entropy concavity and the fact that ΦΓS (ΛE
ε (ψ)) = ΦΓA (ψ) one checks that

E(ΛE
ε (ψ)) 6 E(ψ). In particular, one has E(ΛE

1 (ψ)) = 0. A similar formulation for the
mixed state case is, however, much harder to conceive because in this case an entire
set {Γi

A
} of Schmidt operators has to be specified, while the structural form employed

here for the monitoring admits only one operator. Free states and maximum-resource
states are well known, so that here as well we have a complete formal structure sup-
plemented with an information-based interpretation.

3.3 Quantum discord

Quantum discord [26,27] has shown to be a useful resource for tasks in quantum com-
putation [28], quantum information processing [29], quantum communication [30],
and quantum cryptography [31]. Although being a resource for different tasks, its
formalization within the scope of a resource theory remains open due to its non-
convexity and the lack of a clear understanding of its free operations structure [11].
Here, we show that quantum discord can be naturally accommodated in our unifying
framework.
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The one-way quantum discord DA, as rephrased by Rulli and Sarandy [32], is
written asDA(ρ) = minA DA(ρ) with

DA(ρ) = IA:B(ρ) − IA:B(ΦA(ρ)). (15)

Similar expressions apply for DB. The quantity DA is the so-called basis-dependent
quantum discord, here referred to as the A-discord, for simplicity. This formulation
allows us to interpret quantum discord as the minimum amount of mutual information
(a resource) that flows to an external agent that monitors the observable A ∈ B(HA).
A-discord can be explicitly written in terms of information as

DA(ρ) =
[
I(ρ) − I(ΦA(ρ))

]
−

[
I(ρA) − I(ΦA(ρA ⊗ 1B))

]
. (16)

Here, the interpretation is a bit subtler. A-discord can be viewed as the informational
surplus that occurs when a maximally destroying monitoring Λ1 = ΦA is realized
in two independent processes, one involving the joint state ρ and another involving
the reduced state ρA. Alternatively, by noting that ΦBB′ (ρ) = ρA ⊗

1

dB
and, as a

consequence, that I(ΦBB′ (ρ)) = I(ρA), we arrive at

DA(ρ) =
[
I(ρ) − I(ΦA(ρ))

]
−

[
I(%) − I(ΦA(%))

]
(17)

where % ≡ ΦBB′ (ρ). Here, we have A-discord as the extra information in the com-
parison of a destroying monitoring involving ρ and another involving a previously
monitored state ΦBB′ (ρ), with maximally incompatible observables {B, B′}. A further
interpretation can be built by recalling that other maps exist which can change the in-
formational resource of a state. A distinctive one is the partial trace (PT), which maps
a density operator onHA ⊗HB onto a density operator onHA. It can be implemented
by the use of the Kraus operators Mk = 1A ⊗ 〈bk | satisfying

∑
k M†k Mk = 1AB and the

operator-sum representation, which gives ΛPT(ρ) =
∑

k MkρM†k = ρA. With this ob-
servation, we can rewrite the conditional information IB|A(ρ) := ln dB − SB|A(ρ) =

I(ρ) − I(ρA), where SB|A(ρ) = S (ρ) − S (ρA), in the form IB|A(ρ) = I(ρ) − I(ΛPT(ρ)).
It follows, therefore, that the conditional information is itself an informational re-
source since it is the amount of information that flows off via a generalized quantum
operation ΛPT. This allows us to write A-discord as

DA(ρ) = IB|A(ρ) − IB|A(ΦA(ρ)), (18)

which indicates a monitoring-based flow of conditional information. All this fits in
our unifying perspective.

In Ref. [32], the authors extended their formulation to the symmetric quantum
discordD(ρ) = minA,B DA,B(ρ), where

DA,B(ρ) = IA:B(ρ) − IA:B(ΦAΦB(ρ)). (19)

Henceforth termed {A, B}-discord, DA,B can also be rephrased in terms of information,
the resulting expression being

DA,B(ρ) =
[
I(ρ) − I(ΦAΦB(ρ))

]
−

[
I(ρA) − I(ΦA(ρA ⊗ 1B))

]
−

[
I(ρB) − I(ΦB(1A ⊗ ρB))

]
. (20)
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Thus, {A, B}-discord can be viewed as the informational surplus deriving from the
balance among three independent processes involving the destroying monitorings
{ΦA, ΦB, ΦAΦB} and the states {ρA, ρB, ρ}. Alternatively, one may write

DA,B(ρ) = DA(ρ) + DB(ΦA(ρ)), (21)

which rephrases {A, B}-discord in terms of the corresponding one-way resources.
The maximum-resource state in the discord context is expected to be the maxi-

mally entangled state since quantum discord is equivalent to entanglement for pure
states (instance in which we have a high level of quantum correlations). Stronger ev-
idence to this claim is provided in Ref. [33], where the authors show that pure states
are the only ones that saturate the inequality DA(ρ) 6 S (ρA) [34]. Free states, by
their turn, are given by ρ̃ = ΦA(%), for any state %.

For the discussion of the discord monitoring, let Ā be the observable that imple-
ments the A-discord minimization so that DA(ρ) = DĀ(ρ). Although candidates for
discord nongenerating operations have already been reported, such as the unitary-
isotropic channels [11], here we keep considering Θ = 1, for the sake of unification.
We then propose the map ΛDAε (ρ) = (1 − ε) ρ + ε ΦĀ(ρ). Because ΦĀΛ

DA
ε = ΦĀ and

mutual information is monotonic under CPTP maps, one proves that DA(ΛDAε (ρ)) 6
DA(ρ), with equality holding for ε = 0 and ρ = ΦĀ(ρ). For the symmetric quantum
discord, one can propose, by means of a similar rationale, the monitoring ΛDε (ρ) =

(1 − ε) ρ + ε ΦĀΦB̄(ρ), which leads to D(ΛDε (ρ)) 6 D(ρ) and D(ΛD1 (ρ)) = 0. There-
fore, once again, we succeeded to apply our unifying framework to a well-established
nonclassical aspect. With little effort, the same can be accomplished for the recently
introduced “weak versions” of quantum discord [35].

3.4 Quantum irreality

In the past few years, the condition ρ = ΦA(ρ) has been adopted in some frame-
works [14] as a criterion of reality for the observable A, meaning that for such a
preparation A is an element of reality. This criterion alone allows us to ascribe a dif-
ferent interpretation for the monitoring (see Eq. (1) and Fig. 1): it can be viewed as
an action intended to increase the degree of reality of A. Then, in accordance with
Eq. (10), ∆IX|S = I(ρ) − I(Λ1(ρ)) gives the amount of information extracted by X to
make A become an element of reality.

The degree of irreality IA(ρ) of an observable A for an arbitrary preparation ρ is
introduced as IA(ρ) = S (ρ||ΦA(ρ)), which is shown to reduce to IA(ρ) = S (ΦA(ρ)) −
S (ρ). Clearly, this quantity estimates the “entropic distance” between ρ and the A-
reality state ΦA(ρ). Irreality is known to be nonnegative and vanishing if and only if
ρ = ΦA(ρ). This notion of “quantum irrealism” has recently been explored for differ-
ent perspectives, such as for the statement of an information-reality complementarity
relation [36], the discussion of continuous-variable realism [37], the identification
of quantum irreality in quantum walks [38], and for the formulation of the realism-
based nonlocality [14,15,16], which will be discussed in the next section. In terms of
information, the irreality measure reads

IA(ρ) = I(ρ) − I(ΦA(ρ)). (22)
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It is then manifest that irreality admits the identification with the amount of informa-
tional resource that flows off upon unrevealed measurements of A. Also, as shown in
Ref. [14], irreality can be decomposed in the form

IA(ρ) = IA(ρA) + DA(ρ), (23)

where IA(ρA) is nothing but the relative entropy of coherence and DA(ρ) is the afore-
mentioned A-discord, both parcels having been already identified as resources. Since
IA(ρ) is a clear combination of, say, a local resource (coherence) with a global one
(discord), it can be naturally interpreted as a quantum resource as well. In addition,
irreality has an evident mathematical equivalence with the tools employed in the con-
text of coherence in distributed scenarios [39,40]. In this context, the quantity (22)
is called quantum-incoherent relative entropy and upper bounds the asymptotic rate
of assisted coherence distillation under the restriction of local quantum-incoherent
operations and classical communication. Furthermore, it can be directly linked with
thermal discord and daemonic protocols [41], when a maximization is taken over all
possible observables A [42].

Within the context of an eventual resource theory of quantum irrealism, the triv-
ial candidates for free states can be written as ρ̃ =

∑
k pkΦA(ρAk ) ⊗ ρBk , since it

is immediately seen that ΦA(ρ̃) = ρ̃ and, therefore, IA(ρ̃) = 0. To envisage the
maximum-resource states for irreality, we search for an upper bound for Eq. (22).
Using the joint-entropy theorem [19], we first show that IA(ρ) = S (ΦA(ρA ⊗ 1B)) +∑

a paS (ρB|a) − S (ρ). Then, by means of the inequality
∑

a paS (ρB|a) 6 S (ρ) [34],
we arrive at IA(ρ) 6 S (ΦA(ρA ⊗ 1B)), where the equality holds for pure states. This
result implies that irreality is saturated to ln dA by maximally entangled states for all
observables A and by all pure states whenever the A basis is chosen to be maximally
incompatible with the Schmidt basis (with the requirement that dA 6 dB). It then
follows that these states turn out to be the maximum-resource states for irreality.

By virtue of the connection (22) between irreality and information, the resource-
destroying map is readily inferred to be ΛIA

ε (ρ) = (1− ε) ρ+ ε ΦA(ρ). Once again, via
monotonicity of the von Neumann entropy, one shows that IA(ΛIA

ε (ρ)) 6 IA(ρ) and
IA(ΛIA

1 (ρ)) = 0. At this point, it becomes clear that processes involving monitorings,
such as the generic one depicted in Fig. 1, typically increase realism.

3.5 Realism-based nonlocality

Under the premise that Eq. (22) is a reasonable quantifier of irreality, the authors of
Ref. [14] proposed a notion of nonlocality that is based on alterations of A’s irreality
through physical disturbances occurring in a distant site. Specifically, they introduced
the contextual realism-based nonlocality

ηA,B(ρ) = IA(ρ) − IA(ΦB(ρ)). (24)

This symmetrical (upon the exchange A � B) nonnegative quantity, which vanishes
for uncorrelated (ρ = ρA ⊗ ρB) or reality states [(% = ΦA(%) or % = ΦB(%)], quantifies
violations of the hypothesis IA(ρ) = IA(ΦB(ρ)), according to which the irreality of
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A in site A is not affected by unrevealed measurements of B conducted in a remote
site B. Maximizing ηA,B over all contexts {A, B} leads to the so-called realism-based
nonlocality [14,15,16],

N(ρ) = max
{A,B}

ηA,B(ρ), (25)

which captures the context-independent realism-based nonlocality, that is, the nonlo-
cal aspects inherent to ρ only. Using the definitions (22) and (24) and letting {Ā, B̄}
be the optimal observables such that N(ρ) = ηĀ,B̄(ρ), one shows that

N(ρ) =
[
I(ρ) − I(ΦĀ(ρ))

]
−

[
I(%) − I(ΦĀ(%))

]
. (26)

where % ≡ ΦB̄(ρ). Then, realism-based nonlocality turns out to be the informational
surplus that emerges when two maximally destroying monitoring processes related
to Ā are compared, one of them involving the state ρ and the other involving the state
ΦB̄(ρ), which presumes a previous monitoring of B̄. Interestingly, using the decom-
position (23), we find

N(ρ) = DĀ(ρ) − DĀ(ΦB̄(ρ)), (27)

which reflects a difference of Ā-discords in scenarios defined by ρ and ΦB̄(ρ). This
legitimates us to interpret N(ρ) as a quantum resource because it is the amount of
(another) resource that is suppressed upon a given monitoring.

In the resource theory of realism-based nonlocality, the free states are ρA ⊗ ρB,
ΦĀ(ρ) and ΦB̄(ρ). To find the maximum-resource states for realism-based nonlocality
we proceed as follows. First, from IA(ρ) 6 S (ΦA(ρA ⊗ 1B)) and IA(ΦB(ρ)) > 0, we
obtain ηA,B(ρ) 6 S (ΦA(ρA⊗1B)). Since realism-based nonlocality is symmetric upon
the exchange A � B, the inequality ηA,B(ρ) 6 S (ΦB(1A ⊗ ρB)) also holds. Then, as
S (ΦA(ρA ⊗ 1B)) 6 ln dA and S (ΦB(1A ⊗ ρB)) 6 ln dB, it is natural to assume that
the upper bound for realism-based nonlocality is given by ηA,B(ρ) 6 ln(min{dA, dB}).
This bound is saturated by maximally entangled states, for Schmidt operators A and
B [15].

The resource-destroying map assumes here the form ΛNε (ρ) = (1− ε) ρ+ ε ΦR̄(ρ),
with R̄ ∈ {Ā, B̄}. While it is easy to check thatN(ΛN1 (ρ)) = 0, the proof thatN(ΛNε (ρ)) 6
N(ρ) is more involving [16]. Unlike quantum irreality, which, as previously men-
tioned, turns out to be a useful resource for the distillation of quantum coherence in
distributed scenarios [39,40], it is still not clear which quantum processing tasks, if
any, realism-based nonlocality can be useful for. In any case, the structure presented
here indicates that it suitably fits in our unifying framework of quantum resources.

3.6 Further nonclassicalities

In Ref. [43], a perspective is put forward which allows one to quantify a generic corre-
lation, Q, be it classical or quantum, in terms of the measure Q(ρ) = minχ∈CQ S (ρ||χ),
where CQ is the set of all states χ such that Q(χ) = 0. Referring back to the terminol-
ogy employed in Sect. 2.1, it is clear that χ ≡ ρ̃ (free states) and CQ ≡ F (free-state
set). Now, if the free states admit the form ρ̃ = ΦA(σ), for a generic state σ, then we
have

Q(ρ) = min
ρ̃∈F

S (ρ||ρ̃) = min
A,σ

S (ρ||ΦA(σ)). (28)
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The projective nature of the map ΦA allows us to show that minσ S (ρ||ΦA(σ)) =

S (ρ||ΦA(ρ)) = S (ΦA(ρ)) − S (ρ). It follows that

Q(ρ) = I(ρ) − I(ΦĀ(ρ)), (29)

with Ā being the optimal observable. This means that any nonclassical aspect Q ad-
mitting ΦA as its destroying map will be a resource, at least according to the present
approach. In fact, as discussed previously, quantities such asQ(ρ) = R(ρ)−R(ΦA(ρ)),
for arbitrary resource measures R, will also be resources. Further measures that can
be accommodated in our framework are, for example, the measurement-induced dis-
turbance [44], the quantum dissonance [43], and the quintessential coherence [45,
46].

4 Concluding remarks

This work is intended to contribute to the development of the paradigmatic scenario
of resource theories. As a first step, we introduce a class of resource-destroying mon-
itorings, which corresponds to a generic formulation of free operations. These objects
form a generalization of resource-destroying maps [11], in the sense that they are able
to interpolate between resource nongenerating maps and maximally destroying ones.
Our second contribution consists of showing that a unified framework can be estab-
lished that gathers many well-known quantum resources and put them in direct link
with information, which then emerges as the most fundamental quantum resource.
Specifically, we show that all the studied resources can be viewed as the amount of
information that is extracted by an external agent aiming at monitoring some ob-
servable(s) of the system. Besides suitably accommodating quantum coherence, en-
tanglement, one-way discord, and symmetric discord in such a unified picture, our
approach reveals that the recently proposed quantum irreality and realism-based non-
locality have all the formal characteristics needed for a quantum resource. Our results
open up to a larger discussion about the differences among different resources. In our
perspective, these differences manifest themselves in terms of the observables about
which the external agent decides to get information and establish reality. For future
works, it would be interesting to investigate if and how our approach can frame other
fundamental resources, such as Bell nonlocality and quantum steering.
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