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Abstract Near-term large quantum computers are not able to operate as a
single processing unit. It is therefore required to partition a quantum circuit
into smaller parts, and then each part is executed on a small unit. This ap-
proach is known as distributed quantum computation. In this study, a dynamic
programming algorithm is proposed to minimize the number of communica-
tions in a distributed quantum circuit (DQC). This algorithm consists of two
steps: first, the quantum circuit is converted into a bipartite graph model,
and then a dynamic programming approach (DP) is proposed to partition the
model into low-capacity quantum circuits. The proposed approach is evalu-
ated on some benchmark quantum circuits with remarkable reduction in the
number of required teleportations.
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1 Introduction

Nowadays, with the empirical demonstrations of quantum computing, this
field has witnessed a rapid growth with high performance in many areas such
as database searching and integer factorization and etc. Quantum computa-
tion has many advantages over classical ones, but having a large-scale quantum
system with many qubits, has implementation constraints [1] which makes dis-
tributed quantum implementation a necessity [2]. One challenge in distributed
quantum computation is the interconnection between qubits and the envi-
ronment, which makes quantum information more delicate and leads to error
[3]. Distributed quantum system overcomes these problems in the sense that
qubits are distributed to subsystems and each one is responsible of computa-
tion between fewer qubits. Therefore instead of having a large-scale quantum
computer, it is reasonable and better to have a set of the limited-capacity
quantum system which interact within quantum or classical channel and built
the behavior of whole quantum system[4]. This concept is known as distributed
quantum system.

DQC architecture can be described as follows [5]:

– Multiple quantum processing units (QPUs), each unit keeps a number of
qubits and can execute some universal quantum gates on them.

– A classical communication network, the QPUs send or receive messages
through this network when measuring their qubits.

– Ebit generation hardware, ebit is shared between two QPUs and consists
of two qubits. Each of them is placed in different QPU. Also, an ebit
includes the required information for sending a single qubit from one QPU
to another one. Each QPU may have the hardware to generate and share
ebits or they may be created by a central device.

A Distributed Quantum Circuit (DQC) consists of K smaller quantum circuits
(called partition) with fewer qubits and limited capacity where partitions are
far from each other [6,7]. It is necessary for DQC to have a reliable protocol for
interconnection between subsystems. Teleportation [8] is a primitive protocol
for interconnection between qubits by using entanglement of qubits, which is
led to distribution of information through quantum system [9]. Figure 1 shows
the quantum circuit for basic teleportation, as described in [10]. In this figure,
two top lines are the sender’s qubits and the bottom line is the receivers one.
In this protocol, qubits transfer their states from one point to another without
moving them physically. Finally, they perform computations locally on qubits.
This approach is called teledata. There is another approach which is called
telegate. In [2], telegate and teledata are discussed. In telegate, gates are exe-
cuted remotely using the teleported gate without needing qubits to be nearby.
Authors have shown that teledata is more appropriate for DQC systems and
have used teledata for building a DQC system out of a monolithic quantum
circuit. Teleportation is an expensive operation in DQC. Also according to no-
cloning theorem [11], when a qubit teleports its state to a destination, after a
while it may be required in its subsystem again. Therefore, it is essential to
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minimize the number of teleportations in DQC. Dynamic programming (DP)
is one important method for mathematical optimization and computer sci-
ences and is widely used in many fields. In DP approach, the main problem
is decomposed into smaller sub-problems and once all the sub-problems have
been solved, one optimal solution to the large problem is left. In this paper,
an algorithm is proposed to solve the problem of quantum circuit distribu-
tion. The algorithm consists of two steps: in the first step quantum circuit is
modeled with a bipartite graph and in the next step, a dynamic programming
approach is presented to partition the bipartite graph into K parts in the sense
that the number of connections between the parts is minimized.

|ψ〉 • H
M1

•
M2

•

|β00〉

XM2 ZM1 |ψ〉



Fig. 1: Quantum circuit for teleporting a qubit [10].

The paper is organized as follows. In Section 2, some definitions and no-
tations of distributed Quantum computing are described. Related works are
presented in Section 3. In Section 4, partitioning of the bigraph is described.
The proposed algorithm is presented in Section 5 and finally experimental
results for some benchmarks are presented in Section 6.

2 Definitions and notations

In quantum computing, a qubit is the basic unit of quantum information. A
qubit is a two-level quantum system and its state can be represented by a unit
vector in a two-dimensional Hilbert space for which an orthogonal basis set
denoted by {|0〉 , |1〉} has been fixed. Qubits can be in a superposition of |0〉
and |1〉 in form of α |0〉+ β |1〉 where α and β are complex numbers such that
| α |2 + | β |2= 1. When the qubit state is measured, with probabilities | α |2
and | β |2, classical outcomes of 0 and 1 are observed respectively.

There are many ways to present a quantum algorithm. For example adi-
abatic model of computation [12] and quantum programming languages [13].
But one of the mostly used approaches is quantum circuit [14]: a model for
quantum computation by a sequence of quantum gates to transfer information
on the input quantum registers. The quantum circuit is based on unitary evo-
lution by networks of these gates [10]. Every n-qubit quantum gate is a linear
transformation represented by a unitary matrix on an n-qubit Hilbert space.
A set of useful single-qubit gates called Pauli set are defined bellow [15], [16]:
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Fig. 2: Circuit and Matrix representation of CNOT gate

σ0 = I =

[
1 0
0 1

]
(1)

σ1 = X =

[
0 1
1 0

]
(2)

σ2 = Y =

[
0 −i
i 0

]
(3)

σ3 = Z =

[
1 0
0 −1

]
(4)

Another important single qubit gate is Hadamard which is defined as:

H = 1/
√

2

[
1 1
1 −1

]
(5)

A controlled-U is a two-qubit gate which acts on two qubits, namely, control
and target qubits. When the control qubit is |1〉, U is applied to the target
qubit, otherwise the target qubit remains unchanged. One of the most useful
controlled-U gates is controlled-Not (CNOT) gate. This gate applies operator
X to the target qubit, if the control qubit is |1〉. Otherwise the target qubit
do not change. Figure 2 shows the circuit and the matrix representation of the
CNOT gate.

A quantum circuit consists of several quantum gates interacted by quantum
wires. Without loosing generality, it is assumed that the given quantum circuit
consists of single-qubit and two-qubit gates. If three quantum gates that act
on more than two qubits, they can be decomposed into some single-qubit or
two-qubit gates. Figure 3 shows a quantum circuit with three qubits and four
gates.

It is assumed a quantum circuit QC with width W , size S and depth D,
where:

- W is the total number of qubits in the quantum circuit.
- S is the total number of gates in the circuit.
- D is the total time steps for executing the circuit. In each time steps, a

set of gates are executed in parallel.
In the quantum circuit, qubits are shown by set Q and are they numbered

from one to n, where ith line from top is qubit i called qi. The set of all gates in
quantum circuit is shown by G. Moreover, the gates are numbered in order of
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|q1〉

|q2〉

|q3〉

|q1〉

|q1〉
⊕
|q2〉

⊕
|q3〉

|q3〉
⊕
|q2〉

Fig. 3: A sample quantum circuit

their executions in the quantum circuit. The gate ith has been shown by gi and
means ith gate in scheduling algorithm for executing of gates. In scheduling
algorithm, some gates are executed in parallel. For these gate, the priority of
gates is arbitrary. A distributed Quantum circuit (DQC) consists of N limited
capacity Quantum Circuits or partitions which are located far from each other
and altogether emulate the functionality of a large quantum circuit. Partitions
of DQC communicate by sending their qubits to each other using a specific
quantum communication channel through teleportation [1].

In DQC, There are two types of quantum gates:

– Local gate: A local gate consists of single-qubit and local CNOT gates: A
single qubit has been shown by tuple gi(qj , pk), where gi is ith single-qubit
gate acting on jth qubit and pk is partition k that gate jth is lactated on it.
In local CNOT gates, target and control qubits are in the same partition
and is shown by gi(qt, qc, pk), where gi is ith gate, qt is target qubit and qc
is control qubit and pk is partition k that gate jth is located on it.

– Global gate : A global gate is the one whose target and control qubits
are in the different partitions. This gate is shown by gi(qt, qc, pt, pc) where
pt and pc are partitions which qt and qc are belonged on them respectively.

Figure 4 has partitioned the circuit presented in Figure 3 to two partitions p1
and p2. By this partitioning, global gates are g1 and g2 and local gate is g3.
The set of all gates (G)is as follows:
G = CNOT (q1, q3, p1, p2), CNOT (q1, q3, p1, p2), CNOT (q2, q3, p2)

3 Related work

First ideas on distributed quantum computing were suggested by [17], Cleve
and Buhrman [18] and later by Cirac et.al. [19]. In [17] a distributed quantum
system is proposed. In this system, some particles have located far from each
other and sent the required data information to a base station. He divides her
quantum computing into several quantum computing parts and shows how her
proposed algorithm acted optimally. Grover showed by suggested distributed
quantum system, computation time is faster proportional to the particle.
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|q1〉

|q2〉

|q3〉

P1

P2

|q1〉

|q1〉
⊕
|q2〉

⊕
|q3〉

|q3〉
⊕
|q2〉

Fig. 4: Circuit presented in Figure3 is partitioned two parts:p1 and p2.

There are many limitations for realizing a quantum computer. Also, many
numbers of qubits for building a monolithic quantum system have technologi-
cal limitations. This limitation is one of reason to appear distributed quantum
computing [20]. Two types of communication for DQC are presented by Yepez
[21]. In Type I, quantum computers use quantum communication between sub-
systems. In this type, each qubit may be entangled with the number of qubits.
In Type II quantum computer exploits classical communication between sub-
systems of the distributed computer. In type II, a quantum computer consists
of many quantum systems and they connect via classical channels.

An algorithm was presented by Zomorodi et al. [1] to optimize the number
of qubit teleportations in a distributed quantum circuit. In this study, two
spatially separated and long-distance quantum subsystem is considered. For
different configurations of gate locations, the algorithm is run to calculate the
minimum number of teleportations.

In [5], Pablo and Chris reduced the problem to hypergraph partitioning.
They represented two routines called pre- and post-processing to improve the
circuit distribution. Then, they evaluated their approach on five quantum cir-
cuits and showed that the distribution cost was more than halved in compar-
ison to the naive approach.

Another modeling of distributed quantum circuits can be found in [22]. In
this model, non-local gates of Shor algorithm have been implemented by the
distributed quantum circuit. Also, the number of teleportations is calculated
but no attempt has been done to minimize the number of teleportations.

Some definition of the distributed quantum circuit has been provided by
Ying and Feng [23]. They presented an algebraic language for modeling quan-
tum circuits. Van Meter et al. [7] presented a distributed quantum circuit
for VBE carry-ripple adder. In this work, the VBE adder was divided into
two separate quantum circuits and the circuits were communicated with each
other through teleportation. So no attempt has been provided in this work
to reduce the number of teleportations and there was a teleportation circuit
for each global gate in the DQC. They considered two models called teledata
and telegate topologies and proved that teledata is better than telegate. Beals
et al. [24] presented a hypercube graph for a distributed quantum computer
witch nodes connected via this graph and emulate a quantum circuit with low
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overhead. They showed any quantum circuit can be replaced by a DQC whose
nodes are connected via a hypercube model.

Streltsov et al. [25] proposed a way for distributed entanglement and pro-
vided the minimum quantum cost for sending an entangled composite state
in long distance. They showed the amount of entanglement sent in the to-
tal process of distribution communication may not be more than the total
entanglement for sending the ancilla particle and sending back that particle.

In [26] authors studied the challenges of designing quantum internet. Also
they discussed that faster processing speed achieved by using connecting quan-
tum computers via quantum internet. In another work [27], the authors studied
the creation of quantum internet and considered teleportation as the main pro-
tocol to transfer the information. Then they explored the challenges and open
issues in the design of quantum internet.

4 Bipartite graph partitioning

As stated, our new DQC model is based on graph partitioning. So, in this
section, The approach of graph partitioning is discussed which has been used
in this paper. The graph partitioning problem is an interesting field which
is used in the VLSI circuit design [28], task scheduling, clustering and social
networks and many other fields [29].

Since this problem is NP-Hard [30], some heuristics are used for the so-
lution. There are many methods to solve graph partitioning such Kernighan-
Lin [31], Fiduccia-Mattheyses algorithm [32] as multi-level methods[33,34,35],
spectral partitioning [36,37] and etc.

Definition I : Consider undirected and un weighted graph G = (V,E),
where V denotes the set of n vertices and E the set of edges. The graph parti-
tioning problem takes a graph G(V,E) as an input and a parameter k giving
the number of parts we wish to partition the graph into K disjoint parts(sub-
graph) (V1, V2, ..., VK) such that each vertex of G is contained in exactly one
sub-graph and all vertices are covered. Also the Communication cost among all
of different parts(sub-graph) is minimized, This value is calculated as follows:

K−1∑
i=1

K∑
j=i+1

∑
v1∈pi,v2∈pj

w(v1, v2) (6)

Where w(v1, v2) is the weight of between vertices v1 and v2 for all v1 ∈
pi, v2 ∈ pj . In our problem, any weigth assign to edges of graph G. Therefore,
in unweigthed graphs the communication cost is the number of edges among
all of different sub-graphs pi, i = 1, ...K.

Because our model is based on bipartite graphs, here some definitions re-
lated to bipartite graphs are introduced.

Definition II : A graph G(V,E) is a bigraph whose vertices can be divided
into two disjoint and independent sets X and Y (V = X ∪ Y ) so that each
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edge connects a vertex in X to one in Y . Each set X and Y is called a part of
the graph. This notation is presented in [38].

For the representation of quantum circuit by a bigraph, it is required to
determine sets X and Y and edges between them. In our proposed model, we
have considered sets X and Y as qubit set (Q) and gate set(G) respectively.
The edge set of bigraph (E)is determined as follows:

For each q ∈ Q and g ∈ G, there is an edge (q, g) ∈ E, if qubit q ∈ Q is
control or target input of gate q ∈ G of quantum circuit. Two quantum gates
describe in before, construct the edges of bigraph as follows:

– For a single-qubit gate gi(qj , pk) where gi ∈ Y, qj ∈ X, an edge (gi, qj) is
added to bigraph. Also in a two-qubits gate gi(qt, qc, pk), edges(gi, qt) and
(gi, qc) are added to bigraph.

– For a global gate gi(qt, qc, pt, pc) edges(gi, qt) and (gi, qc) are added to
bigraph.

The total number of vertices in graph is W + S. For example, the bigraph
model of quantum circuit in Figure 4 has been shown in Figure 5. In this
Figure, The sets X and Y of bigraph are Q = {q1, q2, q3} and G = {g1, g2, g3}
respectively. For example g1 has q1 and q3 as control and target qubits respec-
tively. Therefore edges (g1, q1) and (g1, q3) are added to the bigraph. Another
edges of the bigraph are added as follows:

g1(q1, q3, p1, p2)⇒ (g1, q1), (g1, q3)

g2(q1, q3, p1, p2)⇒ (g2, q1), (g2, q3)

g3(q2, q3, p2)⇒ (g3, q2), (g3, q3)

E = {(g1, q1), (g1, q3), (g2, q1), (g2, q3), (g3, q2), (g3, q3)}

(7)

As shown Figure 4, it is assumed that qubits are partitioned into two
parts: q1 is assigned to Part 1 and q2, q3 are assigned to part two. As shown
in Figure 5, the control and the target qubits of gates g1 and g2 are located
in the different parts. Therefore, they are called global gates but gate g1 is a
local gate (having control and target qubits in the same part).

5 Proposed Algorithm

In this section, our proposed approach for finding the minimum number of
communications in DQC is presented. It is assumed that the quantum circuit
consists of single-qubit and two-qubit(CNOT) gates. The main algorithm is
given in Algorithm 1 which receives the quantum circuit and number of par-
titions (K) as inputs and returns the minimum number of communication as
an output.

The main algorithm consists of two steps (I and II) which are performed
by QCtoBigraph and DP functions respectively. In Step I, the quantum cir-
cuit is converted to a bigraph as described in Section 5. This procedure is done
by QCtoBigraph function and is called in Line 4 of the main algorithm.
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q1 q2 q3

g1 g2 g3

P1 P2

Fig. 5: Bipartite graph of quantum circuit of Figure 4. The qubits are located in two
parts:P1, P2.

Algorithm 1 Main algorithm

1: function Main(QC,K)
2: . Input: Quantum circuit (QC), The number of partitions (K)
3: . Output: The minimum number of teleportations
4: . Step I: G=QCtoBigraph(QC);
5: . Step II: Number of teleportation=DP(G,K);

Algorithm 2 This algorithm converts quantum circuit to bigraph

function G=QCtoBigraph(QC)
2: . Step I: Convert QC to Bigraph

Initialize G(V,E) , G.X = Q , G.Y = G and E = {} ; . V = X ∪ Y
4: . Qubits are in one part of bigraph G(part X) and gates are in other parts( part Y)

for each gi ∈ G do
6: c← contorol qubit of gi;

t← target qubit of gi;
8: Add to E edges (c, gi) and (t, gi);

QCtoBipartite function is presented in Algorithm 2. This function takes
the quantum circuit as an input and illustrates the bigraph as an output(G).
As stated, a bigraph has two vertex sets called X and Y . Let G(V,E) be a
bigraph. In Line 3, the vertices set X and Y are set to Q and G respectively and
the edge (E) is equal to empty. In Lines 5-8, edges are added to E according
to the gates of QC from left to right as mentioned in Section 5.

In Step II, dynamic programming (DP) algorithm is presented (Algorithm
3) to find the minimum the number of communications. This function is called
in Line 5 of the Main algorithm.

In the first step of the DP, the optimal sub-structure must be determined
and then the main optimal solution is constructed which is obtained from
optimal solutions of sub-problems.

Let T (Si, j) be the minimum number of communications for partitioning
the set S to j parts where set S consists of subset X of bigraph G with size
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Algorithm 3 Dynamic programming to find the minimum number of com-
munication

function number of teleportation=DP(G,k)
. Step II: DP approach to find minimum number of teleportation

3: Initialize set S with member of X of graph G
if k == 1 then

Return 0;

6: index= Comupte decimal number of S;
C[index, k] =∞;

for each S
′
⊂ S do

9: q = connect(S
′
, S − S

′
) +DP (S − S

′
, k − 1);

if q ≤ C[index, k] then
C[index, k] = q;

12: Return C[index, k];

function count=Connect(S1, S2)
Output:The number of global gates between S1 and S2

15: count = 0;
for each qi ∈ S1 do

for each qj ∈ S2 do
18: for each gk ∈ G do

if (gk, qi) ∈ E and (gk, qj) ∈ E then
count++;

21: Return count;

i. In other words, subset X (subset of qubit) is partitioned to j parts. For the
full problem, the lowest-cost way would thus be T (Sn,K).

T (Si, j) can be defined recursively as follows:

T (Si, j) = minS′
k⊂Si

(connect(S
′

k, Si − S
′

k) + T (Si − S
′

k, j − 1))

S.t1 ≤ k < i
(8)

Let T (S, k) use the function connect(S1, S2). This function counts the num-
ber of global quantum gates between two-qubit sets S1 and S2. In other words,
for each two-qubit global gate gk = (qt, qc), if there is qt ∈ S1 and qc ∈ S2 or
conversely, this function is increased by one. Eq (9) shows this function.

connect(S1, S2) = |Global gate(qt, qc)| (9)

S.t (qt ∈ S1 and qc ∈ S2) or (qc ∈ S1 and qt ∈ S2)

Figure 6 shows the recursion tree of DP. In the root of tree, the main
problem (T (Sn,K)) is placed. This value determines the minimum number of
communications for partitioning the set S toK parts where set S consists of set
X of bigraph G with the size n. In each level of tree, we compute subproblem
for each subset S

′ ⊆ S and K − 1.
Moreover, dynamic programming algorithms typically take the advantage

of overlapping subproblems by solving each subproblem once and storing the
solution in a table where it can be looked up when needed. This problem has
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(Sn, k)

(S
′
n−1, k − 1) (S

′
n−2, k − 1) ... (S

′
n/2

, k − 1)

(S
′
n−2, k − 2) (S

′
n−3, k − 2) ... (S

′
n−4, k − 2) ...

Fig. 6: The recursion tree for computation of T (S, k). Each node of the tree contains subset

S
′

and K. Dashed elipse shows the subproblem overlaps.

been shown in the recursion tree of Figure 6. It references entry T (S
′

n−3, k−2)

many times; during computations of entries T (S
′

n−2, k−1) and T (S
′

n−1, k−1)
and etc.

As a result of overlapping, we considered a table called C and value of
T (S, k) is placed in position C[index, k] so that the value of index is defined
as follows.

Let b be a sequence of bits with size n. When qi ∈ Q is present in S
′
, ith

bit in b becomes one; otherwise it becomes zero. Then the value of index is
set to the decimal value of b.

DP function has bigraph G and the number of partitions (K) as inputs and
returns the entries of table C as output by the concept of Eq (8) recursively.
In the beginning of this function (Line 3), the set S is initialized by the set X
of bigraph G. In Lines 4-5, if K is equal to one, then the communication cost
will be zero for one part. The decimal number of S is computed and the value
of index equal to it. The minimum number of communications to partition set
S to K parts is found among all subsets S

′ ⊆ S in Lines 8-11. Also, Function
connect(S1, S2) is given in Lines 13-20. This function counts the number of
global gates between two sets S1 and S2.

For example, we can consider bipartite graph of Figure 7 where G.X =
{q1, q2, q3, q4} and G.Y = {g1, g2, g3, g3, g4, g5, g6, g7}. It is assumed that K =
3. The steps of the algorithm for calculating T ({q1, q2, q3, q4}, 3) are as follows:
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|q1〉

|q2〉

|q3〉

|q4〉

p1

p2

p3

g1 g2 g3 g4 g5 g6 g7

Fig. 7: The example of quantum circuit.

T ({q1, q2, q3, q4}, 3) =

min
S′⊆S

=



connect({q1}, {q2, q3, q4}) + T ({q2, q3, q4}, 2) = 2 + 2 = 4

connect({q2}, {q1, q3, q4}) + T ({q1, q3, q4}, 2) = 3 + 1 = 4

connect({q3}, {q1, q2, q4}) + T ({q1, q2, q4}, 2) = 6 + 0 = 6

connect({q4}, {q1, q2, q3}) + T ({q1, q2, q3}, 2) = 3 + 2 = 5

connect({q1, q2}, {q3, q4}) + T ({q3, q4}, 2) = 3 + 3 = 6

connect({q1, q3}, {q2, q4}) + T ({q2, q4}, 2) = 6 + 0 = 6

connect({q1, q4}, {q2, q3}) + T ({q2, q3}, 2) = 5 + 2 = 7

As shown above, for obtaining the final solution of T ({q1, q2, q3, q4}, 3), it
is required to solve T ({q2, q3, q4}, 2), T ({q1, q3, q4}, 2), ... recursively. Table 1
indicates these results computed by DP function for this circuit. In this table,
rows indicate the number of partitions and the columns represent the set of
qubits participate in partitioning. Also, the decimal value of each qubit set is
given in the first column.

In this example, the minimum number of communications, which is four,
occurs for {{q1}, {q2}, {q3, q4}}. The solution shows that {q1} is placed in
partition 1 and {q2, q3, q4} are partitioned to two parts recursively. By solving
T ({q2, q3, q4}, 2), qubit sets {q2} and {q3, q4} are assigned to parts 2 and 3
recursively.

Let us consider the steps of the gate executions according to this partition-
ing. The algorithm starts with the first gate in G i.e. g1(q1, q2, p1, p2) which is
a global gate. For executing this gate, qubit q1 in p1 is teleported to p2, and
the number of communication is increased by one, and then step by step all
other gates are executed and removed from the list. Other steps of running
gates are as follows:



Title Suppressed Due to Excessive Length 13

– g2(q2, q3, p2, p3) is a global gate and q2 is teleported to part three and
executed there.

– g3(q1, q3, p1, p3) is a global gate because its target input is in part three
and its control input is in part one. Therefore, q1 in part one is teleported
to part three for executing g3.

– g4 and g5 are local gates and are executed in part three. g6 and g7 are global
and local gates respectively and are executed the same as other gates.

Table 1: Table C obtained from the DP function for the circuit of Figure 7.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
{1} {2} {2,1} {3} {3,1} {3,2} {3,2,1} {4} {4,1} {4,2} {4,2,1} {4,3} {4,3,1} {4,3,2} {4,3,2,1}

3 N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A 2
2 N.A N.A 1 N.A 1 2 2 N.A 0 0 0 3 1 2 2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 Experimental Results

We implemented our algorithm in MATLAB on a workstation with 4GB RAM
and 0.5 GHz CPU to find the best partitioning with an optimized number of
teleportation. Many different quantum circuits were used for comparing the
performance of our algorithm with other approaches. These quantum circuits
are as follows:

- Quantum fourier transform (QFT) [10]: in quantum computing, the quantum
fourier transform (QFT) is a linear transformation on quantum bits. QFT is
used in some quantum algorithms such as Shor’s algorithm. The quantum
gates used in the implementation of this algorithm are the Hadamard gate
and the controlled phase gate Rm as described in Section 3.

- Binary welded tree (BWT) [39]: it consists of two balanced binary trees of
the height n with the 2n leaves of the left tree identified with 2n leaves of the
right tree. In this circuit, Toffoli gates are replaced with CNOT gates.

- Ground state estimation (GSE) [40]: twice the default number of basic func-
tions and occupied orbitals.

- Another set of test samples for quantum circuits was taken from Revlib [41]
library which is an online resource of benchmarks. We used some of them such
as: Alu primitive, Parity, Flip flop, Sym9 147.



14 Zohreh Davarzani et al.

- To compare the results with the work in [1], we used the same quantum
circuit example of [1].

For comparision with Pablo method, we used the ratio(R) used in [5] as
follows:

R =
Number teleportations

2 ∗Number qubits
(10)

As stated before, each teleportation comprises two qubits and each qubit
is located in different part. Therefore half of teleportation is related to the
number of qubits. For this purpose, number two is used in the fraction of this
equation. Having R > 1 means that the number of teleportations is greater
than the number of qubits and some qubits are teleported more than once.
Therefore this distribuition has not act well comared to R < 1.

Figure 8 shows this ratio (R) for various number of partitions (K) in com-
parison with Pablo [5] for three quantum circuits: BWT (Figure 8.a), QFT
(Figure 8.b), and GSE (Figure 8.c) circuits. In comparison with [5], the pa-
rameter R is better except for GSE circuit which did not distribute well for
K = 13. Also proposed method produced the same R for K = 7 in GSE cir-
cuit. By comparing the values in Table 2, QFT for K = 3 did not produce
good result by the method presented in [5] and required several qubits for
communication. Also, for K >= 5, QFT required more qubits than the num-
ber of communications (R > 1). But in our proposed approach, for K = 3, 5
the distribution is performed better: The ratio was less than one (R < 1). The
exact values of R are given in Table 2.

Table 3 shows the minimum number of communications for parity 247,
Sym9 147, Flip flop, Alu primitive, Alu primitive opt, and random circuit ex-
ample of [1]. In this table, the number of qubits, gates, and partitions are given
for each sample. We compared the results of the proposed approach with two
proposed methods presented in [1] and [42] in terms of the teleportation cost
(TC).

Let us consider the sample circuit of [1] in figure 9. This sample circuit has
been reproduced from [1], (their figure 4) for reference. In [1], minimum number
of communications, which is four, occurs for Config-Arr={11000} where the
first and second global gates are executed in P1 and other global gates are
executed in partition P0. In our model, {q1, q2, q3} and {q3} are located in P0

and P1 respectively for K = 2. The minimum number of communications was
two and the steps of running gates are shown in Table 4. The model of [1] had
some limitations: in the beginning of their algorithm, partitions were fixed
and they did not afford to find optimized partitions. Therefore, their space
model was limited to two pre-defined partitions and they considered different
configurations for this pre-defined partitioning.
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(a) BWT sample

(b) QFT sample

(c) GSE sample

Fig. 8: Each bar shows the ratio (R) between the number of teleportations and number of
qubits. X and Y axes show the number of partitions and R respectively.

Table 2: The ratio between number of teleportaions (halves) and number of qubits for
K = 3, 5, .., 13 for QFT, BWT and GSE circuits in comparison with [5](RP)

K=3 K=5 K=7 K=9 K=11 K=13
Circuit R RP R RP R RP R RP R RP R RP
BWT 0.12 0.55 0.35 0.6 0.35 0.64 0.7 0.65 0.35 0.7 0.36 0.77
QFT 0.4 1 0.85 1.4 1.2 1.58 1.2 1.75 1.6 1.75 1.75 1.8
GSE 0.5 0.54 0.64 0.7 0.7 0.7 0.79 0.8 0.72 0.74 0.9 0.74
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|q1〉

|q2〉

|q3〉

|q4〉 H

H

g1 g2 g3 g4 g5 g6 g7 g8 g9

Fig. 9: Sampel quantum circuit. The figure was reproduced from [1].

Table 3: Comparison of the proposed approach (P) with [1] and [42].

Circuit #of qubits # of gates K TC [42] TC [1] TC (P)
pariaty 247 17 16 2 2 2 2
Sym9 147 12 108 2 48 N.A. 8
Flip flop 8 30 3 N.A. N.A. 8

Alu primitive 6 21 2 20 18 6
Alu primitive opt 6 21 2 10 10 6

Figure 4 of [1] 4 7 2 4 4 2

Table 4: The steps of the proposed algorithm for the random circuit of [1]. L and G stand
for local and global gates respectively.

# of Gate Gate name Type of gate
g1 CNOT (q1, q2, p0) L
g2 CNOT (q3, p1, q1, p0) G
g3 CNOT (q1, q4, p0 L
g4 H(q4, p0) L
g5 CNOT (q2, q4, p0) L
g6 H(q2, p0) L
g7 CNOT (q2, q4, p0) L
g8 CNOT (q1, q2) L
g9 CNOT (q1, q4, p0) L

7 Conclusion

Teleportation is a costly operation in quantum computation and it is very
important to minimize the number of this operation in computations. In this
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study, an algorithm was proposed for distributing quantum circuits to opti-
mize the number of teleportations between qubits. The proposed algorithm
consisted of two steps: in the first step, the quantum circuit was converted to
a bipartite graph (bigraph) and in the next step by a dynamic programming
approach, bigraph was partitioned into K parts. Finally, compared with previ-
ous works in [1],[5], and [42], it was shown that the proposed approach yielded
the better or the same results for benchmark circuits.
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