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Abstract
Games involving quantum strategies often yield higher payoff. Here, we study a prac-
tical realization of the three-player dilemma game using the superconductivity-based
quantum processors provided by IBM Q Experience. We analyze the persistence of
the quantum advantage under corruption of the input states and how this depends
on parameters of the payoff table. Specifically, experimental fidelity and error are
observed not to be properly anti-correlated; i.e., there are instances where a class of
experiments with higher fidelity yields a greater error in the payoff. Further, we find
that the classical strategy will always outperform the quantum strategy if corruption
is higher than 50%.

Keywords Quantum game · Effect of noise on quantum advantages · Three-party
dilemma game · Experimental realization of a quantum game

1 Introduction

Game theory provides a way to learn about decisive communication between rational
and self-seeking agents. Therefore, it plays an important role in the fields of computer
science, economics, biology, psychology, etc. (see [1,2] for review articles). Com-
putationally, game theory can be used to model algorithms [3,4] as well as to check
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the robustness of networks and corresponding attack strategies [5]. In cryptography,
the communication task can be visualized as a game between the parties trying to
communicate securely and an eavesdropper (see [6] and references therein). With the
advent of quantum computing, it is observed that resources used in quantum comput-
ing, such as quantum coherence and entanglement, provide alternative solutions to
classical games.

We may mention, for example, the emergence of cooperation in the prisoner’s
dilemma game [7] and the resolution of the coordination in battle of sexes game
[8] using entanglement. Specifically, as all the players wish to maximize their gain or
payoff in games, for which the umpire has laid down the rule(s), players using quantum
mechanical tactics are found to attain a higher payoff compared to the classical one
[9]. Further, the dilemma disappears in prisoner’s dilemma with the use of quantum
resources under unitary operations [10,11]. Along the same line, optimal cloning of
quantum states is also studied as game [12]. Quantum games based on monogamy
of entanglement are shown to be useful in device-independent quantum cryptography
[13]. Our understanding of several other foundational aspects of quantum mechanics
is improved by considering games, such as nonlocality [14], the uncertainty bound on
nonlocality [15], contextuality [16], PR-boxes [17], as well as applications in quantum
reinforcement learning [18] and quantum machine learning [19].

Over the course of time, multiplayer quantum games were also introduced that
exploit quantum correlation to prevent betrayal by individual players [20]. It has been
suggested that these quantum games may shed light on the interactions in many-
particle systems [21]. One such multiplayer game is the three-party counterpart of
the prisoner’s dilemma. In the classical version, all three players prefer to choose
strategies analogous to the corresponding two-party case. The dilemma exists because
the Nash equilibrium does not coincide with the Pareto optimal [20]. Specifically,
a Nash equilibrium is the situation in which no participant can gain by a unilateral
change of strategy, while Pareto optimal corresponds to the situation that any change
in strategy would make at least one individual worse off [20]. Still in quantum case,
the use of tripartite entanglement shows certain advantage. Moreover, computing the
Nash equilibrium in the three- and four-player games is shown to be a hard problem
[22,23]. An experimental verification of three-player dilemma game using NMR was
reported in [24]. In the recent past, other gameshavebeen realizedonphotonic quantum
computer [25–28] and ion trap platform [29].

In general, the dilemma games are relevant in several studies of biology, eco-
nomics, psychology, international relations and sports, to name a few. For instance,
King Solomon’s dilemma [30] based on the Old Testament can model prize allocation,
research grant distribution, etc. Another multiparty version of prisoner’s dilemma is
diner’s dilemma in which each player has to choose whether to order an expensive
or an inexpensive dish if they have to equally share the bill [31]. An iterated ver-
sion of this diner’s dilemma game is useful in the social dynamics of networks and
situational awareness. Such iterated multiparty prisoner’s dilemma in the context of
social dynamics is discussed in the past, too [32]. Along the same line, dilemma of
the players in other games is used to introduce the conditional probability [33].

Decoherence is the Achilles’ heel of quantum computing and information process-
ing in particular, and technology in general. Similar results are shown for the quantum
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games [34]. Independently, the effect of errors in the initial state preparation (as cor-
ruption by a demon) on the outcome of three-player dilemma game is studied assuming
that the players are unaware of corruption and that there is no decoherence [21]. Inter-
estingly, beyond a pivotal value of corruption, it can be observed that players fare off
better with the classical strategies, but since players have no knowledge of the level
of corruption, they have to stick to their original strategies. Furthermore, a quantum
game reduces to classical game if one of the parties allows his qubit to decohere under
Markovian noise channels [35], while Nash equilibria are unchanged by decoherence
for prisoner’s dilemma [36].

Here, we wish to implement the three-player dilemma game [20] on IBM quantum
computer1 and study how the change in the utility function affects the point of quantum
advantage. Interestingly, this is the first realization of a game with corrupt source
on a superconducting qubits-based quantum computer. Despite high error rate and
the limited qubit connectivity, IBM quantum computers have been shown to run a
wide array of algorithms (see [37,38] and references therein). Thus, we realize the
game on IBM Q Experience and compare the experimental payoffs with previous
experiments onNMR[24].Ongeneralizing the payoff table in the noisy game, the point
where quantum advantage disappears also changes which leads to some interesting
observations. In specific, they show how robust the quantum strategy is. An application
of these results is that given a known corruption level, the payoff table (the relative
stakes)may, in a range, be chosen to give an advantage to the quantum strategy. Finally,
we show that classical strategies dominate when corruption is higher than 50% in the
proposed game.

The rest of the paper is organized as follows. We introduce three-player quantum
dilemma in Sect. 2. The noisy counterpart of the game and its experimental imple-
mentation are discussed in Sect. 3. We further discuss all the results in detail in the
penultimate section before concluding the paper in Sect. 5.

2 Three-player quantum dilemma

Before we formally describe three-player quantum dilemma, it will be apt to state the
notion of game in general and quantum game in particular. A game can be defined as
the set S = {players Pj , their actions σ k

j , outcomes Ol , payoffs pk}. To solve a game
consists in determining the optimal strategies for all players, where a strategy refers
to a player’s move given the information available to her. A quantum game is a game
where the player’s actions correspond to applying a quantum operation on a joint
state shared by all players, and in principle, even superposition of players’ actions is
allowed.

The multiparty dilemma game, generalizing the two-player prisoners’ dilemma,
was introduced as a multiparty counterpart of the prisoner’s dilemma game, where
each person has two choices: either to cooperate (0) or defect (1). The three-player
dilemma resembles El Farol Bar problem that players have to decide independently

1 https://www.research.ibm.com/ibm-q/. Accessed on September 2019
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Fig. 1 (Color online) Circuit diagram that can be used for the realization of the three-player quantum
dilemma game. Here, the measurement outcomes in the Z basis are shown as a j ∈ {0, 1}

whether to go or not to a bar with seating capacity for only two (see [24] and references
therein).

In the three-player quantum dilemma game, each player is provided one qubit by
the umpire, who performs an entangling operation on state |000〉 before that which
increases the nonclassical correlation among the players. The entangling gate J can
be defined as in Ref. [20]:

J = cos
γ

2
ID⊗3 + i sin

γ

2
X⊗3, (1)

where ID and X are identity and Pauli NOT gates, respectively. Without loss of gen-
erality, we choose the case when the correlation is maximum, i.e., γ = π/2. Further,
it can be checked that for minimum correlation, i.e., γ = 0, the game reduces to its
classical counterpart [11].

In quantum game, each person is allowed to choose an operation from a strategy
set S, consisting of three elements S = (S1, S2, S3), where S1 = X means the player
wants to attend the party; S2 = H corresponds to the player’s choice to go with half
a probability; and S3 = ID represents the player wants to stay at home. Note that the
choice of S2 does not have a counterpart in classical games. As far as a classical player
in game theory is considered, he is allowed to choose his operations probabilistically in
mixed strategy. In the present context, it is already shown that a classical player remains
with unchanged dominant strategy even when allowed to select mixed strategies (for
more details, see [21]). However, in what follows, we will observe that S2 plays
a significant role in the present quantum game. This is a restricted strategy set (as
there can be an infinitely many possible quantum strategies each corresponding to
a different unitary operation), but it encompasses all the nonclassical characteristics
we want to demonstrate through this game. Subsequently, a disentangling operation
J † = ID⊗3−i X⊗3√

2
is performed beforemeasuring in the computational basis. The circuit

diagram of the game is shown in Fig. 1.
Thus, when none of the players decides to go, i.e., the measurement outcome is

|000〉 (represented by corresponding bit values 000 in Table 1), nobody is happy since
they could not attend the party but are not sad since none of the friends betrayed, and
thus everybody gets 0 payoff. However, if one person decides to go, then the other
two will be unhappy (with payoff −n), and the one attending the party does not enjoy
being alone (with payoff p). When two of the friends decide to go, they both fare off
with n payoff each since they get to go to the party with company, while the friend
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Table 1 Generalized payoff table for three-player dilemma game depending upon the possiblemeasurement
outcomes

Bit values corresponding to possible measurement outcome a1a2a3 Payoffs
(
$
)

000 0, 0, 0

001 −n,−n, p

010 −n, p, −n

011 p, n, n

100 p, −n,−n

101 n, p, n

110 n, n, p

111 q, q, q

In previous adaptations of the game [20], n = 9, p = 1 and q = 2 were used

left behind is not too dejected since his presence would have overcrowded the party
so he gets p. If all of them decide to go, they get payoff of q each since their presence
has overcrowded the party. Accordingly, we impose n > q > p > 0.

This problem is also relevant in the virus and social distancing requirement during
pandemics, such as the current coronavirus situation. For example, to enthuse people to
brave the situation and pay a visit, a restaurant may make an attractive offer. However,
to reduce the probability of the transmission of the viral infection, if too many people
arrive, it will have to turn away some in order to allow only two people to sit per table
as per social distancing norms.

Yet another example for the three-player dilemma that members of the academic
would more readily relate to would be the dilemma of three academic collaborators in
applying for a research grant. If two of them apply, they are likely to receive the grant,
whereas they probably would receive insufficient or no funding if all three apply for
it. Also, they would not be happy if none of them applies or their collaborator gets it
but not them. The dilemma shown previously was by considering n = 9, p = 1, and
q = 2 [20]. Here, we study a general description of such payoff tables and show how
the payoff depends on these parameters in the noisy game (subjected to constraint
0 < p < q < n). One motivation for this is to understand whether and how the
game’s stakes can be fixed based on knowledge of the preparation noise in the system.
In [20], it is shown that in a special case considering a different set of values of
the payoffs, quantum players do not have any advantage over the classical strategy
which is no longer a Nash equilibrium. Therefore, we have restricted ourselves to the
aforementioned constraint which ensures that classical Nash equilibrium exists. To
the best of our knowledge, this is the first attempt to generalize the payoff table for
the three-player dilemma game in analogy of prisoner’s dilemma [39].

3 IBM implementation and noisy state preparation

For the given strategy space S, there are three choices per playerwhich gives us 33 = 27
arrangements which can be clustered into ten different classes [21]. Experimental
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Fig. 2 (Color online) Ten classes with different operations used by each player in S1 ⊗ S2 ⊗ S3. Here, H ,
X and ID are Hadamard, NOT and identity gates, respectively

design for the implementation of all these classes is shown in Fig. 2. Classes I, IV
and V have

(3
3

) = 1 configuration, while Classes II, III, VI, VII, IX and X each have
(3
1

) = 3 possible configurations, and there are 3! = 6 configurations in Class VIII.
When each player decides to play a unique tactic, independent of the other players,
we obtain class VIII as mixed-strategy Nash Equilibrium. Class VII provides the best
response for each player but is not considered as it is biased. The Nash equilibrium
is a combination of actions or moves {σA, σB} such that neither party can enhance
her payoff $ j (σA, σB) above the equilibrium value by making a unilateral change of
action:

$A(σA, σB) ≥ $(σ ′
A, σB),

$B(σA, σB) ≥ $(σA, σ ′
B),

(2)

where σ ′
A is any other strategy of player A than the equilibrium one, and analogously

for σ ′
B .

Suppose the umpire has provided tainted qubits from the black box; i.e., instead
of |000〉, he introduces error (mixedness) of the form ρ0(x) = (1 − x) |000〉 〈000| +
x |111〉 〈111|. The expected payoff would change quite exorbitantly as we increase
the amount of preparation noise or corruption (as shown in Fig. 7), where ‘x’ is the
noise parameter, x ∈ [0, 1].

In IBM implementation [40] of the gate, we performed the entangling gate J using
a Rx (−π

2 ) and four CNOT gates as

J = (ID0 ⊗ CNOT1→2) (CNOT1→0 ⊗ ID2)
(
ID0 ⊗ Rx

(
−π

2

)

1
⊗ ID2

)
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Rx(-π/2)

Fig. 3 (Color online) Decomposition of three-qubit operation J

Fig. 4 (Color online) Circuits for the simulation of noisy three-player quantum dilemma game for class
VIII as implemented on IBM quantum experience

(ID0 ⊗ CNOT1→2) (CNOT1→0 ⊗ ID2)

on qubits 0, 1 and 2, respectively (also shown in Fig. 3). The single-qubit operation
can be defined as Rx (−π

2 ) |0〉 → (|0〉 + i |1〉) /
√
2. In fact, many simulations of this

game have modeled the entangling gate J incorrectly in the past [41] as those matrix
decompositions were not the same as J . As already discussed, this is followed by the
players applying their operations on their respective qubits from the strategy space S.
Finally, we apply a disentangling gate J † which can be modeled by the same set of
gates which was used to construct J since (ABCDE)† = E†D†C†B†A†.

To introduce the corruption in the input qubits (shown in Fig. 4), the umpire uses
an ancilla in state |ψ〉 = U (θ, φ, λ) |0〉 = cos θ

2 |0〉 + sin θ
2 |1〉 prepared using single-

qubit unitary operation U (θ, φ = 0, λ = 0) defined as

U (θ, φ, λ) =
(

cos θ
2 −eiλ sin θ

2
eiφ sin θ

2 eiλ+iφ cos θ
2

)
. (3)

Subsequently, the umpire uses this ancilla as control and applies CNOT gates to the
rest of the qubits which he sends to three players. The amount of corruption x is related
by x = sin2 θ

2 . Therefore, in what follows, we trace out the fourth qubit to obtain the
payoffs of noisy game.

Here, it is imperative that due to corruption x the three-qubit state shared by the
players is ρin(x) = Jρ0(x)J † instead of |ψin〉 = J |000〉 shared among them in the
ideal case. In the absence of any knowledge about x , all the players perform their
strategies assuming they have the latter state. As expected, the performance of the
game deteriorates as x causes ρ0(x) to deviate more from |ψin〉. This deviation can be
captured by the fidelity F = 〈ψin| ρin |ψin〉 = 1 − x . The corresponding monotonic
reduction in the game’s performance is discussed below.
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The corruption that we have considered is the one that is easy to implement in the
IBMprocessor,while at the same time reflective of a general noise process. To compare
and contrast it with a better studied noise, which arises during a dissipative interaction
of a system with its environment, we further consider the effect of amplitude damping
noise on the three-qubit entangled state obtained after application of J operator on
tainted qubits provided by the umpire, i.e., ρin. Here, we restrict ourselves to the
effect of amplitude damping noise only on the first qubit, which can be defined in the
operator-sum approach by

ρAD (x, λ) =
1∑

j=0

(
K j (λ) ⊗ ID⊗2

)
ρin (x)

(
K †

j (λ) ⊗ ID⊗2
)

, (4)

where the Kraus operators are

K0 (λ) = |0〉 〈0| + √
1 − λ |1〉 〈1| and K1 (λ) = √

λ |0〉 〈1| . (5)

All three players apply unitary operations on ρAD depending upon their strategy and
subsequently perform J † on the combined three-qubit state before measuring it in the
Z basis. We can obtain the total payoff of the players as the sum of the probability
mass function in the Z basis, multiplied with corresponding values of payoffs in Table
1. The average payoff can be obtained by dividing the total payoff by the number
of players. The Nash equilibrium with classical players is (q, q, q) as none of the
players can improve his payoff by unilaterally changing his strategy, which is termed
as classical Nash equilibrium. In contrast, a quantum player can also apply operation
S2, not available to a classical user, and this gives Class VIII, which happens to yield
the Nash equilibrium in this case, i.e., quantum Nash equilibrium.

The classical and quantum Nash equilibria for the corrupt state preparation and the
first qubit undergoing amplitude damping can be obtained as

$cl (x, λ) = 1
12

[
2λp − 3q

{
λ + 2 (2x − 1)

√
1 − λ − 2

}]
,

$qu (x, λ) = 1
24

[
3λq − 16n (2x − 1)

√
1 − λ − 2(λ − 4)p

]
.

(6)

The variation in the payoff for the Nash equilibrium can be observed to fall (shown in
Fig. 5) as λ increases from 0 for x < 1/2, while for large values of corruption it can
be observed to increase. The case λ = 0 corresponds to the noiseless but corrupted
state, and here we observe that the payoff decreases with x , which can be explained
in terms of gradual fall in the fidelity F of the state ρ0(x).

4 Results and discussion

We have performed the experiments for all classes and computed payoff from the
measurement outcomes in computational basis. We have also obtained the output
densitymatrices to obtain the fidelity between theoretically desired and experimentally
reconstructed states.
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(a) (b)

Fig. 5 (Color online)Variation in averagepayoff ata classical andbquantumNash equilibriawith corruption
x and amplitude damping parameter λ. Here, we have chosen the payoff parameters n = 9, q = 2 and
p = 1

4.1 Fidelity and quantum state tomography

In quantum computation, fidelity is used to describe closeness between two states as it
is one of the distance-based measures. Ideally, fidelity between the experimental (ρE )

and theoretical (ρT ) density matrices, defined as F(ρE , ρT ) = Tr
√

(
√

ρT ρE
√

ρT )

[38], is desired to be 1, but due to unavoidable errors, it is usually less than unity in
most cases.

In our case, we calculate fidelities of all the classes and show them in Table 2. To
obtain the experimental density matrices and fidelities, we performed quantum state
tomography of the outputs of all the circuits (see [42,43] for detail). The crux of the
matter is that we can reconstruct the three-qubit density matrix of the output of the
circuit using

ρE = 1

23

3∑

i1,i2,i3=0

Ti1i2i3(σi1 ⊗ σi2 ⊗ σi3), (7)

where σ j are respective Pauli matrices. The values of elements of the T matrix are
obtained from the expectation values of these Pauli operators. Specifically, circuit
corresponding to each measurement setting is run 8192 times, which is the maximum
available number for the device. For instance, in the case of Class VII, U7 = σx ⊗
ID⊗ σx is the strategy unitary and the experimentally reconstructed density matrix is
shown with corresponding theoretical density matrix ρT

7 = |101〉 〈101| in Fig. 6. We
have also reported experimentally reconstructed and theoretical density matrices for
Class VIII with strategy unitaryU8 = σx ⊗H ⊗ ID in Fig. 6. The fidelity of the output
density matrices for all the classes is summarized in Table 2. Surprisingly, fidelity and
error are not properly anti-correlated; i.e., there are instances where a class of higher
fidelity than another still yields a greater error in the payoff. It is worth emphasizing
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(a) (b)

(c) (d)

Fig. 6 (Color online) Graphical representation of a the theoretical density matrix ρT
7 and b the real part of

the experimentally reconstructed density matrix Re(ρE
7 ) for Class VII. Similarly, c the theoretical matrix

ρT
8 and d the real part of the experimentally reconstructed density matrix Re(ρE

8 ) for Class VIII are also
shown

here that the payoff readout involves only measurement in the Pauli σz basis, whereas
the fidelity is determined via a state tomography, which requires the full suite of Pauli
σx , σy and σz measurements. We suspect that the discrepancy between the fidelity and
payoff error may be attributed to situation that the gate fidelity of Pauli σz differs from
that of Pauli σx or σy , on a given processor for certain experimental configurations.
Upon inspection, one finds that this discrepancy is not consistently attributable to any
one of the processors and may have to do with the behavior of the processor in the
context of the full circuit for the experimental configuration. We think this may be an
interesting problem for future study in order to compare IBM Q Experience’s output
with that fromother experimental setups.Here, itmay be noted that the experiments are
performed on different processors provided by IBM depending upon their availability.

4.2 Payoff table

Payoff of single player $ is obtained bymultiplying their respective payoffs fromTable
1 with the probabilities obtained from the output of the experiment (as in [24]). The
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mean payoff per player
〈
$
〉
is defined as the numerical mean of the payoffs of each

player
〈
$
〉 = $1+$2+$3

3 .
It is also shown in the past that the payoffs for quantumNash equilibriumdeteriorate

with noise [21]. However, in our case, assuming arbitrary values of parameters, we
obtained that quantum Nash equilibrium is 3$qu = −4nx + 2n + p, and classical
Nash equilibrium for (q,q,q) is $cl = q (1 − x). As both quantum and classical Nash
equilibriumvalues decreasewith corruption level x , the quantum advantage disappears
after the point of intersection of these two curves. That intersection can be obtained
as the critical value of corruption

xc = 2n + p − 3q

4n − 3q
. (8)

From Fig. 7, we obtain that experimentally xc = 0.363, whereas the theoretical
value is 0.428 [21], giving us an error of 15.18%. Note that the results obtained in [21]
neglect decoherence after the initial state is prepared by the demon. However, here
on top of that, gate errors in the implementation of the presently available SQUID-
based quantum computing facilities also play an important role in sabotaging the
quantum advantage achievable in quantum games. Of course, a reduction in noise with
improvement in technology will improve the outcome. Notice that for very high values
of corruption, when classical strategy is a preferred choice, the experimental results
show higher payoffs than the theoretically expected in quantum Nash equilibrium.
This can be understood by interpreting the experimental result as including the effect
of decoherence on the ideal quantum state of the processor. This leads in this regime
(x > 0.5) to a mixture of the theoretical prediction (having a lower value) and the
classical prediction (having a higher value). The experimental higher payoff may then
be attributed, paradoxically, to the classicalization of the physical state of the quantum
processor. This idea is also reflected in our results pertaining to the AD channel.

4.3 Variation in p, q, n

Aswe have discussed the general case of the game with arbitrary values of the individ-
ual payoff parameters, here we discuss the role of each of these parameters (assuming
0 < p < q < n) on xc. This would allow us to choose suitable payoff parameters
if the noise level x is known, or if they cannot be varied, then to decide whether to
employ the quantum or classical game for the problem in a practical situation.

We find that xc increases if n is increased for a constant value of p and q. It implies
that when the stakes of a game are high (large n), such that reward for winnings
and the amount of losses are very high, the quantum strategies are better in spite of
corruption. Further increasing n saturates xc to 0.5, which signifies that no matter
what, if corruption is higher than 50%, classical strategy will always outperform the
quantum strategy. The results obtained are shown in Fig. 8a. Here, it is worth noting
that whilst it is generally acknowledged that the quantum advantage disappears under
sufficiently high noise, a surprise in the present case is that, for the considered scenario,
the quantum strategy becomes particularly disadvantageous. This underscores the
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Fig. 7 (Color online) Variation in payoffs in classical and quantum Nash equilibrium with corruption x .
We have also shown the experimentally obtained payoff values. We assumed p = 1, n = 9 and q = 2.
Here, xcTh and xcExp represent critical values of corruption from theoretical and experimental results. Noise
degrades quantum information, and thus not surprisingly, xcTh > xcExp

(a) (b)

Fig. 8 (Color online) Variation in payoffs in classical and quantum strategies with corruption x and payoff
parameters a n (q = 2) and b q (n = 9) with p = 1 for Class VIII considering rest of the parameters in
{p, n, q} as constant. The critical value of corruption xc is marked by black dots in all cases

importance of characterizing the noisy channel that determines the level of preparation
corruption x . A full quantum process tomography of the channel is not necessary, and
even a partial one (e.g., Ref. [44]) that allows us to estimate the degree of corruption
will suffice.

Note that the only quantum Nash equilibrium depends upon n, while classical
Nash equilibrium is a function of q. Thus, an increase in q essentially leads to classical
dominant strategy; i.e., classical strategy tends to be as efficient as the quantum strategy
[cf. in Fig. 8b]. However, for large values of corruption, there is no evident advantage
as for maximum corruption classical Nash equilibrium is always zero.

These observations lead to conclusion that quantum systems are more prone to
errors and deteriorate rapidly with an increase in the amount of corruption. Hence,
errors in system may lead to loss of quantum advantage originally present as observed
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from the experimental value in Fig. 7 as well. Thus, in the case of high errors, it is
always better to stick to classical strategies from an outsider’s perspective.

5 Conclusion

We have discussed a multiparty quantum game by generalizing the payoff table. Our
result may find interesting applications in diverse fields, such as finance, social net-
works. Suppose a group of companies wants to invest in a particular stock and has
limited knowledge of the market statistics, then the financial situation of the stock
simulates a general case of three-person dilemma with arbitrary payoff parameters. In
this case, if the stakes of the investments are high such that returns are great, but so
are the losses, companies perform better if they use quantum strategies, provided the
amount of preparation noise is less than 50%. Otherwise, the classical strategy should
be preferred. Similarly, in the situation that the classical dominant strategy equilib-
rium (q, q, q) has relatively higher payoff than all other cases, the present results may
persuade companies to opt for classical strategies even for a small amount of source
error. Also note that the mixed strategy, i.e., 50% chance of investing in the present
case, would only have advantage with quantum strategies, i.e., in a low-corruption
situation.

We have performed an experiment for the noisy three-player quantum dilemma
game and observed that the obtained results were less robust against noise than the
corresponding results from NMR experiments. Further, it can be observed that due to
additional errors (other than source error introduced in the noisy counterpart of the
game), the advantage of quantum game over corresponding classical game disappears
quickly. Similar studies for the generalizations of other games where quantum players
perform better or the games where classical strategies are always preferable can be
performed to study the role of various payoff parameters in those cases. The present
experimental implementation of the noisy quantum game on a small noisy quantum
computer establishes a practical quantum advantage in game theory. However, in view
of noisy intermediate-scale quantum (NISQ) technology [45] around the corner, i.e.,
quantum computing infrastructure with 50–100 qubits, this advantage can be exploited
for several applications, such as in quantummachine learning [46]. This can be further
extended to the iterated version of the game where it is performed more than once,
and rational players decide their strategies depending upon their opponents’ previous
decision. The results from the experiment performed on NMR were more accurate,
showing that the NMR-based quantum computer is less noisy. To obtain a quantitative
perception of that, we performed quantum state tomography here, which shows that
higher fidelity of experimentally generated state does not necessarily mean smaller
errors; i.e., fidelity and errors are not properly anti-correlated.

In the end, we would like to stress on the recent studies connecting Bell nonlo-
cality [47,48], a quantum secure direct communication scheme [49] and security of
quantum key distribution schemes [50] with game theory. In view of these works, in
principle, all quantum cryptographic schemes (see [51,52] for a review) can be viewed
from the perspective of game theory, as a game to perform cryptanalysis and obtain
security proofs. For example, measurement-device-independent, device-independent
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and entangled state-based quantum key distribution schemes, such as Ekert’s scheme
[53], can be viewed as a three-party game involving Alice, Bob and Eve. Future work
is planned to rigorously analyze the best strategy of Alice and Bob and that of Eve
using a game theoretic approach. We hope the present results will be helpful in the
application of quantum strategies in game theory, and in turn in their applications in
quantum technologies in general, and quantum cryptography in particular.
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Appendix: Reconstructed density matrix

The real and imaginary parts of the experimentally obtained density matrix for Class
VII by performing quantum state tomography are

Re(ρE
7 ) =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

0.018 −0.188 −0.001 0.002 −0.126 0.036 −0.004 −0.031
−0.188 0.030 −0.100 0.002 0.044 −0.160 −0.019 −0.003
−0.001 −0.100 0.037 −0.003 0.033 −0.056 −0.049 −0.035
0.002 0.002 −0.003 0.007 0.015 0.030 −0.042 −0.039

−0.126 0.044 0.033 0.015 0.022 −0.189 −0.006 −0.002
0.036 −0.160 −0.056 0.030 −0.189 0.711 0.099 −0.030

−0.004 −0.019 −0.049 −0.042 −0.006 0.099 0.018 −0.022
−0.031 −0.003 −0.035 −0.039 −0.002 −0.030 −0.022 0.157

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

and

Im(ρE
7 ) =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

0 0.229 0.002 0.009 0.142 −0.042 −0.028 −0.009
−0.229 0 0 −0.001 −0.001 0.148 −0.010 −0.034
−0.002 0 0 0.002 −0.011 0.014 0.053 0.010
−0.009 0.001 −0.002 0 0.014 0.017 0.004 0.030
−0.142 0.001 0.011 −0.014 0 0.158 0.004 −1.108
0.042 −0.148 −0.014 −0.017 −0.158 0 −1.103 0.058
0.028 0.010 −0.053 −0.004 −0.004 1.103 0 0.024
0.009 0.034 −0.010 −0.030 1.108 −0.058 −0.024 0

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

,

respectively, while the theoretical density matrix in the corresponding case is given
by ρT

7 = |ψ7〉 〈ψ7| = |101〉 〈101|, where |ψ7〉 = J † ·U7 · J |000〉. Similarly, the real
and imaginary parts of the experimentally obtained density matrix for Class VIII by
performing quantum state tomography are
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Re(ρE
8 ) =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

0.028 −0.046 0.002 0.016 0.01 −0.044 −0.037 0.058
−0.046 0.062 0.000 0.013 −0.053 0.006 −0.002 0.018
0.002 0.000 0.059 0.042 0.046 −0.06 0.015 0.051
0.016 0.013 0.042 0.366 0.038 −0.025 −0.017 −0.011
0.01 −0.053 0.046 0.038 0.046 0.046 0.015 −0.008

−0.044 0.006 −0.06 −0.025 0.046 0.023 −0.016 −0.002
−0.037 −0.002 0.015 −0.017 0.015 −0.016 0.387 −0.022
0.058 0.018 0.051 −0.011 −0.008 −0.002 −0.022 0.029

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

and

Im(ρE
8 ) =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

0 −0.001 −0.005 0 −0.014 0 −0.022 −0.077
0.001 0 0.005 −0.107 −0.028 0.002 −0.083 0.003
0.005 −0.005 0 0.004 0.003 0.087 0.009 −0.003
0 0.107 −0.004 0 0.052 0.015 −0.331 −0.016

0.014 0.028 −0.003 −0.052 0 0 −0.068 0.011
0 −0.002 −0.087 −0.015 0 0 0.011 0

0.022 0.083 −0.009 0.331 0.068 −0.016 0 −0.026
0.077 −0.003 0.003 0.016 −0.011 0 0.026 0

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

,

respectively, while the theoretical density matrix in the corresponding case is given
by ρT

8 = |ψ8〉 〈ψ8|, where |ψ8〉 = J † ·U8 · J |000〉.
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