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put states can improve the precision of quantum parameter estimation. On
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guish Markovianity and non-Markovianity of the process by adopting the flow
of QFI as the quantitative measure for the information flow. We show that
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namics of the system in the sense of the Markovianity and non-Markovianity.
In certain ranges of parameters, we observe that dynamical evolutions of the
systems show non-Markovian behavior in which the information flows from
the environment to the system.

Keywords Quantum Fisher information · Yang-Baxter equations · Hamilto-
nian systems · non-Markovianity

PACS 03.65.Yz · 03.67.-a · 03.67.Mn.

D. Duran
Department of Physics, Yozgat Bozok University, Faculty of Science and Arts, 66100, Yozgat,
Turkey.
Tel.: +903542421021
Fax: +903542421022
E-mail: durgun.duran@bozok.edu.tr

http://arxiv.org/abs/2008.11443v1


2 Durgun Duran

1 Introduction

Parameter estimation plays a crucial role in quantum information theory [1,2,
3]. In this field, determining the value of an unknown parameter that encoded
the quantum system is the main task and enhancing the resolution accuracy
is the main goal. The quantum Cramér-Rao bound (QCRB) provides a fun-
damental lower bound on the variance of the parameter estimation and it is
proportional to the inverse of the quantum Fisher information (QFI) which
is an important figure of merit in quantum parameter estimation theory [4,
5,6,7]. This bound relates the information obtained about a parameter from
measurement outcomes to the parameter estimate uncertainty. The calcula-
tion of the QFI for any physical system becomes one of the central tasks
in quantum metrology, although generally, this is difficult. When considering
classical probes independently sensing a physical parameter, such as phase or
frequency, the maximum attainable precision follows the standard limit (SL),
1/

√
N , where N is the number of probes. In turn, it was shown that quantum

entanglement allows one to achieve the so-called Heisenberg limit in precision,
1/N , a quadratic improvement as compared to classical approaches [8,9,10].
These precision limits apply to both single-shot protocols as well as protocols
utilizing many repetitions. Still, it remains unclear to what extent such an
improvement can be harnessed in practice under non-idealized conditions.

Recently, the Yang-Baxter equations (YBEs) have been introduced to the
field of quantum information and quantum computation. In a series of pa-
pers, it has been shown that YBEs have a deep connection with topological
quantum computation and entanglement swapping [11,12,13,14,15,16,17,18,
19]. The unitary solution of the braided Yang-Baxter (i.e., the braid group
relation) and unitary solutions of the quantum YBE can often be identified
with universal quantum gates [20,21]. This provides a novel way to study
quantum entanglement via YBEs. Usually, a Hamiltonian can be constructed
from the unitary R(θ, ϕ) matrix by the Yang-Baxterization approach. Yang-
Baxterization [22,23] has been exploited to derive a Hamiltonian for the uni-
tary evolution of entangled states. It can be pointed that YBE can be tested
in terms of quantum optics [24]. It is found that any pure two-qudit entangled
state can be achieved by a universal Yang-Baxter matrix (YBM) assisted by
local unitary transformations [19]. In recent work, the sudden death of entan-
glement has been investigated in constructed Yang-Baxter systems (YBEs)
[25].

QFI has been applied widely in realizing the different quantum information
tasks such as entanglement detection [26] and non-Markovian description and
determination[27,28], and flow of QFI [29,30] that has been used to distin-
guish Markovian and non-Markovian processes. Exploring open quantum sys-
tems from various perspectives has been an intensive research topic in recent
years due to key questions, as well as their important role in the realization
of quantum information protocols in real-world applications [31,32,33]. An
interesting approach to address open quantum systems is to investigate the
information flow between the components of composite quantum systems, or
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in particular to explore the exchange of information between the system and
its surrounding environment. In terms of quantum memory effects, dynamical
quantum maps are generally divided into two groups: Markovian and non-
Markovian maps. Memoryless processes are often recognized as Markovian,
where the information is expected to monotonically flow from the system to
the environment. On the other hand, it is rather natural to assume that the
backflow of information from the environment to the system is connected to
the presence of memory effects, because in these cases the future states of the
system may depend on its past states as a result of the inverse exchange of
information.

In this present paper, by using the Yang-Baxterization approach we con-
struct three different Hamiltonians and shall interest in the problem of es-
timating the parameter that unitary encoded by these Hamiltonians. Then,
considering two Werner-like states and Bell-diagonal state as input or probe
states we firstly investigate the behavior of QFI for the outputs corresponding
to these inputs and try to achieve optimal conditions saturating the QCRB.
On the other hand, we analyze the dynamical behavior of QFI to distinguish
Markovianity and non-Markovianity of the process by adopting the flow of
QFI as the quantitative measure for the information flow evaluating by re-
duced dynamics of the output state and its physical significance is given.

This study is structured as follows. In Sec. 2 the main traits of QFI and
dynamical behavior that will be used in due course are summarized. The YBMs
and their properties are carried out in Sec 3. Hamiltonian models that will
be investigated are considered in Sec. 4 where the action of YBM on the
Hamiltonians is given. The main results of this work are emphasized in Sec 5
and 6. We end up with some concluding remarks.

2 Quantum Fisher Information and Flow of Information

The QFI indicates the sensitivity of the state to the change of the parameter.
Let φ denote a single parameter to be estimated, for the output state ρφ the
QFI is generically defined as [34,35]

Fφ(ρφ) = Tr(ρφL
2
φ) = Tr(∂φρφLφ), (1)

where Lφ is symmetric logarithmic derivative(SLD) for the parameter φ, which
is a Hermitian operator determined by [1,35]

∂φρφ =
1

2
{ρφ, Lφ}, (2)

where {·, ·} denotes the anticommutator and ∂φ ≡ ∂/∂φ.
An essential feature of the QFI is that we can obtain the achievable lower

bound of the mean-square error of unbiased estimators for the parameter φ
through the quantum Cramér-Rao (QCR) bound [36,37]

∆2φ ≥ 1

NFφ(ρφ)
, (3)
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where N is the number of repeated independent measurements. The above
inequality defines the principally smallest possible uncertainty in estimation
of the parameter. Given the spectral decomposition of the density operator
which is dependent on the parameter φ, ρφ =

∑s
i λi|ψi〉〈ψi| where λi and |ψi〉

are respectively the parameter-dependent eigenvalues and eigenstates of ρφ
and s is the dimension of the support set of ρφ, i.e. s = dim[supp(ρφ)], then
QFI for density matrices with arbitrary ranks can be expressed by [38,39,40,
41,42]

Fφ(ρφ) =

s
∑

i=1

(∂φλi)
2

λi
+

s
∑

i=1

4λi〈∂φψi|∂φψi〉 −
s

∑

i,j=1
i6=j

8λiλj
λi + λj

|〈ψi|∂φψj〉|2, (4)

with λi+λj 6= 0. The first term in the right-hand side of Eq. (5) is the classical
contribution of QFI whereas the second and third terms can be regarded as the
pure quantum contribution because factor |〈ψi|∂φψj〉| illustrates the quantum
coherence between the eigenvectors of ρφ.

In the most fundamental parameter estimation task in which the parameter
is generated by some unitary dynamics U = exp(−iφH) for some Hamiltoni-
ans, ∆φ characterizes the estimating accuracy by any possible measurement
made on the quantum state UρU † where ρ is the initial probe state. In this
situation, the first term in the right-hand side of Eq. (4) vanishes since the
spectrum of the density matrix is unchanged under unitary transformation,
no matter the transformation is parameter-dependent or not. Moreover, it is
zero for pure states. In the meantime, with some transformation, Eq. (4) can
be rewritten as [42,43,44,45]

Fφ(ρφ) =
s

∑

i=1

4λi〈∆2H〉ψi
−

s
∑

i,j=1
i6=j

8λiλj
λi + λj

|〈ψi|H|ψj〉|2, (5)

where H := i(∂φU
†)U is a Hermitian operator since (∂φU

†)U = −U †(∂φU).
Here,

〈∆2H〉ψi
= 〈ψi|H2|ψi〉 − |〈ψi|H|ψi〉|2 (6)

is the variance of H on the ith eigenstate of the input state ρ.
For the dynamical behavior of QFI, we introduce the QFI flow, which is

defined as the change rate of the QFI by [29]

Iφ(ρφ) =
∂Fφ(ρφ)

∂t
. (7)

It is well-known that Iφ(ρφ) < 0 for some t represents the information flow
from system to the environment which defines the Markovian regime and the
QFI is monotonically decreasing under Markovian dynamics, as it cannot in-
crease under completely positive maps while Iφ(ρφ) > 0 corresponds to the
non-Markovian regime where information flow is from the environment to the
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system [29,30,46,47,48,49,50]. In this situation, it can be called that QFI
witnesses the non-Markovianity of the dynamics of the system.

Especially, this witness of non-Markovianity may be relevant in the context
of quantum parameter estimation. Specifically, the error (variance) of any
(unbiased) estimation of the parameter φ is related to the QFI through the
QCRB given by Eq. (3). Thus, an increment in Fφ could be linked with an
increment of information about the parameter φ. Nevertheless, note that the
QFI provides just a lower bound to the error on φ, and in fact there are cases
where this bound is not achievable.

The QFI and the dynamical behavior of QFI are the primary focus of this
work and we further discuss its role in quantifying the precision of estimation
in more detail.

3 Yang-Baxter Matrices

A class of invariants of knots and links called quantum invariants can be con-
structed by using representations of the Artin braid group, and more specifi-
cally by using solutions to the YBE [51,52], first discovered concerning 1 + 1
dimensional quantum field theory, and two-dimensional models in statistical
mechanics. Braiding operators feature in constructing representations of the
Artin braid group, and in the construction of invariants of knots and links. A
key concept in the construction of quantum link invariants is the association
of a Yang-Baxter operator R to each elementary crossing in a link diagram.
The operator R is a linear mapping [12] R : V ⊗ V → V ⊗ V defined on the
two-fold tensor product of a vector space V , generalizing the permutation of
the factors (i.e., generalizing a swap gate when V represents one qubit). Such
transformations are not necessarily unitary in topological applications. It is
useful to understand when they can be replaced by unitary transformations
for quantum computing. Such unitary R-matrices can be used to make unitary
representations of the Artin braid group.

A solution to the YBE, as described above is a matrix R, regarded as a
mapping of a two-fold tensor product of a vector space V ⊗ V to itself that
satisfies the equation

(R ⊗ I)(I⊗R)(R ⊗ I) = (I⊗R)(R⊗ I)(I ⊗R), (8)

where I is the identity operator.

In this paper, we need to study solutions of the YBE that are unitary to
relate quantum computing and quantum entanglement. Then the R matrix
can be seen either as a braiding matrix or as a quantum gate in a quantum
computer.

The unitary R-matrix satisfies the YBE

Ri(µ)Ri+1(µ+ ν)Ri(ν) = Ri+1(ν)Ri(µ+ ν)Ri+1(µ), (9)
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or

Ri(µ)Ri+1

(

µ+ ν

1 + β2µν

)

Ri(ν) = Ri+1(ν)Ri

(

µ+ ν

1 + β2µν

)

Ri+1(µ), (10)

where β = −i/c (c is the velocity of light)[53], µ and ν are the parameters
which usually range over the real numbers R in the case of an additive parame-
ter, or over positive real numbers R+ in the case of a multiplicative parameter.
It is worth noting that the four-dimensional YBE Eqs. (9) and (10) admit the
Temperly-Lieb algebra (TLA) [54,55]. Actually the rational solution of the
YBE, R(µ) can be written in terms of a unitary transformation U in the
following way: R(µ) = a(µ)I+ b(µ)U , with U satisfying the TLA

UiUi+1Ui = Ui, U2
i = dUi, UiUj = UjUi (11)

for |i − j| ≥ 2, where d is the single loop in the knot theory which does not
depend on the sites of the lattices. When d = 2, the Hermitian matrix U has
forms as follows

U1 =









1 0 0 eiϕ

0 0 0 0
0 0 0 0

e−iϕ 0 0 1









, U2 =









0 0 0 0
0 1 eiϕ 0
0 e−iϕ 1 0
0 0 0 0









, (12)

When d =
√
2, the Hermitian matrix U takes the form

U3 =
1√
2









1 0 0 eiϕ

0 1 iε 0
0 −iε 1 0

e−iϕ 0 0 1









(13)

where ϕ is real and ε = ±1.
Three unitary matricesRi,i+1(θ, ϕ) are obtained by the Yang-Baxterization

approach [22,23] according to the above U matrices as follows,

R
(1)
i,i+1(θ, ϕ) =

(

cos
θ

2
+
i

2
sin

θ

2

)

IiIi+1 − 2i sin
θ

2
Szi S

z
i+1

− i sin
θ

2

(

eiϕS+
i S

+
i+1 + e−iϕS−

i S
−
i+1

)

, (14a)

R
(2)
i,i+1(θ, ϕ) =

(

cos
θ

2
+
i

2
sin

θ

2

)

IiIi+1 + 2i sin
θ

2
Szi S

z
i+1

− i sin
θ

2

(

eiϕS+
i S

−
i+1 + e−iϕS−

i S
+
i+1

)

, (14b)

R
(3)
i,i+1(θ, ϕ) =− cos

θ

2
IiIi+1 − i sin

θ

2
(eiϕS+

i S
+
i+1 + e−iϕS−

i S
−
i+1)

+ ε sin
θ

2
(S+
i S

−
i+1 − S−

i S
+
i+1), (14c)
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where Szi is the spin operators for the ith particle and S±
i = Sxi ± iSyi are

raising and lowering operators respectively for the ith particle. The parameter
θ appearing in Eqs. (14a) and (14b) is related to µ as cos θ = (1−µ2)/(1+µ2).
In Eq. (14c), the relation of θ and µ can be written as cos θ = 1/ coshµ. Note
that solutions of the YBE for d = 2 are given by meromorphic functions of µ
whereas for d 6= 2 by trigonometric functions. The difference of two θ and µ
relations come from this property of YBE.

4 Dynamical Models

Consider a system of two spin-1/2 particles (particle 1 and 2) or nearest spin-
spin interaction described by an initial Hamiltonian H0 [25,56]

H0 = µ1S
z
1 + µ2S

z
2 + gSz1S

z
2 , (15)

where µi represents external magnetic field and g is the coupling constant
of z-component of two neighboring spins. For convenience of calculations, we
introduce two parameters B = (µ1 + µ2)/2 and J = (µ1 − µ2)/2. Taking into
account the Schrödinger equation

i~
∂

∂t
|Ψ(θ, ϕ)〉 = H(θ, ϕ)|Ψ(θ, ϕ)〉 (16)

and |Ψ(θ, ϕ)〉 = R(θ, ϕ)|Ψ0〉 one obtains

i~
∂

∂t
R(θ, ϕ)|Ψ0〉 = H(θ, ϕ)R(θ, ϕ)|Ψ0〉 (17)

where |Ψ0〉 is the eigenstate of H0. Let real parameters θ and ϕ be time-
independent, one can get a Hamiltonian through the unitary transformation
R(θ, ϕ) as H(θ, ϕ) = R(θ, ϕ)H0R

−1(θ, ϕ). Now, three Hamiltonians are ob-
tained from Eqs. (14) as follows [25]

H1(θ, ϕ) =B cos θ(Sz1 + Sz2 ) + J(Sz1 − Sz2 ) + gSz1S
z
2

+ iB sin θ
(

eiϕS+
1 S

+
2 − e−iϕS−

1 S
−
2

)

, (18a)

H2(θ, ϕ) =B(Sz1 + Sz2 ) + J cos θ(Sz1 − Sz2 ) + gSz1S
z
2

+ iJ sin θ
(

eiϕS+
1 S

−
2 − e−iϕS−

1 S
+
2

)

, (18b)

H3(θ, ϕ) =B cos θ(Sz1 + Sz2 )− iB sin θ
(

eiϕS+
1 S

+
2 − e−iϕS−

1 S
−
2

)

+ gSz1S
z
2 + J cos θ(Sz1 − Sz2 ) + εJ sin θ

(

S+
1 S

−
2 + S−

1 S
+
2

)

. (18c)

Specifically, for ϕ = −π/2 we find that the second model is the 2-qubit
anisotropic Heisenberg XXZ model under an inhomogeneous magnetic field,
and the third model is the 2-qubit anisotropic Heisenberg XYZ model in an
inhomogeneous magnetic field.
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5 Quantum parameter estimation in Yang-Baxter Systems

In this section, we investigate the dynamics of QFI for three Hamiltonians
under the adjoint action of unitary YBE R(θ, ϕ) on the bipartite two-qubit
input states. We first fix two Werner-like states and later consider the Bell-
diagonal states as an input state.

For convenience, we set θ = π/2, henceforward. So, we can rewrite Hamil-
tonians in Eqs. (18) as follows (ε = 1)

H1(ϕ) =J(S
z
1 − Sz2 ) + gSz1S

z
2 + iB

(

eiϕS+
1 S

+
2 − e−iϕS−

1 S
−
2

)

, (19a)

H2(ϕ) =B(Sz1 + Sz2 ) + gSz1S
z
2 + iJ

(

eiϕS+
1 S

−
2 − e−iϕS−

1 S
+
2

)

, (19b)

H3(ϕ) =J
(

S+
1 S

−
2 + S−

1 S
+
2

)

+ gSz1S
z
2 − iB

(

eiϕS+
1 S

+
2 − e−iϕS−

1 S
−
2

)

. (19c)

For the action of Hamiltonian H3 since the spectrum of output is same as that
of the first one it is easy to find that in the third YBS we get the same result
as the first one for all probe states and hereafter, it is not reported for the
next sections.

5.1 Action of H1 to the Initial Werner-like States and Behavior of QFI

For a general initial input states ρ, the output σ under the unitary time evo-
lution or unitary adjoint action adU (·) = U(·)U † is found to be

σ = UρU † = e−itHρeitH . (20)

Firstly, we investigate the behavior of QFI for the outputs under action

of Hamiltonian H1 on two initial Werner-like states that denoted ρ
(j)
AB with

j = 1, 2. We first fix the two-qubit probe state (Werner state) to be

ρ
(1)
AB = (1 − p)

I

4
+ p|β00〉〈β00|, (21)

where p ∈ [0, 1], I is the 4×4 identity matrix and the mnemonic notation |βxy〉
can be understood via the equations

|βxy〉 ≡
1√
2
(|0, y〉+ (−1)x|1, ȳ〉) (22)

in the standard two-qubit computational basis {|00〉, |01〉, |10〉, |11〉}. Here ȳ is
the negation of y [57].

From here on under the action of Hamiltonians Hi(i = 1, 2) the QFIs of

the outputs σ
(j)
AB(j = 1, 2) will be respectively denoted by F

(i)
ϕ (σ

(j)
AB).

In general, the spectrum of output is unchanged since the evolution is
unitary. Now, we can calculate the QFI concerning to the estimated parameter
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Fig. 1 (color online) Plots of QFIs for the outputs σ
(1)
AB

and σ
(2)
AB

under the action of H1

on the these two inputs. In (a) and (b), we take ϕ = π/2 and in this situation QFIs have
quite different behaviors. Similarly, in (c) and (d) maximizing the QFI depends entirely on
different parameters. It depends on only choice of the parameter Bt in (c) while in (d) this
depends on the choice of the estimated parameter ϕ.

ϕ with the help of Eq.(5). The QFI for the output state σ
(1)
AB under the action

of Hamiltonian H1 on the input state ρ
(1)
AB is obtained as

F (1)
ϕ (σ

(1)
AB) =

8p4

1 + p
sin2(Bt)

[

1− cos2 ϕ cos2(Bt)
]

. (23)

As a second example, we consider a different two-qubit Werner-like state

ρ
(2)
AB = p|β11〉〈β11|+

1− p

2
(|β01〉〈β01|+ |β00〉〈β00|) (24)

as an input state in the standard basis. In this situation, we can again calculate

the QFI for output state σ
(2)
AB under the action of Hamiltonian H1 on the input

ρ
(2)
AB as follows

F (1)
ϕ (σ

(2)
AB) = 2(1− p) sin2(Bt)

[

1− cos2 ϕ cos2(Bt)
]

. (25)

Figure 1 displays QFIs of the outputs σ
(1)
AB and σ

(2)
AB under the action of

H1 on the these two inputs. In Fig. 1(a) and (b), we depict the QFI as a
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function of Bt and p for the fixed value of estimated parameter ϕ = π/2. It is

noted that F
(1)
ϕ (σ

(1)
AB) can be written in terms of F

(1)
ϕ (σ

(2)
AB) as F

(1)
ϕ (σ

(1)
AB) =

4p4F
(1)
ϕ (σ

(2)
AB)/(1−p2). From Fig. 1(a), QFI increases with the increasing values

of parameter p, especially in the region of p > 1/2, and naturally attains the
maximum value for Bt = kπ/2 with any odd k and p = 1 where the input state
is maximally entangled, namely Bell state. Besides all these, it decreases with
decreasing values of the estimated parameter ϕ and also attains its maximum
value for the estimated parameter ϕ = π/2 in which the behavior of QFI is
depicted for this value in Fig. (1). Also, it shows a periodic behavior according
to Bt. On the other hand, QFI has the opposite behavior in Fig. 1(b) compared
to Fig. 1(a). It takes place its maximum value in the small values of p, especially
p = 0 in which the probe state is reduced to a mixture of two Bell states with
equal probability and Bt = kπ/2.

In Fig. 1(c) and (d), we give the plots of the QFI versus the Bt and the
estimated parameter ϕ for the different values of the initial state parameter p.
In Fig. 1(c), the maximizing of the QFI strictly depends on the choice of the
parameter Bt for all values of the ϕ whereas it depends on the choice of the
estimated parameter ϕ. They have a quite opposite behavior. Additionally,
in Fig. 1(c) and (d) QFI vanishes for the values of the parameter p = 0 and
p = 1, respectively. We conclude that the maximizing of QFI has a significant
connection with the choice of the initial state.

5.2 Action of H2 to the Initial Werner-like States and Behavior of QFI

In this case, the QFI for the output state σ
(1)
AB under the action of Hamiltonian

H2 on the input ρ
(1)
AB vanishes, F

(2)
ϕ (σ

(1)
AB) = 0.

For the second probe state ρ
(2)
AB, the QFI can be calculated as follows

F (2)
ϕ (σ

(2)
AB) =

2(1− 3p)2

1 + p
sin2(Jt)

[

1− cos2 ϕ cos2(Jt)
]

. (26)

In Fig. 2, we give the plots of QFI as a function of (a) p and Jt for the
value of ϕ = π/2 and (b) ϕ and Jt for the different values of p. From Fig.
2(a), we can say that QFI generally increases for the increasing values of p.
However, it can be observed that some enhancements in QFI are obtained for
the small values of p. Especially, when Jt = kπ/2 with any odd k QFI attains
its maximum values for p = 1 in which input state corresponds to maximally
entangled two-qubit state, namely Bell state. For the intermediate values of p
it vanishes independently of the value of Jt.

On the other hand, in Fig. 2(b), QFI is maximized for the values of the
estimated parameter ϕ = kπ/2 irrespective of the parameter Jt. Because of
the above observations, these imply that QFI can be relatively enhanced by
adjusting the parameters ϕ, p and Jt. By adopting the QCRB as a figure
of merit, these enhancements can be clearly shown for optimal parameter
estimation. As a result, we can conclude that the QFI not only depends on
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Fig. 2 (color online) Plots of the QFI given by Eq. (26) under action of the Hamiltonian
H2 on the input state given by Eq. (24) versus (a) p and Jt with ϕ = π/2, (b) ϕ and Jt for
the fixed values of p.

the choice of the initial condition but also has a connection with the actions
of the different Hamiltonians.

5.3 Actions of Hamiltonians to Initial Bell-diagonal States

More generally, let us now consider two-qubit Bell-diagonal states as input
states [58]

ρAB =
1

4

(

I⊗ I+

3
∑

i=1

ciσi ⊗ σi
)

, (27)

where matrices σi are the Pauli spin matrices and real numbers ci fulfill the
following conditions

0 ≤ 1

4
(1− c1 − c2 − c3) ≤ 1, (28a)

0 ≤ 1

4
(1− c1 + c2 + c3) ≤ 1, (28b)

0 ≤ 1

4
(1 + c1 − c2 + c3) ≤ 1, (28c)

0 ≤ 1

4
(1 + c1 + c2 − c3) ≤ 1, (28d)

where c1, c2, c3 ∈ [−1, 1].
Since the evolution of the system under the action of Hamiltonian is uni-

tary, the spectrum of the output state σAB is unchanged and is given by terms
between the inequalities in the Eqs. (28). We denote the QFIs corresponding
to the output σAB under the action of the two Hamiltonians Hi(i = 1, 2) on
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Fig. 3 (color online) Plot of the QFI given by Eq. (29) under action of the Hamiltonian
H1 with respect to Bt and p with c1 = 0.9, c2 = 0 and c3 = 0.1.

the input state ρAB as F
(1)
ϕ (σAB) and F

(2)
ϕ (σAB), respectively. So, QFIs for

the actions of H1 and H2 are calculated as follows

F (1)
ϕ (σAB) =

(c1 − c2)
2

2(1 + c3)
sin2(Bt)[1 − cos2 ϕ cos2(Bt)], (29)

F (2)
ϕ (σAB) =

(c1 − c2)
2

2(1 + c3)
sin2(Jt)[1 − cos2 ϕ cos2(Jt)], (30)

respectively. It is noted that we get the similar behaviors for these YBSs. The
only thing that has changed is B → J transformation.

In Fig. 3, we give the only plot of QFI of the output σAB under the action
of H1 as a function of Bt and ϕ for the values of c1 = 0.9, c2 = 0 and c3 = 0.1.
For both QFIs given by Eq. (29) and (30), the maximum values are reached at
Bt = mπ/2 (m is an odd number) irrespective of ϕ. Since the QFIs have the
same behavior, the plot of Eq. (30) is not depicted here. On the other hand,
QFI vanishes for the intermediate values of Bt. Evidently, it can be enhanced
by the appropriate choice of parameters c1, c2 and c3.

6 Dynamical Behavior of QFI

In this section, we consider the information flow for the reduced dynamics of
the outputs under the actions of the Hamiltonians H1 and H2 on the input
states given by Eqs. (21), (24) and (27). Here, the second particle B can be
considered to act as the environment.

Firstly, we investigate the dynamics of QFIs of the reduced density matrices

of the outputs under the action of H1 on the input states ρ
(1)
AB and ρ

(2)
AB. From
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Fig. 4 (color online) Plots of the QFI and flow of QFI given by Eq. (31) and (32) for the

reduced density matrices σ
(1)
A

and σ
(2)
A

under the action of H1 on the all input states. For
all plots we take ϕ = π/2 in which the QFI takes place its maximum value. For (c) and (d),
we have chosen 2B = 1.

Eqs. (4) and (7), QFI and the flow of QFI can respectively be calculated as
follows

F (1)
ϕ (σ

(1)
A ) =

p2 sin2 ϕ

csc2(2Bt)− p2 cos2 ϕ
, (31a)

I(1)
ϕ (σ

(1)
A ) =

4Bp2 sin2 ϕ cot(2Bt) csc2(2Bt)

[csc2(2Bt)− p2 cos2 ϕ]2
. (31b)

Similarly, for the second input state ρ
(2)
AB, QFI and the flow of information

for the reduced density matrix σ
(2)
A of the output σ

(2)
AB are obtained

F (1)
ϕ (σ

(2)
A ) =

x sin2 ϕ

4− x cos2 ϕ
, (32a)

I(1)
ϕ (σ

(2)
A ) =

16B sin2 ϕ
√

x[(1 − p)2 − x]

(4− x cos2 ϕ)2
, (32b)

respectively. Here, x = (1 − p)2 sin2(2Bt).
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Fig. 5 (color online) Plots of the QFI and flow of QFI for the action of the Hamiltonian
H2 with respect to Jt and t, respectively. For both plots we take ϕ = π/2 in which the QFI
takes place its maximum value and we have chosen 2J = 1 for the second plot.

Plots of the QFIs and the flows of QFIs given by Eq. (31) and (32) are
depicted in Fig. (4). From Fig. 4(a) and (c), QFI has the same behavior as
that of Fig. (1). It should be noted that the maximum value of QFI strictly
depends on the choice of the initial state where the same Hamiltonian acts

on the different initial states. On the other hand, from Fig. 4(b) and (d) I(1)
ϕ

takes place the negative values for the values of kπ/2 < t < lπ where k is
an odd number and l is an even number. Therefore, the dynamical evolution

of the system is Markovian because I(1)
ϕ < 0 indicates that the energy and

information flow out from the atom or system and I(1)
ϕ > 0 represents the

energy and information flow in the atom from the environment. So, when

I(1)
ϕ > 0 the dynamics of the system is non-Markovian. Also, for the negative

values of I(1)
ϕ when it decreases, QFI increases.

Secondly, for the action of the Hamiltonian H2 on the two input states,
similar behaviors are observed with the previous case. It is noted that for the
first input state since the QFI of the output vanishes the QFI and flow of
QFI for the reduced density matrix is zero. So, under the action of H2 on the
second input states, QFI and its flow are found to be as

F (2)
ϕ (σ

(2)
A ) =

y sin2 ϕ

4− y cos2 ϕ
, (33a)

I(2)
ϕ (σ

(2)
A ) =

16J sin2 ϕ
√

y[(1− 3p)2 − y]

(4− y cos2 ϕ)2
, (33b)

respectively. Here y = (1 − 3p)2 sin2(2Jt).
Plots the QFI and flow of information are depicted in Fig. (5) versus Jt

and t, respectively. Analogous with the previous case, the flow of QFI has the
same behavior for the values of parameters. However, it is noted that in Fig.
4(c) QFI attains its maximum value for p = 1 and Bt = nπ/4(n = 1, 3, ...)
whereas it takes place the maximum at p = 1 and the values of parameter
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Jt = nπ/4 in Fig. 5(a). It can also be seen from Fig. 5(b) information flows
from the environment to the system in which the dynamical behavior of the
system represents the non-Markovian regime.

Finally, we investigate the dynamics of QFI for Bell-diagonal input states
under the action of the Hamiltonians H1 and H2. The QFIs and again the
flows of QFIs for the two YBSs are explicitly calculated as follows

F (1)
ϕ (σA) =

(c1 − c2)
2

4 csc2 ϕ csc2(2Bt)− (c1 − c2)2 cot
2 ϕ

, (34a)

I(1)
ϕ (σA) =

8B(c1 − c2)
2 csc2 ϕ sin(4Bt) csc4(2Bt)

[4 csc2 ϕ csc2(2Bt)− (c1 − c2)2 cot
2 ϕ]2

, (34b)

and

F (2)
ϕ (σA) =

(c1 + c2)
2

4 csc2 ϕ csc2(2Jt)− (c1 + c2)2 cot
2 ϕ

, (35a)

I(2)
ϕ (σA) =

16J(c1 + c2)
2 csc2 ϕ cot(2Jt) csc2(2Jt)

[4 csc2 ϕ csc2(2Jt)− (c1 + c2)2 cot
2 ϕ]2

, (35b)

respectively.
Plots the QFI and information flow for the reduced dynamics under the

action of Hamiltonians H1 and H2 on the Bell-diagonal input state given by
Eq. (27) are shown in Fig. 6 as functions of the parameters ϕ, Bt, Jt and t.
In Fig. 6(a) and (c), QFIs have a similar behavior since both of them have
the same form depending on the selected values of the parameters. For both
figures, QFI attains its maximum values at Bt(Jt) = kπ/4 and ϕ = kπ/2
where k is an odd number. It can be also seen that it takes place the minimum
values for Bt(Jt) = nπ/2 and ϕ = nπ with all integer values of n.

On the other hand, for some values of t flow of information I(j)
ϕ (σA)(j =

1, 2) takes the positive values that describe the non-Markovian evolution sim-
ilar to the previous cases in Fig. 6(b) and (d). Evidently, it can be said that
under the action of both YBSs, due to the memory and feedback effect of the
non-Markovian environment, energy and information flow from the environ-
ment to the system, accounting for the QFI of revival.

7 Concluding Remarks

In this paper, some Hamiltonians have been constructed by the unitary YBMs
Ri,i+1(θ, ϕ) from a HamiltonianH0 describing the nearest spin-spin interaction
where parameters θ and ϕ are time-independent. Firstly, we have studied the
behavior of QFI quantifying the information content of a quantum state con-
cerning a given observable for two-qubit systems under the actions of unitary
Yang-Baxter channels or Yang-Baxterization approach. Our results clearly in-
dicate that QFI shows different behavior for different input states and different
YBSs. Under the action of the H1 on the two Werner-like states, it is observed

that for the first input state σ
(1)
AB QFI takes place higher value than second
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Fig. 6 (color online) Plots of the QFI and flow of QFI for initial Bell-diagonal state under
the action of first two Yang-Baxter systems. For all plots we have chosen the parameters
c1 = 0.9, c2 = 0, c3 = 0.1, 2B = 1 and 2J = 1 for (b) and (d), respectively.

one, that is F
(1)
ϕ (σ

(1)
AB) > F

(1)
ϕ (σ

(2)
AB). Contrary to this situation, for the action

of the second Hamiltonian H2, while QFI of the output corresponding to first

probe state vanishes, F
(2)
ϕ (σ

(2)
AB) attains the maximum value for appropriate

choices of the parameters and QCRB is saturated. So, it can be said that
QFI strictly depends on the choice of the initial probe state and actions of
the Hamiltonians. By adjusting the parameters and by adopting the QCRB
as a figure of merit, it may also take high values to enhance a better quantum
parameter estimation task.

Secondly, we have investigated the quantum Fisher information dynamics
of some different two-qubit input states under the action of the different YBSs.
We demonstrated that the QFI about the parameter ϕ has different behavior
for the action of different YBSs or Hamiltonians and introduced the relation-
ship between QFI flow and information to understand the changing trend of
QFI. Thus, the QFI flow of the negative value indicates that the energy and
information flow from the system to the environment, corresponding to the
QFI of decay whereas the QFI flow of positive value means that information
flows from the environment to the system accounting for the QFI of revival.
It is concluded that in this paper, the Hamiltonians constructed with YBMs
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show non-Markovian behavior in certain ranges of parameters. Also, it may
be worth to study the dynamical evolution of the QFI for multiple parameter
estimation in the different states. Our studies on this issue are in progress.
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