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Abstract Complementarity is one of the main features of quantum physics
that radically departs from classical notions. Here we consider the limitations
that this principle imposes due to the unpredictability of measurement out-
comes of incompatible observables. For two-level systems, it is shown that
any preparation violating complementarity enables the preparation of a non-
signalling box violating Tsirelson’s bound. Moreover, these “beyond-quantum”
objects could be used to distinguish a plethora of non-orthogonal quantum
states and hence enable improved cloning protocols. For higher-dimensional
systems the main ideas are sketched.
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1 Introduction

The basic postulates and results of a physical theory are based on principles
that are strongly supported by empirical evidence. The principle of conser-
vation of energy, for example, is a major pillar in all areas of physics and
implies deep limitations on human experience: it is impossible to construct
a perpetual motion machine, or to outperform Carnot’s heat engine. General
relativity theory is governed by the equivalence principle and by the bound
on the maximal speed of interactions given by the speed of light. These and
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other celebrated principles are often not only simple to understand, but very
precisely stated, giving profound intuitions on the laws of nature.

In quantum theory, there is an ongoing search for one or more physical
principles that could explain the bounds on quantum correlations. More pre-
cisely, even though quantum systems can surpass classical bounds of Bell-like
inequalities, it is known that there are limits to the violations of local real-
ism attained by quantum objects. There exist theoretical constructions known
as nonlocal boxes which can violate Bell-like inequalities more than quantum
systems, without violating the principle of non-signalling or basic probabil-
ity axioms. There are many different proposals of physical principles that try
to explain such bounds on quantum correlations [1,2,3,4,5], but there is no
general consensus on their success [6].

For quantum systems, a major law is the principle of complementarity,
firstly noticed by Bohr [7,8], based on the observation that certainty in the
measurement of a fixed physical property precludes certainty in the measure-
ment of a complementary one. In the double-slit experiment, complementarity
is quantitatively expressed by the duality relation

D2 + V 2 ≤ 1, (1)

where D is the path distinguishability and V is the fringe visibility, verified
by both empirical [9] and theoretical [10,11] methods. According to Feyn-
man, the double-slit experiment “has in it the heart of quantum mechanics;
in reality it contains the only mistery” of the theory [12]. Applications can be
found in Wheeler’s delayed choice experiment [13], which culminated in the
concept of the quantum eraser [14,15,16,17,18,19,20]. More recently there
is a growing interest in re-interpreting complementarity [21,22,23,24,25,26]
without, however, violating the empirical relation (1). The purpose of the
present contribution is to consider the implications of a hypothetical violation
of complementarity. At least one experiment claiming a maximal violation of
this relation was proposed by Afshar [27], generating a very heated debate
in the literature [28,29,30,31]. However, this discussion is not in the scope
of the present contribution. We first formulate the principle in a simple and
operational way, relating it to the empirical unpredictability of incompatible
measurements. Then it is shown that any preparation violating the principle
implies the possibility of deterministically creating preparations that violate
Tsirelson’s bound. Moreover, these “superquantum” preparations could be
used to distinguish and clone a plethora of non-orthogonal quantum states.

2 Preliminaries

Operational theories. We take inspiration in the formulation of operational
theories [32]. An operational theory models mathematically a physical exper-
iment in terms of primitive notions as preparations, measurements, outcomes
and systems. More precisely, a preparation is a completely specified experi-
mental procedure – a set of mutually exclusive preparations for an experiment
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forms then a set P. In an experiment, a preparation P ∈ P is subjected to a
measurement M , which is an element of a set M of mutually exclusive mea-
surements. This irreversible procedure gives some outcome k, which is one
element of a set K of mutually exclusive and exhaustive outcomes. The goal
of any operational theory is then to determine the probability p(k|P,M), i.e.,
the probability that the outcome k occurs given that we are performing the
measurement M of the preparation P . Shortly, an operational theory is a spec-
ification {P,M,K, p(k|P,M)}. For example, quantum theory is an operational
theory where the preparations are given by density operators, measurements
are given by observables and the probabilities are calculated through the rule
Tr(ρEk), where {Ek} are elements of a Positive Operator-Valued Measure
(POVM) associated with the observable M .

For a two-level system it is usual to work in the so-called Bloch vector
representation. A preparation is fully specified by a three-dimensional Bloch
vector with real components r = (rx, ry, rz); for example, x, y and z are
understood as orthogonal directions in space for the Stern-Gerlach apparatus
and as the three independent polarization degrees of freedom in optical setups.
A measurement on a two-level system has only two outcomes, which we denote
by ±1; we refer to this dichotomic measurement in direction n̂ as σn̂. It is an
empirical evidence that the probabilities are calculated through the formula

p(±1|r, σn̂) =
1

2
(1± r · n̂). (2)

The mean value of a measurement in direction n̂ is simply 〈σn̂〉 = p(+1|r, σn̂)−
p(−1|r, σn̂) = r · n̂, which can be related to Malus’ law formula in classical
optics and to the standard coupling between a magnetic dipole moment and
an external magnetic field in classical magnetism. Indeed, this kind of repre-
sentation was common place in optics before the advent of quantum theory,
where the elements of the Bloch vector are called Stokes parameters and the
Bloch sphere is also called Poincaré sphere.

Complementarity. Inspired by the uncertainty relations of Heisenberg [7,33],
Bohr introduced in a series of lectures and essays [8,34,35,36,37,38] the so-
called principle of complementarity (PC)[12,39,40], which establishes that ev-
idences obtained under different experimental arrangements are complemen-
tary, in the sense that they cannot be unambiguously determined: the very
meaning of acquiring information forbids us of having absolute knowledge or
arbitrary precision of physical quantities for some preparations.

To motivate the discussion, let us imagine a group of scientists that never
had contact with quantum theory and receive as a gift a Stern-Gerlach appa-
ratus and a source of spin-(1/2) particles. These scientists observe that when
they measure σn̂ in different directions, the outcomes appear with probabilities
that depend on the preparation and on the directions that they have chosen to
measure. They observe also that some special arrangements of the preparation
and the direction of measurement yields total predictability of outcomes. For
example, if they prepare the particles’ beam polarized in the z direction and
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then measure σz, the outcomes are fully determined. However, after trying a
large number of possible different arrangements of preparations and measure-
ments, one inevitable question will appear to them: “Why is it not possible to
predict with certainty (probability 1 or 0) the outcomes of measurements in
two different directions, for a fixed preparation?” There is in principle no rule
that forbids them of obtaining, for some fixed preparation, the outcome +1
with probability one in two different directions. Paraphrasing Einstein, Podol-
sky and Rosen [41], it is reasonable to assume that certainty in one direction
should not in any way forbid certainty in another direction. It is clear then
that there is some physical law that forbids this perfectly legitimate situation.
The basic empirical evidence is that if one measures σn̂ in a fixed direction n̂
and obtains +1 with certainty implies that the outcomes of measuring σm̂ in
a different direction m̂ do not occur with total certainty.

The discussion will be restricted mostly to two-level systems in what fol-
lows. An extension to higher dimensions is sketched in the end of the text. For
a two-level system, the principle of complementarity reads:

Principle 1 For a fixed preparation, measurements of σn̂ and σm̂ in non-
colinear directions n̂ and m̂ are not both predictable.

By predictable we mean that the outcomes of the measurement are totally de-
termined, i.e., one occurs with unit probability, implying the other have zero
probability of occurrence. Thus, predictability means we can certainly know
the result of measuring σn̂. Principle 1 then states that predictability of a
measurement in a certain direction precludes the predictability of a measure-
ment in a different direction; in this sense these different measurements are
complementary. Let us see now how the PC imposes bounds on the Bloch
vector:

Observation 1 For a two-level system, a preparation with Bloch vector r sat-
isfies the principle of complementarity iff r = ||r|| ≤ 1. Equivalently,

〈σn̂1
〉2 + 〈σn̂2

〉2 + 〈σn̂3
〉2 ≤ 1, (3)

with n1, n2 and n3 orthogonal directions.

Proof If for a preparation with Bloch vector r we have r > 1, i.e., the bound (3)
is violated, writing r = rr̂, we have that the probability of obtaining outcome
+1 for the measurement σn̂ is

p(+1|r, σn̂) =
1

2
(1 + rr̂ · n̂). (4)

It is easy to see that there exists an infinite number of unit vectors n̂ such that
r̂ · n̂ = 1/r and thus p(+1|r, σn̂) = 1. Geometrically, this corresponds to the
intersection between the affine plane x ·y = 1/r and the unit sphere ||x̂|| = 1,
which is satisfied by a circle where each point correspond to a direction n̂
such that p(+1|r, σn̂) = 1. Thus, n̂ is fully predictable for an infinite number
of non-colinear directions n̂. This proves the forward implication. Now, for
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the backward implication, if the PC is violated, we have that there exist a
preparation r̂ = rr̂ and non-colinear n̂ and m̂ such that 1

2 (1 + rr̂ · n̂) =
1
2 (1 + rr̂ · m̂) = 1, implying rr̂ · n̂ = rr̂ · m̂ = 1. Thus, we must have r̂ · n̂ =
r̂ · m̂ = 1/r. Since r̂, n̂ and m̂ are unit vectors and non-colinear, we have that
r = (r̂ · n̂)−1 = (r̂ · m̂)−1 > 1, implying the bound (3) is violated and hence
the backward implication and the Observation are proven.

Observation 1 implies the usual notion of complementarity for the Mach-
Zender interferometer [10,11,42] expressed by the duality relation (1). It is
also equivalent to Larsen-Luis complementarity relations [43,44] and bounds
given by entropic uncertainty relations [45,46,47]. Moreover, it is noteworthy
that the preparations respecting the PC correspond to the Bloch ball of prepa-
rations described by quantum theory. In comparison to the original work [11],
which relies on the positivity of a density matrix - and hence on the postu-
lates of quantum theory - to reach the bound (3) and consequently the duality
relation (1), our formulation does not fully rely on quantum theory, but only
on the PC, presenting thus a slight conceptual advantage.

It is clear that a violation of (3) could lead to negative or greater than
one values for (2) for some directions of measurement, so we need to justify
how to properly handle this situation. It is easy to see that the directions of
measurement satisfying |r · n̂| ≤ 1 give true values of probabilities (2). For
directions in which |r · n̂| > 1, we need to specify a rule for the probabilities
of the outcomes. There are many possible rules one could adopt – for simplic-
ity and for reasons that are explained later in the text, in what follows we
assume that in directions satisfying |r · n̂| > 1 measurements occur randomly
with maximal uncertainty, i.e., with probability 1/2. This displays the form
of measurement-contextuality for preparations seen in quantum theory, in the
sense of [65,66,67], since different preparations define different sets of allowed
measurements.

Transformations of preparations. Before proceeding, we need to specify how
to transform one preparation into another. We can greatly simplify the calcu-
lations that will appear through the introduction of the well-known operator

ρ(r) =
1

2
(I + r · σ), (5)

which in optics is called the polarization matrix, where r is the Bloch vector as-
sociated to the preparation and σ is a vector composed by the Pauli matrices.
This operator is hermitean and unit-trace; as shown in Observation 1, a prepa-
ration respects the PC iff r ≤ 1, which means that ρ(r) is a positive operator
and corresponds to a density matrix. If we identify a measurement σn̂ with the
operator σ · n̂ then we can use the mathematical machinery of quantum oper-
ators to simplify our discussion. In order to see this, we define the projector
Πn̂ = (1/2)(I + n̂ · σ); in the optics literature these are known as Jones’ ma-
trices. It is trivial that Πn̂ +Π−n̂ = I and σ · n̂ = Πn̂−Π−n̂. The rule (2) can
then be rewritten as p(±1|r, σn̂) = Tr[Π±n̂ρ(r)]. We will assume then that the
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set of allowed transformations are composed by standard completely-positive
trace-preserving linear maps over the set of operators ρ(r). An operation over
ρ(r) will then induce a change over r corresponding to usual processes in a
two-level system experiment. For example, local unitaries over ρ(r) correspond
to rotations of the Bloch vector r and the matrix P (r, r′) = ρ(r)⊗ ρ′(r′) rep-
resents the addition of an extra two-level system with Bloch vector r′, where
⊗ is the kronecker product of the individual matrices. We are assuming, as
well, the validity of Lüders’ rule for the description of a preparation after the
occurrence of a measurement. Similar translations of multipartite two-level
systems operations in terms of Bloch vector operations can be found in the
literature [48,49]. Thus, for preparations respecting the PC, there is no devi-
ation from standard predictions of quantum theory. Our formulation can be
seen in this equivalent way as an extension of quantum theory in order to
consistently account for a violation of complementarity. More precisely, the
rule p(±1|r, σn̂) = Tr[Π±n̂ρ(r)] by itself does not rules out negative operators
ρ(r), since for many directions of measurements, σn̂, the values p(±1|r, σn̂)
are genuine probabilities – and this is enough to make predictions about the
system at hand. For two-level systems, Observation 1 shows that the PC is
equivalent to imposing the postulate of positive operators ρ(r) [50], while a
violation of that principle would demand the abdication of this postulate and
a legitimate use of negative operators to represent preparations. We observe
that similar extensions of quantum theory in terms of non-positive operators
have been employed to represent nonlocal boxes [51,52], for the construction
of efficient simulation schemes [53], toy models of quantum theory [54,55] and
more recently to locally extend quantum mechanics in the formulation known
as “boxworld” [56,57].

3 Results

Nonlocal Box creation. We restrict our discussion to the standard scenario
where two observers perform dichotomic measurements A1 and A2 (first ob-
server) and B1 and B2 (second observer). Defining the Bell operator

B = A1B1 +A1B2 +A2B1 −A2B2, (6)

it is well-known that assumptions of locality, realism and free-choice impose
the Clauser-Horne-Shimony-Holt (CHSH) bound [58] |〈B〉| ≤ 2. The max-
imal violation attainable by quantum states and measurements is the so-
called Tsirelson’s bound |〈B〉| ≤ 2

√
2 [59]. As shown by Popescu and Rohrlich

[60], there are non-signalling probability distributions which violate Tsirelson’s
bound and some even reach the maximum algebraic value |〈B〉| = 4. These
theoretical constructions can be studied in the framework of nonlocal boxes
[61]. We now employ these ideas and constructions to show that violations of
complementarity allow the construction of nonlocal boxes violating Tsirelson’s
bound.
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Theorem 1 For a two-level system, any preparation violating the principle of
complementarity enables the deterministic generation of a bipartite preparation
that violates Tsirelson’s bound.

Proof According to Observation 1, a preparation with Bloch vector r violates
the complementarity principle iff r > 1. Without loss of generality, let us
consider that r̂ = x̂ = (1, 0, 0). Using the equivalent representation given the
matrix (5), we add an ancillary quantum state ρ′ = (1/2)(I + σx) and thus
resulting with the extended state

ρ(r)⊗ ρ′ =
1

4
(I + rσx)⊗ (I + σx). (7)

The measurements of the observable σz⊗σz on this preparation yields results
±1 with probability 1/2 each. If outcome +1 occurs, nothing else is done; if
outcome −1 occurs, the unitary σx is applied on the second subsystem. Hence,
the preparation

P =
1

2
[(1 + r)PBell+ + (1− r)PBell−], (8)

is deterministically generated, where

PBell± =
1

2
(I ⊗ I ± σx ⊗ σx ∓ σy ⊗ σy + σz ⊗ σz). (9)

For r ≤
√

2, let us choose A1 = (σx + σy)/
√

2, A2 = (σx − σy)/
√

2 B1 = σx
and B2 = −σy. It is easy to see that for these local measurements we have
〈B〉 = Tr(BP ) = 2

√
2r, i.e., a violation of Tsirelson’s bound whenever 1 <

r ≤
√

2. For r >
√

2, we choose A1 = (σx + σy)/
√

2, A2 = (σx − σy)/
√

2

B1 = (
√
2
r )σx + (

√
r2−2
r )σy and B2 = (

√
r2−2
r )σy − (

√
2
r )σy, obtaining 〈B〉 =

Tr(BP ) = 4 for any value of r, i.e., the maximal violation of Tsirelson’s bound
that does not violate non-signalling.

The preparation (8) was originally proposed in [51] in order to represent post-
quantum nonlocal boxes and we have shown explicitly the set of measurements
that enables the violation of Tsirelson’s bound |〈B〉| ≤ 2

√
2 whenever r > 1.

Hence, there is a deep link between bounds imposed locally by complementar-
ity and bounds on nonlocal correlations.

Distinguishability and cloning. The preparations we are considering, even those
violating the PC, respect linearity and thus it is expected that some kind of
no-go theorem for distinguishability and cloning is still valid in a more general
sense. We first establish a condition for a pair of preparations to be jointly-
clonable, i.e., a condition on these states such that they can be cloned by the
same deterministic process.

Theorem 2 If two preparations with Bloch vectors r and r′ are jointly-clonable
then r · r′ = ±1,
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Proof Let the preparations with Bloch vectors r and r′ be joint-clonable. Us-
ing (5), these preparations correspond to matrices ρ(r) and ρ′(r′). If these
preparations are joint-clonable, then there exists an unitary U such that

U(ρ⊗ |e0〉〈e0|)U† = ρ⊗ ρ; U(ρ′ ⊗ |e0〉〈e0|)U† = ρ′ ⊗ ρ′, (10)

where |e0〉 is a fixed pure state. We then have

Tr[(ρ⊗ ρ)(ρ′ ⊗ ρ′)] = Tr[U(ρ⊗ |e0〉〈e0|)U†U(ρ′ ⊗ |e0〉〈e0|)U†] = Tr(ρρ′),

(11)

where we used the cyclic property of the trace in the last step. Since Tr(A⊗
B) = Tr(A)Tr(B), the first term is equal to [Tr(ρρ′)]2. Thus we have

[Tr(ρρ′)]2 = Tr(ρρ′), (12)

as a condition to existence of a unitary U that clones ρ and ρ′. This is equiv-
alent to Tr(ρρ′) = 0 or Tr(ρρ′) = 1, which is equivalent to r · r′ = ±1.

The equations r · r′ = ±1 are those of two affine planes that cross the
interior of the Bloch ball, whenever at least one of the preparations r or r′

violates the PC. Remarkably, still there are states that are not able to be
jointly distinguished/cloned, suggesting fundamental limits even in the case of
strong violations of physical principles.

Fig. 1 (Color Online) A preparation r violating the PC (in red) defines two planes (in green)
crossing the Bloch sphere (in light blue). These planes are formed by the preparations whose
Bloch vectors satisfy r · r± = ±1 .

The following result shows that an arbitrary preparation violating the PC
can be used to intermediate the distinguishability of some non-orthogonal
quantum states. This enables naturally a protocol to clone these two states.

Theorem 3 Given a preparation with Bloch vector r violating the principle of
complementarity, the quantum states with Bloch vectors r± satisfying r · r± =
±1 are distinguishable by a deterministic protocol.
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The main idea to prove this result is to design a measurement where each
outcome corresponds to a perfect correlation between r and r+ and r and r−
exclusively.

Proof Using (5), a preparation with Bloch vector r is represented by the matrix

ρ(r) =
1

2
(I + rσ · r̂), (13)

Let r+ and r− be the Bloch vectors of two quantum states such that r·r± = ±1.
Let ρ± be the matrices (5) representing the preparations with Bloch vectors
r±; then it is straightforward that Tr(ρρ−) = 0, Tr(ρρ+) = 1. These quantum
states are expressed as

ρ± =
1

2

[
I ± 1

r
(σ · r̂) + y(σ · m̂) + z(σ · n̂)

]
, (14)

where m̂ and n̂ are directions orthogonal to r̂ and the real numbers y and z
satisfy (1/r2) + y2 + z2 ≤ 1. Without loss of generality, we assume that r̂, m̂
and n̂ form a right-hand triple of vectors. We see that the projectors on Bell
states are written as

Πφ± =
1

4
[I⊗2 ± (σ · r̂)⊗2 ∓ (σ · m̂)⊗2 + (σ · n̂)⊗2],

Πψ± =
1

4
[I⊗2 ± (σ · r̂)⊗2 ± (σ · m̂)⊗2 − (σ · n̂)⊗2].

Considering the probabilities of measurements on Bell basis for the states
ρ⊗ ρ±, we see that

Tr[Πφ+
(ρ⊗ ρ−)] = 0, T r[Πφ+

(ρ⊗ ρ+)] = 1/2, (15)

Tr[Πψ+
(ρ⊗ ρ−)] = 0, T r[Πψ+

(ρ⊗ ρ+)] = 1/2, (16)

Tr[Πφ−(ρ⊗ ρ−)] = 1/2, T r[Πφ−(ρ⊗ ρ+)] = 0, (17)

Tr[Πψ−(ρ⊗ ρ−)] = 1/2, T r[Πψ−(ρ⊗ ρ+)] = 0. (18)

Defining the projectors Π± = Πφ± + Πψ± and given that Π+ + Π− = I, we
define a two-outcome observable M = Π+ − Π−. From the results above it
is straightforward that Tr(Π+ρ ⊗ ρ+) = 1 and Tr(Π−ρ ⊗ ρ−) = 1. Thus, if
we have a state µ that is either ρ+ or ρ− - but we do not know which - we
measure M on the state ρ ⊗ µ, obtaining with unit probability the outcome
±1 iff µ corresponds to ρ±.

The preparation ρ ⊗ µ will be undisturbed by the measurement M , since
the output from the protocol of Theorem 3 will be deterministically either
ρ⊗ ρ+ or ρ⊗ ρ−. Since for an arbitrary state there is always a non-universal
deterministic cloning protocol [62], after discriminating which state µ is we
have the following result:

Corollary 1 Given a preparation with Bloch vector r violating the principle of
complementarity, the quantum states with Bloch vectors r± satisfying r · r± =
±1 are clonable by a deterministic protocol.
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For completeness, we refer the reader to other approaches to clone non-orthogonal
states using closed time-like curves [63,64], which however rely on some form
of nonlinear dynamics.

As previously stated, for a given preparation ρ(r) and directions of mea-
surement n̂ such that |r · n̂| > 1, we ascribe the rule that the outcomes occur
randomly. Besides its mathematical simplicity, we justify this choice based on
a reasoning similar to the proofs of Theorem 2 and Theorem 3. Let us then
consider a different rule, one in which the outcome +1 of measuring σ · n̂ on
ρ(r) never occurs. From the axioms of probability p(+1|r, n̂) + p(−1|r, n̂) = 1
and the outcome −1 occurs with unit probability. Define the pure quantum
states ρ(n̂) = (1/2)(I + n̂ · σ) and ρ(n̂+) = (1/2)(I + n̂+ · σ), where n̂+ is
a unit vector such that r · n̂+ = 1. Thus ρ(n̂+) is a pure quantum state on
the upper circle in Fig. 1, the intersection between the plane of states that
satisfy r · r+ = 1 and the Bloch sphere. It is possible then to distinguish
the pure quantum states ρ(n̂+) and ρ(n̂) in a simple fashion: if we measure
(σ · n̂)⊗ (σ · n̂) on ρ(r)⊗ ρ(n̂), the outcome −1 occurs with unit probability,
while if we measure (σ · n̂+)⊗ (σ · n̂+) on ρ(r)⊗ρ(n̂+), the outcome +1 occurs
with unit probability.

Hence, one could discriminate between any pure quantum state ρ(n̂) and
the pure quantum states ρ(n̂+) on the upper circle of Fig.1. The pure quantum
states ρ(n̂) correspond geometrically to sections of the Bloch sphere, whose
area is non-negligible compared to the null-measure area of the circle formed
by states ρ(n̂+). For increasing values of r, the planes in Fig.1 get closer in
distance and the area formed by the set of states ρ(n̂) increases. For r →∞,
this area tends to the area of the whole Bloch sphere and one could then distin-
guish the whole Bloch sphere1 from the preparation ρ(n̂)⊗ρ(n̂+); an arbitrary
pure state in the Bloch sphere could then be jointly-cloned with ρ(n̂)⊗ρ(n̂+),
which would be a clear violation of the No-Cloning Theorem. This extreme
example illustrates that certainty in the region |r · n̂| > 1 could imply strong
violations of No-Cloning. In order to ensure that no distinguishability/cloning
advantage would come from measurements such that |r·n̂| > 1, we impose ran-
dom outcomes in this situation, but we leave as an open question whether less
stringent assignments of probabilities rules could guarantee consistent results
concerning distinguishability and cloning.

4 Higher dimensions

For two-level systems it was shown that violations of the PC implies the pos-
sibility of violating Tsirelson’s bound and in breaking the limits of distin-
guishability and cloning protocols. The distinctive feature in this situation
was the relative independence on the typical rules associated to quantum the-
ory, through the Bloch vector representation. Neverthless, through (5) we ar-
gued that our formulation is equivalent to an extension of quantum theory

1 Minus the null measure set constituted by the states ρ(n̂+) on the equatorial circle of
the Bloch sphere.
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in terms of non-positive operators for the preparations. We adopt this ap-
proach in order to formulate complementarity for higher-dimensional systems,
i.e., we introduce an extension of the quantum theory that does not impose
positive-semidefiniteness on the operators representing preparations.

Explicitly, our “toy model” has the set of preparations P composed of
self-adjoint unit-trace operators ρ̃, the set of measurements M composed of
self-adjoint operators M and the probabilities are calculated via the trace-
rule p(k|ρ̃,M) = Tr(ρ̃Ek) where {Ek} is the POVM associated to M ; it is
noteworthy that within Hilbert-space formulations the trace-rule is unique
[68]. Once again we consider only the results of measurements that give genuine
values of probabilities p(k|ρ̃,M). Let us introduce some definitions:

Definition 1 Two non-degenerate measurements M and N are fully incom-
patible if they do not share any eigenstate.

This definition captures the intuitive notion that a measurement is always
disturbed if it is followed by a measurement that is fully incompatible with it,
independent on the preparation that is measured.

Definition 2 The outcomes of a non-degenerate observable are predictable if
one of them occurs with unit probability.

By predictable we mean that the outcomes of the measurement are totally
determined, i.e., one occurs with unit probability, implying the others have
zero probability of occurrence. Then we state our version of the PC for higher-
dimensional systems:

Principle 2 Given a fixed preparation, the outcomes of measurements of two
non-degenerate fully incompatible measurements are not both predictable.

This principle expresses the complementary aspect of fully incompatible mea-
surements, since predictability of one quantity implies unpredictability of an-
other quantity that is fully incompatible with it. It is easy to see that Principle
1 is a special case of Principle 2, when one uses the equivalent representation
(5) and the identification σn̂ ≡ σ · n̂. Mathematically, given Πν = |ν〉〈ν|, the
principle simply states that there is no preparation ρ̃ for which Tr(ρ̃Πψ) =
Tr(ρ̃Πφ) = 1, when φ and ψ are non-orthogonal.

Observation 1 shows that a two-level system preparation satisfies the PC iff
the operator representing it is positive semidefinite. If this equivalence would
hold as well for arbitrary dimensions, then complementarity would be the
principle explaining the quantum bounds on non-local correlations. For higher-
dimensional systems, however, this is not the case and the principle does not
rule out all negative operators. To illustrate the main problems, let us con-
sider a three-level system with orthonormal basis {|b0〉, |b1〉, |b2〉}. The operator
η = (0.85)|b0〉〈b0|+ (0.25)|b1〉〈b1| − (0.1)|b2〉〈b2| is an example of non-positive
operator that satisfies the PC, since its maximal eigenvalue is smaller than
1 and there is no rank-1 projective measurement for which the probability
〈ψ|M |ψ〉 is unit - the maximal eigenvalue of an operator is the maximal value
of 〈ψ|M |ψ〉 [69]. Hence, for higher-dimensional systems violation of the PC
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does not rule out completely preparations beyond quantum mechanics. Inter-
estingly, preparations that do violate the PC as formulated here are still able
to enhance the tasks of distinguishability and cloning in the same lines as the
two-level case; the full argument is shown in the next section. Hence, violation
of the PC is at least a necessary condition for performing beyond-quantum
tasks.

A possible solution is to see the limitations imposed by complementar-
ity as one in a series of conditions that a positive operator must fulfill. For
a N -dimensional system, consider the following symmetric functions of the
eigenvalues λ0, λ1, . . . , λN−1 of an operator ρ:

s1 =
∑
i

λi, s2 =
∑
i<j

λiλj , s3 =
∑
i<j<k

λiλjλk, . . . . (19)

These functions are related [70] to the moments Tr(ρk) of the operator ρ
through the recursive formulae:

s1 = Tr(ρ),

s2 =
1

2
[s1Tr(ρ)− Tr(ρ2)],

...

sk =
1

k
[sk−1Tr(ρ)− sk−2Tr(ρ2) + . . .+ (−1)k−1Tr(ρk)],

...

The operator ρ is then positive-semidefinite iff sk ≥ 0, k = 1, 2, . . . , N and
inverting the above relations in terms of the moments Tr(ρk) gives a series
of conditions on ρ. The first condition corresponds to the well-known nor-
malization, s1 = Tr(ρ) = 1. The second condition is Tr(ρ2) ≤ 1 and can
be identified with the PC, since in any Bloch vector representation it corre-
sponds to ||r||2 ≤ g, where g is a positive value dependent on the particular
Bloch vector representation used – for two-level systems it gives the relation
(3). For the 3-level operator η = (0.85)|b0〉〈b0| + (0.25)|b1〉〈b1| − (0.1)|b2〉〈b2|,
we see that that conditions Tr(η) = 1 and Tr(η2) ≤ 1 are satisfied, but the
third condition Tr(η3) − (3/2)Tr(η2) + (1/2) ≥ 0 is violated, since Tr(η3) −
(3/2)Tr(η2)+(1/2) = −0.06375. For higher-dimensional systems, higher-order
tests based on the various moments single out the set of positive operators of
quantum theory; the physical interpretation of such tests, however, are not
so clear as complementarity Tr(ρ2) ≤ 1. Moreover, for N -level systems there
are different Bloch ball representations of an operator[71,72], each suited to a
specific experimental situation and mathematically the geometrical problems
that arise are quite challenging and beyond the scope of the present work.

Distinguishability in higher dimensions. As explained previously, in order to
violate the PC it is necessary that the operator ρ representing the prepara-
tion has at least one eigenvalue bigger than 1. Thus, an arbitrary preparation
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violating the PC in spectral decomposition reads

ρ̃ = (1 + ε)|ψ0〉〈ψ0|+
d−1∑
k=1

λk|ψk〉〈ψk|, (20)

where the {ψn} ({λn}) are the eigenvectors (eigenvalues) of ρ̃, ε is a positive

real number and ε+
∑d−1
k=1 λk = 0, implying Trρ = 1. Define an arbitrary pure

state |νk〉 =
∑
n α

(k)
n |ψn〉, with

∑
n |α

(k)
n |2 = 1. Then we have

〈νi|ρ̃|νi〉 = (1 + ε)|α(i)
0 |2 +

∑
k

λk|α(i)
k |

2. (21)

For simplicity, let us consider first a vector |ν1〉, such that |α(1)
1 |2 = |α(1)

2 |2 =

. . . = |α(1)
d−1|2, implying |α(1)

0 |2 + (d − 1)|α(1)
1 |2 = 1. Then 〈ν1|ρ|ν1〉 = 1 is

equivalent to

(1 + ε)|α(1)
0 |2 + (

d−1∑
k=1

λk)|α(1)
1 |2 = 1⇒ (1 + ε)|α(1)

0 |2 − ε|α
(1)
1 |2 = 1, (22)

where we used the relation ε+
∑d−1
k=1 λk = 0. Since |α(1)

0 |2 + (d− 1)|α(1)
1 |2 = 1,

one easily finds the solution

|α(1)
0 |2 =

ε+ d− 1

dε+ d− 1
, (23)

and then an infinite number of vectors |ν1〉 such that 〈ν1|ρ̃|ν1〉 = 1, i.e., such
that the PC is violated by ρ̃. By the same reasoning, defining a vector |ν0〉
such that |α(0)

1 |2 = |α(0)
2 |2 = . . . = |α(0)

d−1|2 but such that 〈ν0|ρ̃|ν0〉 = 0 gives
the solution

|α(0)
0 |2 =

ε

dε+ d− 1
, (24)

which is fullfilled by an infinite number of vectors as well.
Let us design then a POVM discriminating quantum states in the form |ν0〉

from those in the form |ν1〉. Define the following maximally entangled states

|φk〉 =
1√
d

d−1∑
j=0

ωjkd |ψk, ψk〉 (25)

where ωd = ei(2π/d) is the d-th rooth of unity; define the projector Π1 =∑d−1
k=0 |φk〉〈φk|. A straightforward calculation shows that Tr(Π1ρ̃⊗|ν1〉〈ν1|) =

1 and Tr(Π1ρ̃⊗ |ν0〉〈ν0|) = 0. Thus, defining Π0 = I −Π1, we have a POVM
{Π0, Π1} such that Tr(Π1ρ̃⊗|ν1〉〈ν1|) = 1 and Tr(Π0ρ̃⊗|ν0〉〈ν0|) = 1, i.e., we
can discriminate with certainty |ν0〉 from the (almost always) non-orthogonal
|ν1〉 and similarly to Corollary 1, clone these states deterministically as well.
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5 Conclusions

In this work, we gave a simple and operational formulation of the principle
of complementarity in terms of the empirical unpredictability of fully incom-
patible measurements. For two-level systems it was shown that a violation
of complementarity is equivalent to: (i) the creation of nonlocal preparations
that violate Tsirelson’s bound, without violating non-signalling in the frame-
work of the CHSH inequality, by using solely deterministic operations; (ii)
distinguishability and hence cloning of a plethora of non-orthogonal quantum
states via deterministic protocols. Theorem 1 seems to contradict the results
of [73], which prove that all reversible dynamics are trivial in the boxworld
representation of non-signalling correlations. We stress that our formulation
does not necessarily satisfies all rules of the boxworld formalism, having more
freedom in handling preparations. We believe this is the main reason for the
discrepancy in results.

For higher-dimensional systems the equivalence between preparations satis-
fying complementarity and the set of quantum states does not hold completely,
but violations of complementarity were shown as necessary for the enhance-
ment of distinguishability and cloning. Thus, one can see our results as giving
even stronger reasons for complementarity as a major physical principle and
we believe it is, if not the main reason, one strong argument ruling out beyond-
quantum phenomema in nature. Moreover, we supplemented the mathematical
bounds given by complementarity with higher-order bounds on the moments
of a preparation. The physical interpretation of these higher-order tests is an
interesting open problem whose elucidation could clarify the characterization
of correlations displayed by quantum systems.
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